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López-Garćıa
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What is an NV center?

The NV center is a point defect in diamond

Manipulable electronic spin S = 1

High-Precision Sensing

M. Morillas-Rozas, A. López-Garćıa, J. Cerrillo, arXiv:2501.18244 4 / 15



What is an NV center?

• Conventionally treated as a 2 level system

• Population Leakage at low µB

• Population Leakage at High Frequency Signals

• Solved by working with three levels
• J. Cerrillo, S. Oviedo Casado, J. Prior, Phys. Rev. Lett. 126, 220402 (2021)

• P J. Vetter, [...] and F. Jelezko, Phys. Rev. Appl., 17, 044028 (2022)

|0⟩

|+1⟩

|−1⟩
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• Spin-1 Control of NV Centers via Pulses of Fixed Frequency and Amplitude
Poster Session 1: Alberto López-Garćıa

Multiparameter Quantum Sensing and Metrology  ̶ Bad Honnef, February 2025

Conventional Approach

Off-resonant 

unwanted coupling

Low-Field

High-Frequency

𝑫

arXiv:2407.17461v1 Alberto López-García, Javier Cerrillo (2024) 

NV-ERC Approach

NV Centers: Arbitrary Qutrit Gates
Alberto López-García and Javier Cerrillo

Arbitrary Qubit Qates

Rotation of 𝜋/2 

around |𝜙⟩ axis

𝑇′′ with α

Schedule:

1 2 3

𝑇′ with 

α + 𝜋/2
𝑇′′ with α + 𝜋/4

𝑇′ with 

α

2

Rotation of 𝜋/4 

around |−𝜙⟩ axis

NV-ERC Arbitrary Gates: Qubit and Qutrit

Horizon Europe
Capacitation of Quantum-Entangled NV-Center Sensing

nº 101135359
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Sensitivity in Sensing

• The precision in a measurement is limited by the standard quantum limit (SQL)

∆v ∝ 1√
n

• Use of entangled states (GHZ, NOON, etc.) allows to push this limit down to the
Heisenberg limit

∆vH ∝ 1

n
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Sensitivity in Sensing

• If we let the system evolve under an external magnetic field for a time t, the state
|±1⟩ will collect a phase ±ωt
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Heisenberg Limit

• Heisenberg limit can only be reached when the NV centers have parallel axes

� Parallel NV centers =⇒ spectrally indistinguishable �
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M. Morillas-Rozas, A. López-Garćıa, J. Cerrillo, arXiv:2501.18244 9 / 15



Heisenberg Limit

• Heisenberg limit can only be reached when the NV centers have parallel axes

� Parallel NV centers =⇒ spectrally indistinguishable �

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

0.2

0.4

0.6

0.8

1

ωMW (GHz)

|−1, 0⟩ |+1, 0⟩

|0,−1⟩

|0,+1⟩

2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6

0

0.2

0.4

0.6

0.8

1

ωMW (GHz)

|−1, 0⟩
|+1, 0⟩|0,−1⟩
|0,+1⟩
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The two dipolarly interacting NV center system

• Two parallel NV centers

• Dipole-dipole interactions

• Globally addressed by a single MW pulse

• Uniform external magnetic field
B = (0, 0,B)T .

In an appropriate rotating frame:

ĤRWA =µB(Ŝ1,z + Ŝ2,z)

−∆(Ŝ2
1,z + Ŝ2

2,z) +
Ω

2
(Ŝ1,x + Ŝ2,x)

+(Axx |0+⟩⟨+0|+ Ayy |0−⟩⟨−0|+ H.c)

+Azz Ŝ1,z Ŝ2,z
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(Ŝ1,x + Ŝ2,x)

+(Axx |0+⟩⟨+0|+ Ayy |0−⟩⟨−0|+ H.c)
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M. Morillas-Rozas, A. López-Garćıa, J. Cerrillo, arXiv:2501.18244 11 / 15



States of interest

E

D

2D

0

|00⟩

|P0+⟩

|P0−⟩

|P⟩ |P+−⟩

|N⟩|N+−⟩

|N0−⟩

|N0+⟩

|GHZ+⟩ |GHZ−⟩

|P⟩ =
1

√
2
(|+1 + 1⟩ + |−1 − 1⟩)

|N⟩ =
1

√
2
(|+1 − 1⟩ + |−1 + 1⟩)
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|N⟩ state generation
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|N⟩ state generation
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Ĥeff =

(
2∆ 0 Ω/

√
2

0 −Azz Ω/2

Ω/
√
2 Ω/2 Axx+∆+δ

)
• In general, we will have a good Raman transfer
for Ω/2 < Axx +∆+ δ and Ω < Azz ,Axx
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|N⟩ state generation as a function of θ

• Axx ∝ (1− 3 sin2 θ)

• Azz ∝ (1− 3 cos2 θ)
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Summary

• We propose a novel mechanism that uses globally addressing MW pulses on two
dipole-coupled parallel NV centers to prepare maximally entangled states of the double
quantum transition of the NV ground state, which can be used for several sensing
purposes.

• After identifying the states of interest, we generate them using an approach based on
Raman transfer and adiabatic elimination.
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