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Critical Quantum Sensing
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Review: Quantum Metrology and Sensing with Many-Body Systems
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Master equation
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- R. Di Candia*, F. Minganti*, K.V.Petrovnin, G.S. Paraoanu, and S. Felicetti, npj Quantum Information 9,23 (2023).
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Output photon flux
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Experimental observation

Observation of critical steady-state properties
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Husimi Q-function
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Experimental observation

Observation of critical steady-state properties
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Observation of critical steady-state properties
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Experimental observation

Squeezing at the 2nd-order PT

Dynamical
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Observation of critically enhanced sensing precision
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Estimation
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Experimental observation

Observation of critically enhanced sensing precision
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- U Alushi,W Goérecki, S Felicetti, R Di Candia, Physical Review Letters |33 (4), 040801(2024)
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Passive strategies
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Optimal scaling with number of resonators
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