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What is an NV center?

The NV center is a point defect in diamond

Manipulable electronic spin S =1
High-Precision Sensing
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What is an NV center?

I+1)

® Conventionally treated as a 2 level system

® Population Leakage at low uB - B
® Population Leakage at High Frequency Signals
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What is an NV center?
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® Solved by working with three levels
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® Spin-1 Control of NV Centers via Pulses of Fixed Frequency and Amplitude

Poster Session 1: Alberto Lépez-Garcia
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Sensitivity in Sensing

® The precision in a measurement is limited by the standard quantum limit (SQL)

1

AVOC%
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Sensitivity in Sensing

® The precision in a measurement is limited by the standard quantum limit (SQL)

1

AVOC%

e Use of entangled states (GHZ, NOON, etc.) allows to push this limit down to the
Heisenberg limit

Avy x —
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Sensitivity in Sensing

® |f we let the system evolve under an external magnetic field for a time t, the state
|£1) will collect a phase +wt
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Sensitivity in Sensing

® |f we let the system evolve under an external magnetic field for a time t, the state
|£1) will collect a phase +wt

2 Level System 3 Level System GHZ state 2 LS GHZ state 3LS
L0+ ) S+ e - L 100y + = -1 - 1) el R
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Heisenberg Limit

® Heisenberg limit can only be reached when the NV centers have parallel axes
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Heisenberg Limit
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Heisenberg Limit

® Heisenberg limit can only be reached when the NV centers have parallel axes

A Parallel NV centers = spectrally indistinguishable A
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The two dipolarly interacting NV center system

® Two parallel NV centers
¢ Dipole-dipole interactions

® Globally addressed by a single MW pulse

e Uniform external magnetic field
B =(0,0,B)T.

In an appropriate rotating frame:

0
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The two dipolarly interacting NV center system

® Two parallel NV centers E

¢ Dipole-dipole interactions
e Globally addressed by a single MW pulse 2P|y ) e

|-1+1)

e Uniform external magnetic field
B =(0,0,B)T.

In an appropriate rotating frame:

| +10) [0+1)

2uB

Hrwa =1B(51, + 55.2) P

\/ \/

S S Q e & 10-1) |- 10)
—A(SE, +85.) + 5 (Sixt+ S2) g
+(Axx [04)+0] + Ay [0—)X—0[ 4 H.c) > v
+A §]_ §2 B 100) E(A:*_A”> A,

M. Morillas-Rozas, A. Lépez-Garcia, J. Cerrillo, arXiv:2501.18244 10 / 15

(=]




States of interest
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States of interest

A

E
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States of interest

A

E

|P) = 7(\+1+1>+\ 1-1))
o me e

M. Morillas-Rozas, A. Lépez-Garcia, J. Cerrillo, arXiv:2501.18244 11 / 15



States of interest

4 Fermionic Subspace
E p

Bosonic Subspace
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|IV) state generation
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|IV) state generation

® We aim to eliminate |P),|P4+_) and |Py_)
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|IV) state generation

|Py) ® We aim to eliminate |P),|P+_) and |Py_)
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|IV) state generation

| P) |Py) ® We aim to eliminate |P),|P4+_) and |Py_)
{4
——P -
a
2A 0 Q/V2 R Az 2uB 0
= 0 —-An Q)2 , H3: <2;1,B Az Q)2 >
2
A 000
Hy, = ( 0 00 )
Q/20 uB
Noooo
i/\\.}.+A
| Po-)
Q
V2
[00)
Y. M. Morillas-Rozas, A. Lépez-Garcia, J. Cerrillo, arXiv:2501.18244 12 / 15




|IV) state generation
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|IV) state generation
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|V) state generation as a function of ¢
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® We propose a novel mechanism that uses globally addressing MW pulses on two
dipole-coupled parallel NV centers to prepare maximally entangled states of the double
quantum transition of the NV ground state, which can be used for several sensing
purposes.

o After identifying the states of interest, we generate them using an approach based on
Raman transfer and adiabatic elimination.
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