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FIG. 1. Sketch of the Wigner functions for fixed ✏ and �,
and various values of ! across the criticality. Here, we see how
the system goes from the normal to the symmetry-breaking
phase. The system is highly susceptible in the proximity of the
criticality (blue and light-blue), and so it can be exploited in
high-sensitivity magnetometry. Moreover, the system shows
two highly distinguishable phases, corresponding to the vac-
uum and displaced states (gray and red), which can be applied
in high-fidelity qubit readout.

describes e↵ectively the system, by interpreting ! = !r�
!p/2 as the pump-resonator detuning, ✏ as the e↵ective
pump-power, and � as the SQUID-induced nonlinearity.
We consider the system embedded in a Markovian ther-
mal bath at zero temperature, described by the Lindblad
dissipation superoperator LD[·] = ~�[2â · â† � {â†â, ·}],
where � � 0 is the system-bath coupling. Such a dis-
sipator leaves the model Z2 invariant [56]. With no
loss of generality, we take ✏ positive. For � = 0, the
model is Gaussian and its phenomenology can be eas-
ily explained. In the absence of noise, for � = 0, the
model has a ground state only for ✏ < |!|. This is a
squeezed vacuum state with squeezing approaching in-
finity in the ✏/|!| ! 1 limit. When the bath is turned
on, for � > 0, the diverging point is shifted. In this
case, the steady-state is a squeezed thermal-state and
exists only for ✏ <

p
!2 + �2 ⌘ ✏c, with purity approach-

ing zero when ✏/✏c ! 1. The e↵ect of the nonlinearity
� > 0 is to regularize the model for all parameter val-
ues, thus erasing the divergences. In the scaling limit
� ! 0 a second-order dissipative phase transition (DPT)
emerges, associated with the spontaneous breaking the
Z2-symmetry of the model [26, 56]. The steady-state is
still Gaussian for ✏ < ✏c. Beyond the critical point, for
✏ > ✏c, the steady-state is double-degenerate, and it is
given by a statistical mixture of two equiprobable dis-
placed squeezed thermal-states [27], see Fig. 1. Since �
can be made small in a circuit QED implementation, we
can exploit the presence of this DPT for both quantum
parameter estimation and discrimination. On the one
hand, we can use the large susceptibility of the steady
state in proximity of the critical point, in order to get
a good estimation of !. In turn, as the resonator fre-
quency has a steep dependence on the external magnetic
field threading the SQUID loop, the DPT can be applied
in the design of a critical magnetometer. On the other

hand, the presence of the DPT allows one to discriminate
between two discrete values of ! in a single-shot measure-
ment. In fact, since distinct phases corresponds to qual-
ititatively di↵erent quantum states, one should expect
a higher discrimination power for two values of ! cor-
responding to the normal and symmetry-broken phases.
As a natural application we consider high-fidelity super-
conducting qubit readout.
Quantum parameter estimation.— Let us briefly re-

view the quantum metrology tools relevant for our anal-
ysis. Given an observable Ô, we can define the signal-to-
noise ratio (SNR) for estimating the parameter ! as

S![Ô] =
|@!hÔi!|2

�Ô2
!

, (2)

where �Ô2

!
= hÔ2i! � hÔi2

!
and the index ! indi-

cates the expectation value computed with respect to the
state ⇢! that belongs to the steady-state manifold. The
corresponding precision over M � 1 measurements is
�!2 ' [MS!]�1. Here, we consider the SNRs for homo-
dyne and heterodyne detection, and we compare them
with the QFI.

The homodyne detection POVM is XHom

'
=

{|x'ihx'|}x'2R, where |x'i is an eigenstate of the ro-
tated quadrature operator x̂' = cos(')x̂ + sin(')p̂. Due
to the Z2-symmetry of the system, we consider the quan-
tity S![x̂2

'
], and define the optimal homodyne SNR as

SHom

!
= max' S![x̂2

'
]. The heterodyne detection POVM

is XHet =
�

1

⇡
|↵ih↵|

 
↵2C, where |↵i is a coherent state.

This corresponds to a noisy measurement of the conju-
gate quadratures, with outcomes X and P . We then
compute X2 + P 2 and define the corresponding SNR,
that can be expressed as SHet

!
= |@!hââ†i!|2/[hâ2â†2i! �

hââ†i2
!
] [56]. If instead we maximize the SNR among all

the observables, we obtain the QFI: I! = max
Ô

S![Ô].
This can be expressed as [57]

I! = lim
d!!0

8

d!2

h
1 �

p
F (⇢!, ⇢!�d!)

i
, (3)

where F (⇢!, ⇢!0) = [Tr (
p

⇢!
p

⇢!0⇢!)]2 is the fidelity be-
tween the steady-states ⇢! and ⇢!0 .
(i) The normal phase (� ! 0).— To begin with,

we consider the case � ! 0, which provides us with a
good approximation of the steady-state when we are far
enough from the DPT. The model in Eq. (1) with � = 0
has a steady-state solution only for ✏ < ✏c, corresponding
to the normal phase. Using the analytical formula for
Gaussian states [58], we compute the QFI with respect
to the parameter !, in the steady-states manifold:

I!(✏ < ✏c)
�!0���! 1

2✏2
c

� ✏2


2N +

8!2

✏2
N2

�
, (4)

where N = ✏2/[2(✏2
c

� ✏2)] is the number of photons (see
Fig. 2(a)). Here, it is clear that we have two possible
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Fig. V.1 Two examples of sensors exploiting phase transitions. Left: trails left by a neutrino interacting
with an electron in a bubble chamber (CERN image archives). Right: Superconducting circuit used for
single-photon detection (NIST image archives).

V.1 Introduction

In a system close to a phase transition, small perturbations can lead to large, observable change. It is thus
intuitive that such systems could be used for sensing tasks. This principle has already been applied with
classical phase transition, most notably for particle detection. Bubble chambers are an example: when
a particle goes through a liquid superheated in a metastable state, it deposits energy, which makes the
liquid vaporize locally and create an observable trail. Similarly, superconducting circuits just below the
superconducting-metal phase transition can be used to detect single photons with excellent efficiency
[124, 150].

In this context, quantum technologies carry two interesting perspectives. First, studying quantum
phase transition in addition to classical ones extends the scope of phenomena available; in particular,
quantum critical effects can also be observed at zero temperature. Second, thanks to the development
of quantum metrology, it is possible to derive both ultimate bounds on the achievable precision, and
indications about how to reach this precision. Indeed, if the symmetric logarithm derivative is known,
it is possible to compute which observable allows to saturate the CR bound. More generally, the tools
of quantum metrology give us indications to "dissect" experimental signatures and extract the relevant
information from it.

In the last few years, a growing number of works have studied phase transitions from a quantum
sensing perspective. For instance, several protocols have been proposed to amplify a weak input signal
by crossing a first-order phase transition, or by exploiting symmetry breaking effects [86, 126, 78, 236].
This is the quantum equivalent of the existing protocols presented above.

Other works have focused instead on the correlations near a critical point, with different concepts and
languages. For the sake of this presentation, it is possible to roughly divide them into two classes.

The first approach, which we will call the dynamical paradigm, focus on the time evolution induced by
a perturbation of a Hamiltonian close to a critical point [229, 219, 187, 83]. Let us take a simple example,
based on the Ising Hamiltonian with transverse field ĤI =⇤J ⇥i, j ⌅̂ z

i ⌅̂ z
j ⇤h⇥i ⌅̂ x

i at zero temperature. The
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is, however, meaningful to compare the results for the
same rescaled parameters. Namely, we should compare

hn̂�,ssi vs � for Scaling (I) and
D
n̂�̃,ss

E
vs �̃ for Scaling

(II). Similarly, P�̃,ss = P�,ss for Scaling (I) and P�̃,ss =
P�/L,ss for Scaling (II). In supplementary Fig. 9, we verify
that the two scalings lead to similar results both for the
photon number and the precision upon the appropriate
rescaling . The overlap of curves with identical values of
L, but di↵erent scaling indicates that the Scaling (II) can
be used to qualitatively explore larger values of L that
cannot be reached in our device using the Scaling (I).

Therefore, we analyze the metrological properties of
the device for larger values of L for the Scaling (II).
In Fig. 4(a), we plot the output photon number at the
steady state, hn̂�̃,ssi, observing the characteristics indica-
tive of the onset of a second-order DPT. In Fig. 4(b) we
plot P�̃,ss and confirm that the system gains in precision
as it scales towards the thermodynamic limit. Figure
4(c) shows the maximum of P�̃max,ss as function of L; the
data are in line with a quadratic scaling, comparable to
that observed in Fig. 3. In the same panel, we also plot
P�̃i,ss

for �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz,
highlighting the fact that the optimal scaling is achieved
around the optimal point �̃max. Finally, in Fig. 4(d) we
show that as L increases, the di↵erence between the crit-
ical point �̃c and the point of maximal precision �̃max

decreases, suggesting that the two will eventually coin-
cide for large enough L. These data show the enhanced
sensing capabilities of the parametrically driven Kerr res-
onator, and that this enhanced sensing occurs near the
critical point.

V. DISCUSSION AND CONCLUSION

In classical pump-and-probe experiments, doubling the
pump power does not result in twice the precision. More
formally, as shown in the Appendix C, it can be demon-
strated that a protocol based on a linear resonator driven
by a coherent drive achieves a maximal precision bounded
by P�max,ss / hâ†âi, the number of photon in the res-
onator, even when optimizing over all system and drive
parameters. This remains true even in the absence of any
noise, internal dissipation or decoherence.

Our experiment is still pump-and-probe, but we have
observed a quadratic scaling of the parameter-estimation
precision, P�max,ss / L2 / hâ†âi2. The key di↵erence is
that the system is operated in the vicinity of the critical
point of a second-order dissipative phase transition. The
system’s nonlinearity and the parametric quantum pro-
cess that converts the external drive into a two-photon
pump make it possible to overcome the classical preci-
sion bound. From a fundamental perspective, our exper-
iment demonstrates that quantum sensing protocols are
a valuable tool for characterizing the quantum nature of
driven-dissipative phase transitions. Technologically, our
results pave the way to the development of a new gen-
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FIG. 4. For the Scaling II in Eq. (4): (a) Output pho-
ton number at the steady state

⌦
n̂�̃,ss

↵
vs scaled detuning

�̃ for increasing L. (b) Precision P�̃,ss as a function of �̃.
The scaling of P�̃,ss as a function of L for various points,

including the optimal point �̃max for each L. (c) P�̃i,ss
for

�̃i = �̃max, �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz. The
solid grey line is a fit of the data demonstrating quadratic
dependence for P�̃max,ss

, while the two light grey dotted lines

linking the markers are included as visual guide. (d) �̃max as a
function of L. The light grey dotted line linking the markers
is included as visual guide. Error bars are calculated as in
Figs. 2(a) and 3. The error on in panel (c) corresponds to the
size of a detuning step.

eration of quantum sensors based on solid-state critical
systems. By selecting an appropriate frequency-tunable
component, our frequency estimation protocol could be
implemented to sense various quantities, such as mag-
netic fields using a superconducting quantum inderfer-
ence device (SQUID), forces with an optomechanical de-
vices and a MHz signals with longitudinally coupled RF
resonators.
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eration of quantum sensors based on solid-state critical
systems. By selecting an appropriate frequency-tunable
component, our frequency estimation protocol could be
implemented to sense various quantities, such as mag-
netic fields using a superconducting quantum inderfer-
ence device (SQUID), forces with an optomechanical de-
vices and a MHz signals with longitudinally coupled RF
resonators.
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,
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The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
q
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2✏ we obtain,

H± = (2�� !)a†a+
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p
✏), (6)

and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is

!↵+ �↵⇤ + 2✏|↵|2↵� i
k

2
↵ = 0, (7)

and accordingly for ↵ = |↵|ei� we obtain |↵|2 =
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2✏ , and tan� =
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�2�( k

2 )
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k . As expected the solutions
exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form

⇢̇ = �i[H, ⇢] + (1 +N)(a⇢a† � 1/2
�
a†a, ⇢

 
) + N(a†⇢a� 1/2

�
aa†, ⇢

 
), (8)

where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,
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The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.
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and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is
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II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form
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where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,

H(1) =
�
!↵+ �↵⇤ + 2✏|↵|2↵

�
a† + H.c., (3)

H(2) =
�
! + 4✏|↵|2

�
a†a+

⇣�
2
+ ✏↵2

⌘
a†

2
+
⇣�
2
+ ✏↵⇤2

⌘
a2, (4)

H(3/4) = ✏
⇣
a†a†aa+ 2↵a†

2
a+ 2↵⇤a†a2

⌘
. (5)

The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
q

��!
2✏ we obtain,

H± = (2�� !)a†a+
!

2

⇣
a†

2
+ a2

⌘
+O(

p
✏), (6)

and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is

!↵+ �↵⇤ + 2✏|↵|2↵� i
k

2
↵ = 0, (7)

and accordingly for ↵ = |↵|ei� we obtain |↵|2 =
p

�2�( k
2 )

2�!
2✏ , and tan� =

p
�2�( k

2 )
2��

k . As expected the solutions
exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form

⇢̇ = �i[H, ⇢] + (1 +N)(a⇢a† � 1/2
�
a†a, ⇢

 
) + N(a†⇢a� 1/2

�
aa†, ⇢

 
), (8)

where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.
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The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!
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and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to
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(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)

Weak nonlinearity Critical
phase transition
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
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approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
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and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
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II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form
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where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,
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The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
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+O(
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✏), (6)

and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is

!↵+ �↵⇤ + 2✏|↵|2↵� i
k

2
↵ = 0, (7)

and accordingly for ↵ = |↵|ei� we obtain |↵|2 =
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2 )
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p
�2�( k

2 )
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k . As expected the solutions
exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form

⇢̇ = �i[H, ⇢] + (1 +N)(a⇢a† � 1/2
�
a†a, ⇢

 
) + N(a†⇢a� 1/2

�
aa†, ⇢

 
), (8)

where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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hâ†âi
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
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and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to
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(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements
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where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)

! = !(B)
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FIG. 1. Theory of dissipative phase transitions and
schematic of the experimental set-up. (a) Illustration of
dissipative phase transitions (DPTs) according to Ref. [1].
Sweeping a control parameter ⇣, the expectation value of
the order parameter hÔi = Tr[⇢ss(⇣)Ô] (blue curve) changes
discontinuously (first-order DPT), or continuously with non-
continuous derivative (second-order DPT). The purple dashed
lines indicate the metastable states associated with hystere-
sis across the first-order DPT. (b) Phase-space-like represen-
tation of the system steady (blue) and metastable (purple)
states across the DPTs. The arrows within each panel indi-
cate the decay of an initial state towards the steady state.
The green arrows represents the decay of a non-symmetric
state at a rate �SSB. The orange arrows are associated with
the metastable state of the first-order DPT, decaying at a
rate �1st. (c) The Liouvillian gaps �SSB in green (�1st in or-
ange) associated with the second-order (first-order) DPT. (d)
Schematic illustrating the device and the experimental setup.
The device is a �/4 coplanar waveguide resonator, capaci-
tively coupled on one side to a feedline used only to collect
the emitted signal via heterodyne detection (see Supplemen-
tary). On the other side, the cavity is terminated to ground
via a SQUID. A magnetic field is applied through the SQUID,
tuning both the resonance frequency and the Kerr nonlinear-
ity. A second waveguide, inductively coupled to the SQUID,
is used to supply a coherent pump tone around twice the res-
onant frequency of the cavity (!p ' 2!r). The pump results
in a two-photon drive for the cavity (see Supplementary and
e.g., Refs. [12, 13]). No other input signal is sent into the
resonator.

Critical phenomena are commonly studied in many-
body systems in the thermodynamic limit, where the
number of constituents asymptotically diverges. How-
ever, quantum phase transitions can also take place
in finite-component systems, where the thermodynamic
limit corresponds to a rescaling of the system parame-
ters [28–31]. A preeminent role in the study of finite-
component first-order DPTs has been played by nonlin-
ear quantum-optical oscillators [7, 8, 17, 18]. An exper-
imental analysis of the unexplored fundamental proper-
ties of first- and second-order DPTs requires to engineer
drives and dissipative processes. Superconducting cir-
cuits [32] o↵er the necessary level of control to engineer

these processes [33–35], while also allowing the parame-
ter rescaling required to witness finite-component phase
transitions.

In this article, we use a two-photon driven supercon-
ducting Kerr resonator, and conduct a thorough experi-
mental analysis of both its first- and second-order DPTs.
As a first step, we scale the system towards the ther-
modynamic limit and analyze its steady state proper-
ties. We demonstrate the quantum nature of the system
at the second-order DPT, showing squeezing below vac-
uum. Furthermore, we observe the coexistence of mul-
tiple metastable states in the vicinity of the first-order
DPT, a feature that cannot be captured when neglect-
ing the quantum e↵ects of dissipation. Then, we focus on
the dynamical properties associated with both transitions
by probing the system dynamics through time resolved
measurements. We analyze the data with novel theoreti-
cal tools, based on quantum trajectories and Liouvillian
spectral theory, and extract the characteristic timescales.
From this analysis, we characterize the metastable states
and quantify the critical slowing down of the two DPTs.

A. Steady state properties and phase diagram

The device, shown in Fig. 1(d), is a superconduct-
ing cavity made nonlinear by terminating one end to
ground via a superconducting quantum interference de-
vice (SQUID). A two-photon, i.e., parametric, drive is
applied to the cavity by modulating the magnetic flux
through the SQUID at nearly twice the resonance fre-
quency of the cavity [12, 13, 36]. The emitted signal is
collected through a feedline coupled to the other end of
the cavity, then filtered and amplified with a total gain
G before being measured. Both signal quadratures (Î
and Q̂) are acquired using time-resolved heterodyne de-
tection (see Supplementary). This system is modeled by
the Hamiltonian

Ĥ/~ = �â
†
â +

U

2
â
†
â
†
ââ +

G

2

�
â
†
â
† + ââ

�
, (1)

where â is the photon annihilation operator, � = !r �
!p

2 is the pump-to-cavity detuning, and G is the two-
photon drive field amplitude. In this study, we use �
as the control parameter across the transition [see ⇣ in
Figs. 1(a-c)]. Since the system interacts with the feedline,
fluxline, and other uncontrolled bath degrees of freedom,
its evolution is modeled via the Lindblad master equation

@⇢

@t
= �L⇢ = �

i

~ [Ĥ, ⇢] + (nth + 1)D[â]⇢

+ nthD[â†]⇢ + �D[â†
â]⇢ + 2D[â2]⇢,

(2)

where L is the Liouvillian superoperator, whose spec-
trum is key in characterizing DPTs [1, 2]. The dissipa-
tors are defined as D[Â]⇢ = Â⇢Â

†
� {Â

†
Â, ⇢}/2, and the

rates , �, and 2 are associated with the total pho-
ton loss, dephasing, and two-photon loss, respectively.
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,

H(1) =
�
!↵+ �↵⇤ + 2✏|↵|2↵
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a2, (4)

H(3/4) = ✏
⇣
a†a†aa+ 2↵a†

2
a+ 2↵⇤a†a2

⌘
. (5)

The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
q

��!
2✏ we obtain,

H± = (2�� !)a†a+
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+ a2
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+O(

p
✏), (6)

and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is
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II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form
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where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form

⇢̇ = �i[H, ⇢] + (1 +N)(a⇢a† � 1/2
�
a†a, ⇢

 
) + N(a†⇢a� 1/2

�
aa†, ⇢

 
), (8)

where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)

! = !(B)
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the parameter-dependent Hamiltonian. Sec. IV shows
the results of quadrature measurements by homodyne de-
tection, and analyzes the error introduced by the finite
frequency ratio with di↵erent initial states. Finally, we
briefly discuss the experimental feasibility in Sec. V and
give a conclusion in Sec. VI.

II. QUANTUM PHASE TRANSITION IN COMS

A typical COMS is shown in Fig. 1, where the sys-
tem consists of a single-mode field and a nanomechanical
oscillator [44, 45], and its Hamiltonian is (~ = 1)

H = !ca
†a+ !mb†b� ga†a

�
b† + b

�

+ i"l
�
e�i!lta† � ei!lta

�
.

(1)

The first and second terms represent the free energy of
cavity field and nanowire oscillator, the third term is the
optomechanical coupling term with the coupling strength
g, and the last term is regarded as the driving term with
the driving amplitude ✏l. Performing the rotation trans-
formation under U = e�i!lta

†
a, the Hamiltonian is sim-

plified as

H 0 = �a†a+ !mb†b� ga†a
�
b† + b

�
+ i"l

�
a† � a

�
(2)

where � = !c�!l is the detuning between the cavity field
frequency and the driving laser frequency.

FIG. 1. Cavity optomechanical system consists of an optical
cavity with frequency !c (expressed by operators a and a†), a
mechanical oscillator with frequency !m (expressed by opera-
tors b and b†) and g is the optomechanical coupling strength.
!k is the frequency of cooling laser and !l is the frequency of
drive laser ("l is amplitude).

Considering the influence of environmental thermal
noise on COMS, the motion equations of system are given
by

ȧ =
⇣
�i� � �c

2

⌘
a+ iga

�
b† + b

�
+ "l +

p
�cain,

ḃ =
⇣
�i!m � �m

2

⌘
b+ iga†a+

p
�mbin,

(3)

where ain and bin are noise operators of optical mode
and mechanical mode, respectively, and �c,m are the dis-
sipation of system corresponding to the operators of ain
and bin.

Replace the operators by their average values plus
fluctuations driven by strong laser, i.e., a ! hai + �a,
b ! hbi + �b where hai and hbi. In the following, we re-
place the fluctuation �a and �b by a and b for convenience.
Then, the evolution equations for the mean amplitudes
can be obtained as

˙hai =
h
i (2ghbi � �)� �c

2

i
hai+ "l,

˙hbi =
⇣
�i!m � �m

2

⌘
hbi+ ighai2,

(4)

and the evolution equations of fluctuation operators are
given as

ȧ =
h
i (2ghbi � �)� �c

2

i
a+ ighai

�
b† + b

�
+
p
�cain,

ḃ =
⇣
�i!m � �m

2

⌘
b+ ighai

�
a† + a

�
+

p
�mbin.

(5)
Under a strong laser driving, the coherent amplitudes
reach their steady state with

hai = "l
�c/2� i (2ghbi � �)

, hbi = ighai2

i!m + �m/2
. (6)

At this time, the Hamiltonian corresponding to these
Langevin equations of fluctuation operators is

HL = �a†a+ !mb†b�G
�
a† + a

� �
b† + b

�
, (7)

where the e↵ective detuning between the cavity field
frequency and the driving laser frequency is � = � �
2ghbi, and the enhanced e↵ective optomechanical cou-
pling strength G = ghai [46, 47].
By utilizing the Schri↵er-Wol↵ (SW) transformation

[48, 49] to eliminate the o↵-diagonal part in HL, we ob-
tain an approximated appropriate unitary transforma-
tion eS . The generator S = G(b†+ b)(a†�a)/!m is anti-
Hermitian and block-o↵-diagonal under the condition of
⌘ = �/!m � 1, which makes the transformed Hamilto-

nian eS
†
HLeS free of the coupling terms between cavity

field and nanomechanical oscillator. Consequently, pro-
jecting onto |na = 0i, we obtain the e↵ective Hamiltonian
as

HL = !mb†b� �2!m

4
(b† + b)2, (8)

with � = 2G/
p
�!m. Eq. (8) can be diagonalized by

the squeezing operator S(rnp) = exp[rnp(b†2 � b2)/2]
with squeezing amplitude rnp = ln(1� �2)/4, i.e., H0

L
=

S†(rnp)HLS(rnp) = ✏npb†b + Enp where Enp = (✏np �
!m)/2 is ground state energy and ✏np = !m

p
1� �2 is the

excitation frequency [27]. Generally, the excitation fre-
quency ✏np is required to be real, which indicates � < 1,
i.e., G < Gc =

p
�!m/2. Hence, Gc is the critical point,

and G < Gc is the normal phase while the COMS enters
the superradiant phase if G > Gc.

III. QFI OF CRITICAL QUANTUM DYNAMICS

The performance of quantum sensing is determined by
the sensitivity of two neighboring states, characterized
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FIG. 1. Theory of dissipative phase transitions and
schematic of the experimental set-up. (a) Illustration of
dissipative phase transitions (DPTs) according to Ref. [1].
Sweeping a control parameter ⇣, the expectation value of
the order parameter hÔi = Tr[⇢ss(⇣)Ô] (blue curve) changes
discontinuously (first-order DPT), or continuously with non-
continuous derivative (second-order DPT). The purple dashed
lines indicate the metastable states associated with hystere-
sis across the first-order DPT. (b) Phase-space-like represen-
tation of the system steady (blue) and metastable (purple)
states across the DPTs. The arrows within each panel indi-
cate the decay of an initial state towards the steady state.
The green arrows represents the decay of a non-symmetric
state at a rate �SSB. The orange arrows are associated with
the metastable state of the first-order DPT, decaying at a
rate �1st. (c) The Liouvillian gaps �SSB in green (�1st in or-
ange) associated with the second-order (first-order) DPT. (d)
Schematic illustrating the device and the experimental setup.
The device is a �/4 coplanar waveguide resonator, capaci-
tively coupled on one side to a feedline used only to collect
the emitted signal via heterodyne detection (see Supplemen-
tary). On the other side, the cavity is terminated to ground
via a SQUID. A magnetic field is applied through the SQUID,
tuning both the resonance frequency and the Kerr nonlinear-
ity. A second waveguide, inductively coupled to the SQUID,
is used to supply a coherent pump tone around twice the res-
onant frequency of the cavity (!p ' 2!r). The pump results
in a two-photon drive for the cavity (see Supplementary and
e.g., Refs. [12, 13]). No other input signal is sent into the
resonator.

Critical phenomena are commonly studied in many-
body systems in the thermodynamic limit, where the
number of constituents asymptotically diverges. How-
ever, quantum phase transitions can also take place
in finite-component systems, where the thermodynamic
limit corresponds to a rescaling of the system parame-
ters [28–31]. A preeminent role in the study of finite-
component first-order DPTs has been played by nonlin-
ear quantum-optical oscillators [7, 8, 17, 18]. An exper-
imental analysis of the unexplored fundamental proper-
ties of first- and second-order DPTs requires to engineer
drives and dissipative processes. Superconducting cir-
cuits [32] o↵er the necessary level of control to engineer

these processes [33–35], while also allowing the parame-
ter rescaling required to witness finite-component phase
transitions.

In this article, we use a two-photon driven supercon-
ducting Kerr resonator, and conduct a thorough experi-
mental analysis of both its first- and second-order DPTs.
As a first step, we scale the system towards the ther-
modynamic limit and analyze its steady state proper-
ties. We demonstrate the quantum nature of the system
at the second-order DPT, showing squeezing below vac-
uum. Furthermore, we observe the coexistence of mul-
tiple metastable states in the vicinity of the first-order
DPT, a feature that cannot be captured when neglect-
ing the quantum e↵ects of dissipation. Then, we focus on
the dynamical properties associated with both transitions
by probing the system dynamics through time resolved
measurements. We analyze the data with novel theoreti-
cal tools, based on quantum trajectories and Liouvillian
spectral theory, and extract the characteristic timescales.
From this analysis, we characterize the metastable states
and quantify the critical slowing down of the two DPTs.

A. Steady state properties and phase diagram

The device, shown in Fig. 1(d), is a superconduct-
ing cavity made nonlinear by terminating one end to
ground via a superconducting quantum interference de-
vice (SQUID). A two-photon, i.e., parametric, drive is
applied to the cavity by modulating the magnetic flux
through the SQUID at nearly twice the resonance fre-
quency of the cavity [12, 13, 36]. The emitted signal is
collected through a feedline coupled to the other end of
the cavity, then filtered and amplified with a total gain
G before being measured. Both signal quadratures (Î
and Q̂) are acquired using time-resolved heterodyne de-
tection (see Supplementary). This system is modeled by
the Hamiltonian

Ĥ/~ = �â
†
â +

U

2
â
†
â
†
ââ +

G

2

�
â
†
â
† + ââ

�
, (1)

where â is the photon annihilation operator, � = !r �
!p

2 is the pump-to-cavity detuning, and G is the two-
photon drive field amplitude. In this study, we use �
as the control parameter across the transition [see ⇣ in
Figs. 1(a-c)]. Since the system interacts with the feedline,
fluxline, and other uncontrolled bath degrees of freedom,
its evolution is modeled via the Lindblad master equation

@⇢

@t
= �L⇢ = �

i

~ [Ĥ, ⇢] + (nth + 1)D[â]⇢

+ nthD[â†]⇢ + �D[â†
â]⇢ + 2D[â2]⇢,

(2)

where L is the Liouvillian superoperator, whose spec-
trum is key in characterizing DPTs [1, 2]. The dissipa-
tors are defined as D[Â]⇢ = Â⇢Â

†
� {Â

†
Â, ⇢}/2, and the

rates , �, and 2 are associated with the total pho-
ton loss, dephasing, and two-photon loss, respectively.

- R. Di Candia*, F. Minganti*,  K. V. Petrovnin, G. S. Paraoanu, and S. Felicetti, npj Quantum Information 9,23 (2023).
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measure such field intensity. For example if the nonlinearity depends on an external magnetic field the system
could make a compelling magnetometer.

E. Gaussian model beyond the critical point

Let us now derive an effective quadratic Hamiltonian for � > !. The idea is that for small ✏ the model is well
approximated by a double-well potential, and that the low-energy physics can be described with a quadratic expansion
around each minimum. In order to center the reference frame on one of the two minima let us apply a displacement
operation such that U†aU = a+ ↵. We obtain,

H↵ = U†HU = H(1) +H(2) +H(3/4) + const., (2)

where we separated the Hamiltonian according to powers of creation/annihilation operators,

H(1) =
�
!↵+ �↵⇤ + 2✏|↵|2↵

�
a† + H.c., (3)

H(2) =
�
! + 4✏|↵|2

�
a†a+

⇣�
2
+ ✏↵2

⌘
a†

2
+
⇣�
2
+ ✏↵⇤2

⌘
a2, (4)

H(3/4) = ✏
⇣
a†a†aa+ 2↵a†

2
a+ 2↵⇤a†a2

⌘
. (5)

The displacement is meant to give a new equilibrium position, so we choose ↵ in order to make the linear term vanish
H(1) = 0, and accordingly we find |↵|2 = ��!

2✏ and ↵ = �↵⇤. Being ↵ purely imaginary the displacement will be
along the p quadrature. Notice that there are two symmetric solutions and that |↵| diverges for vanishing ✏.

Replacing the solutions ↵ = ±i
q

��!
2✏ we obtain,

H± = (2�� !)a†a+
!

2

⇣
a†

2
+ a2

⌘
+O(

p
✏), (6)

and accordingly we have found an effective quadratic Hamiltonian independent from ✏, plus higher-order corrections
that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is

!↵+ �↵⇤ + 2✏|↵|2↵� i
k

2
↵ = 0, (7)

and accordingly for ↵ = |↵|ei� we obtain |↵|2 =
p

�2�( k
2 )

2�!
2✏ , and tan� =

p
�2�( k

2 )
2��

k . As expected the solutions
exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form

⇢̇ = �i[H, ⇢] + (1 +N)(a⇢a† � 1/2
�
a†a, ⇢

 
) + N(a†⇢a� 1/2

�
aa†, ⇢

 
), (8)

where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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that are proportional to

p
✏. We find two important properties: (1) the quadratic part is always well defined for � > !

(2) the quadratic part of the Hamiltonians H± is the same, and so the two solutions are degenerate in the limit ✏ ! 0.
When dissipation is included a similar approximative approach can be applied. In this case we find the displacements

that identify the effective Gaussian model by looking for steady-state solutions to the equation of motion, considering
the non-Hermitian Hamiltonian. The linear equation is

!↵+ �↵⇤ + 2✏|↵|2↵� i
k

2
↵ = 0, (7)

and accordingly for ↵ = |↵|ei� we obtain |↵|2 =
p

�2�( k
2 )

2�!
2✏ , and tan� =

p
�2�( k

2 )
2��

k . As expected the solutions
exists only for �2 > !2 + k2.

II. THE LINEAR MODEL (✏ = 0)

Let us now consider the Kerr-resonator model of Eq. (1) and analyze the properties of the quantum phase transition
that takes place in the weak-anharmonicity limit ✏ ! 0. We include interaction with a bosonic bath at temperature T ,
by the standard Markovian master equation in Lindblad form

⇢̇ = �i[H, ⇢] + (1 +N)(a⇢a† � 1/2
�
a†a, ⇢

 
) + N(a†⇢a� 1/2

�
aa†, ⇢

 
), (8)

where thermal effects are given by N = 1/(e�! � 1), where � = 1/KBT . The resonator dissipation rate is given by
. To begin with we consider the case ✏ = 0 which provides us with a good approximation of the system steady state.
In this simplified case, the model is Gaussian and so we will be able to find analytical solutions and to understand
the critical behavior. The approximated analytical solutions also give us the set of parameters (�, ) for which the
quantum Fisher information over the estimation of ! is optimal.
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Critical quantum systems are a promising resource for quantum metrology applications, due to the
diverging susceptibility developed in proximity of phase transitions. Here, we assess the metrolog-
ical power of parametric Kerr resonators undergoing driven-dissipative phase transitions. We fully
characterize the quantum Fisher information for frequency estimation, and the Helstrom bound for
frequency discrimination. By going beyond the asymptotic regime, we show that the Heisenberg pre-
cision can be achieved with experimentally reachable parameters. We design protocols that exploit
the critical behavior of nonlinear resonators to enhance the precision of quantum magnetometers
and the fidelity of superconducting qubit readout.

Introduction.— Measurement is rooted at the heart of
quantum mechanics. While originally the system and
the instrument (observer) played di↵erent roles, mod-
ern formulations of quantum mechanics describe also the
measurement apparatus as a tunable quantum object [1].
A class of measurement instruments uses phase transi-
tions, where the system is highly susceptible to small
parameter changes. Criticality is indeed a compelling re-
source, commonly used in classical sensing devices such
as transition-edge detectors and bolometers [2]. How-
ever, these devices do not follow optimal sensing strate-
gies from the quantum mechanical point of view. A
promising approach to quantum sensing exploits quan-
tum fluctuations in the proximity of the criticality to
improve the measurement precision. Despite a critical
slowing down at the phase transition, theoretical analyses
of many-body systems [3–17] show that critical quantum
sensors can achieve the optimal scaling of precision [18],
both in the number of probes and in the measurement
time [9]. Furthermore, it has been shown [19] that finite-
component phase transitions [20–24]—where the ther-
modynamic limit is replaced by a scaling of the sys-
tem parameters [25–29]—can also be applied in sensing
protocols. Surprisingly, quantum criticalities are versa-
tile sensing resources that do not require the complexity
of many-body system, as demonstrated by e�cient dy-
namical protocols [30], the inclusion of quantum-control
methods [31] or ancillary probes [32], the design of mul-
tiparameter estimation protocols [33] and of a critical
quantum-thermometer [34], and by first experimental im-
plementations [35].

Finite-component critical sensors have hitherto been
designed for light-matter interacting models where the
atomic levels introduce a nonlinearity [36]. Despite their
high experimental relevance in quantum optics and infor-
mation [37–47], driven resonators with nonlinear photon-
photon interactions have so far been overlooked for crit-
ical quantum metrology. These systems display a broad
and exotic variety of critical phenomena, and their non-

trivial dynamics and steady states depend on both the
system and bath parameters [26, 48, 49].

Here, we introduce the critical parametric quantum
sensor, a measurement apparatus based on the second-
order driven-dissipative phase transition of a parametric
nonlinear (Kerr) resonator. We apply tools of quantum
parameter estimation, quantum hypothesis testing, and
non-linear quantum optics to characterize the potential
of this instrument for finite-component critical sensing.
Our treatment uses the analytical solutions of the driven-
dissipative Kerr resonator model [50–52], together with
exact numerical calculations to: (i) Evaluate the quan-
tum Fisher information (QFI) for the frequency estima-
tion, analyzing its scaling to the thermodynamic limit of
small–but finite–Kerr nonlinearity. We provide the pa-
rameter set maximizing the QFI, and show that homo-
dyne detection virtually saturates the optimal precision
bound. Importantly, the whole analysis considers the role
of dissipation in these driven transitions. This allows us
to design a highly-sensitive magnetometer, that can be
built with state-of-the-art circuit QED technology. (ii)
Compute the optimal and homodyne-based error proba-
bilities in distinguishing the normal and the symmetry-
broken phases. We apply this result to the dispersive
qubit readout task in circuit-QED. Our approach goes
beyond the semi-classical approximation [53, 54], and al-
lows one to recognize the set of parameters maximizing
the fidelity.
Kerr resonator model.— Our starting point is the

Kerr-resonator model, whose Hamiltonian is

ĤKerr/~ = !â†â +
✏

2
(â†2 + â2) + �â†2â2. (1)

This Z2-symmetric model can be realized in various pho-
tonic platforms. In particular, we consider the case a
circuit-QED implementation, where a resonator at fre-
quency !r is coupled with a superconducting quantum
interference device (SQUID) element [53, 55]. If the res-
onator is pumped at a frequency !p ' 2!r, then Eq. (1)
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FIG. 2. (a) QFI for the estimation of ! as a function of
✏, computed for !/� = 1 and various values of �/�. In the
Gaussian case (black line, � ! 0), the QFI diverges at ✏ =p
!2 + �2. For finite values of �, the QFI reaches a maximum

value. In the inset, we show that S!=� ⇠ c(��)�1, where
S! = max✏ S

Hom

! is the optimized SNR value for homodyne
detection, and c ' 0.55. Since N = ⇥(

p
��1), the full model

reaches the Heisenberg scaling in the �/� . 10�2 regime.
(b) SNR for the optimal homodyne (SHom

! ) and heterodyne
detection (SHet

! ) at !/� = 1 and �/� = 0.04. Homodyne
detection virtually saturates the QFI already for this value of
�.

diverging scaling for ✏/✏c ! 1. For ! 6= 0 we retrieve the
Heisenberg scaling I! = O(N2), while for ! = 0 one has
I! = O(N). The Heisenberg scaling is compensated by
the critical slowing down in the proximity of the critical-
ity [19]. We notice also that the divergence rate I!/N2

is maximal at ! = �. In the following, we focus at this
point, where the QFI is maximal for low-enough �.

(ii) The symmetry-broken phase (� ! 0).— The model
is invariant under the transformation â ! �â, result-
ing in a Z2-symmetry. In the � ! 0 limit, and for
✏ > ✏c, such a symmetry is broken resulting in a second-
order DPT. The symmetry-broken solutions are well-
approximated by Gaussian states that can be obtained
by displacing the field â ! â + ↵, with ↵ 2 C [29]. For
nonzero �, the steady state is well-approximated by a
statistical mixture of two Gaussian states [50]. Indeed, a
Gaussian approximation leads to ⇢ = 1

2
[D(↵)⇢+D(↵) +

D(�↵)⇢�D(�↵)]. Here, ⇢± are the steady-states for
H± = !0â†â + 1

2

�
✏0â†2 + ✏0⇤â2

�
+ O(

p
�) and dissipa-

tor LD, where !0 = 2
p

✏2 � �2�! and |✏0| = ✏c. Namely,
↵ is the solution of !↵ + ✏↵⇤ + 2�|↵|2↵ � i�↵ = 0 [56].
By setting ↵ = |↵|ei�, we find the two solutions, holding
for ✏ > ✏c:

|↵|2 =

p
✏2 � �2 � !

2�
, � =

arcsin (�/✏) ± ⇡

2
. (5)

Notice that the Hamiltonians H± are the same at the ze-
roth order in �. Therefore, ⇢+ ' ⇢� and the steady-state

solutions consist in a mixture of two identical squeezed-
thermal states displaced in opposite directions [50]. The
QFI shows a divergence at ✏ ! ✏c, as seen in the normal
phase. This confirms that in proximity of the transition
the QFI diverges for � ! 0. Increasing the pump power ✏
corresponds to an e↵ective growth of the pump-resonator
detuning, since !0 ⇠ ✏ for large ✏. Instead, the e↵ective
squeezing parameter ✏0 remains constant in modulus. It
is then clear that the e↵ect of increasing the pump is
to displace the state to the new equilibrium points, and
to reduce the squeezing of each of the resulting states.
Therefore, for su�ciently large ✏, the QFI value is solely
determined by the response of ↵ to the !’s changes. Us-
ing Eq. (5), one can easily see that I! = ⇥(✏�1) for ✏ � 1.
(iii) The full model (finite �).— We are now ready

to show our results beyond the Gaussian approxima-
tion. Hereafter, the observables for the QFI were ob-
tained through the analytical solutions in Refs. [50–52],
while the steady-state density matrix were obtained solv-
ing the equation �i[ĤKerr, ⇢ss] + LD[⇢ss] = 0 via sparse
LU decomposition [59]. We then compute the QFI us-
ing Eq. (3). The e↵ect of the Kerr term is to regularize
the model, eliminating the divergences that appear in the
Gaussian approximation. As expected, the QFI increases
with ✏ up to a maximum point, then it starts to decrease.
This maximum point is reached for ✏ = ✏c in the � ! 0
limit. From Fig. 2(b), we see that homodyne detection
virtually saturates the maximal achievable QFI already
for �/� = 0.04. In fact, in the � ! 0 limit one can easily
see that homodyne is optimal at the critical point [56].
We are particularly interested in the parameter setting
(!, ✏) where the QFI is maximal given values for (�, �).
In fact, while ! and ✏ can be easily tuned, � and � are
usually fixed by the circuit fabrication. Therefore, for
this analysis we consider the quantity S! = max✏ SHom

!
.

We then focus on the ! = � point, where the QFI is op-
timal in the � ! 0 limit. With a numerical fit, we find
that S!=�(�, �) ' c(��)�1 in the �/� . 10�2 regime,
where c ' 0.55, see Fig. 2(a). Let us consider the max-
imal QFI, i.e. I!(�, �) = max✏ I!(�, �, ✏). We always
have that I!=� � S!=�. However, in Fig. 2(b) we see
that S!=� ' I!=� already for �/� . 0.04. One can then
check that N = ⇥(

p
��1) to show that the Heisenberg

scaling is reached already for �/� . 10�2.
Magnetometry.— We now consider an application of

our results for the quantum estimation of magnetic flux.
Let us consider a SQUID coupled with a �/4 resonator.
This system can be described with the Hamitonian in
Eq. (1). A magnetometer can be designed by coupling
the magnetic field into the SQUID loop. The resonator
frequency !r depends on the external magnetic flux as
!r(�) ' !�/4/[1 + �0/| cos(�)|], where !�/4 is the fre-
quency of the �/4 resonator in absence of the SQUID,
� = ⇡�ext/�0 is the applied magnetic flux �ext in unit of
the flux quantum �0, and �0 is the geometrical resonator
inductance. We work in the ⇡/4 . � < ⇡/2 regime,
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detection, and c ' 0.55. Since N = ⇥(
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��1), the full model

reaches the Heisenberg scaling in the �/� . 10�2 regime.
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! ) at !/� = 1 and �/� = 0.04. Homodyne
detection virtually saturates the QFI already for this value of
�.

diverging scaling for ✏/✏c ! 1. For ! 6= 0 we retrieve the
Heisenberg scaling I! = O(N2), while for ! = 0 one has
I! = O(N). The Heisenberg scaling is compensated by
the critical slowing down in the proximity of the critical-
ity [19]. We notice also that the divergence rate I!/N2

is maximal at ! = �. In the following, we focus at this
point, where the QFI is maximal for low-enough �.

(ii) The symmetry-broken phase (� ! 0).— The model
is invariant under the transformation â ! �â, result-
ing in a Z2-symmetry. In the � ! 0 limit, and for
✏ > ✏c, such a symmetry is broken resulting in a second-
order DPT. The symmetry-broken solutions are well-
approximated by Gaussian states that can be obtained
by displacing the field â ! â + ↵, with ↵ 2 C [29]. For
nonzero �, the steady state is well-approximated by a
statistical mixture of two Gaussian states [50]. Indeed, a
Gaussian approximation leads to ⇢ = 1

2
[D(↵)⇢+D(↵) +

D(�↵)⇢�D(�↵)]. Here, ⇢± are the steady-states for
H± = !0â†â + 1

2

�
✏0â†2 + ✏0⇤â2

�
+ O(

p
�) and dissipa-

tor LD, where !0 = 2
p

✏2 � �2�! and |✏0| = ✏c. Namely,
↵ is the solution of !↵ + ✏↵⇤ + 2�|↵|2↵ � i�↵ = 0 [56].
By setting ↵ = |↵|ei�, we find the two solutions, holding
for ✏ > ✏c:

|↵|2 =

p
✏2 � �2 � !
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, � =

arcsin (�/✏) ± ⇡

2
. (5)

Notice that the Hamiltonians H± are the same at the ze-
roth order in �. Therefore, ⇢+ ' ⇢� and the steady-state

solutions consist in a mixture of two identical squeezed-
thermal states displaced in opposite directions [50]. The
QFI shows a divergence at ✏ ! ✏c, as seen in the normal
phase. This confirms that in proximity of the transition
the QFI diverges for � ! 0. Increasing the pump power ✏
corresponds to an e↵ective growth of the pump-resonator
detuning, since !0 ⇠ ✏ for large ✏. Instead, the e↵ective
squeezing parameter ✏0 remains constant in modulus. It
is then clear that the e↵ect of increasing the pump is
to displace the state to the new equilibrium points, and
to reduce the squeezing of each of the resulting states.
Therefore, for su�ciently large ✏, the QFI value is solely
determined by the response of ↵ to the !’s changes. Us-
ing Eq. (5), one can easily see that I! = ⇥(✏�1) for ✏ � 1.
(iii) The full model (finite �).— We are now ready

to show our results beyond the Gaussian approxima-
tion. Hereafter, the observables for the QFI were ob-
tained through the analytical solutions in Refs. [50–52],
while the steady-state density matrix were obtained solv-
ing the equation �i[ĤKerr, ⇢ss] + LD[⇢ss] = 0 via sparse
LU decomposition [59]. We then compute the QFI us-
ing Eq. (3). The e↵ect of the Kerr term is to regularize
the model, eliminating the divergences that appear in the
Gaussian approximation. As expected, the QFI increases
with ✏ up to a maximum point, then it starts to decrease.
This maximum point is reached for ✏ = ✏c in the � ! 0
limit. From Fig. 2(b), we see that homodyne detection
virtually saturates the maximal achievable QFI already
for �/� = 0.04. In fact, in the � ! 0 limit one can easily
see that homodyne is optimal at the critical point [56].
We are particularly interested in the parameter setting
(!, ✏) where the QFI is maximal given values for (�, �).
In fact, while ! and ✏ can be easily tuned, � and � are
usually fixed by the circuit fabrication. Therefore, for
this analysis we consider the quantity S! = max✏ SHom
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We then focus on the ! = � point, where the QFI is op-
timal in the � ! 0 limit. With a numerical fit, we find
that S!=�(�, �) ' c(��)�1 in the �/� . 10�2 regime,
where c ' 0.55, see Fig. 2(a). Let us consider the max-
imal QFI, i.e. I!(�, �) = max✏ I!(�, �, ✏). We always
have that I!=� � S!=�. However, in Fig. 2(b) we see
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our results for the quantum estimation of magnetic flux.
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the magnetic field into the SQUID loop. The resonator
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FIG. 2. (a) QFI for the estimation of ! as a function of
✏, computed for !/� = 1 and various values of �/�. In the
Gaussian case (black line, � ! 0), the QFI diverges at ✏ =p
!2 + �2. For finite values of �, the QFI reaches a maximum

value. In the inset, we show that S!=� ⇠ c(��)�1, where
S! = max✏ S

Hom

! is the optimized SNR value for homodyne
detection, and c ' 0.55. Since N = ⇥(

p
��1), the full model

reaches the Heisenberg scaling in the �/� . 10�2 regime.
(b) SNR for the optimal homodyne (SHom

! ) and heterodyne
detection (SHet

! ) at !/� = 1 and �/� = 0.04. Homodyne
detection virtually saturates the QFI already for this value of
�.

diverging scaling for ✏/✏c ! 1. For ! 6= 0 we retrieve the
Heisenberg scaling I! = O(N2), while for ! = 0 one has
I! = O(N). The Heisenberg scaling is compensated by
the critical slowing down in the proximity of the critical-
ity [19]. We notice also that the divergence rate I!/N2

is maximal at ! = �. In the following, we focus at this
point, where the QFI is maximal for low-enough �.

(ii) The symmetry-broken phase (� ! 0).— The model
is invariant under the transformation â ! �â, result-
ing in a Z2-symmetry. In the � ! 0 limit, and for
✏ > ✏c, such a symmetry is broken resulting in a second-
order DPT. The symmetry-broken solutions are well-
approximated by Gaussian states that can be obtained
by displacing the field â ! â + ↵, with ↵ 2 C [29]. For
nonzero �, the steady state is well-approximated by a
statistical mixture of two Gaussian states [50]. Indeed, a
Gaussian approximation leads to ⇢ = 1

2
[D(↵)⇢+D(↵) +

D(�↵)⇢�D(�↵)]. Here, ⇢± are the steady-states for
H± = !0â†â + 1

2

�
✏0â†2 + ✏0⇤â2

�
+ O(

p
�) and dissipa-

tor LD, where !0 = 2
p

✏2 � �2�! and |✏0| = ✏c. Namely,
↵ is the solution of !↵ + ✏↵⇤ + 2�|↵|2↵ � i�↵ = 0 [56].
By setting ↵ = |↵|ei�, we find the two solutions, holding
for ✏ > ✏c:

|↵|2 =

p
✏2 � �2 � !

2�
, � =

arcsin (�/✏) ± ⇡

2
. (5)

Notice that the Hamiltonians H± are the same at the ze-
roth order in �. Therefore, ⇢+ ' ⇢� and the steady-state

solutions consist in a mixture of two identical squeezed-
thermal states displaced in opposite directions [50]. The
QFI shows a divergence at ✏ ! ✏c, as seen in the normal
phase. This confirms that in proximity of the transition
the QFI diverges for � ! 0. Increasing the pump power ✏
corresponds to an e↵ective growth of the pump-resonator
detuning, since !0 ⇠ ✏ for large ✏. Instead, the e↵ective
squeezing parameter ✏0 remains constant in modulus. It
is then clear that the e↵ect of increasing the pump is
to displace the state to the new equilibrium points, and
to reduce the squeezing of each of the resulting states.
Therefore, for su�ciently large ✏, the QFI value is solely
determined by the response of ↵ to the !’s changes. Us-
ing Eq. (5), one can easily see that I! = ⇥(✏�1) for ✏ � 1.
(iii) The full model (finite �).— We are now ready

to show our results beyond the Gaussian approxima-
tion. Hereafter, the observables for the QFI were ob-
tained through the analytical solutions in Refs. [50–52],
while the steady-state density matrix were obtained solv-
ing the equation �i[ĤKerr, ⇢ss] + LD[⇢ss] = 0 via sparse
LU decomposition [59]. We then compute the QFI us-
ing Eq. (3). The e↵ect of the Kerr term is to regularize
the model, eliminating the divergences that appear in the
Gaussian approximation. As expected, the QFI increases
with ✏ up to a maximum point, then it starts to decrease.
This maximum point is reached for ✏ = ✏c in the � ! 0
limit. From Fig. 2(b), we see that homodyne detection
virtually saturates the maximal achievable QFI already
for �/� = 0.04. In fact, in the � ! 0 limit one can easily
see that homodyne is optimal at the critical point [56].
We are particularly interested in the parameter setting
(!, ✏) where the QFI is maximal given values for (�, �).
In fact, while ! and ✏ can be easily tuned, � and � are
usually fixed by the circuit fabrication. Therefore, for
this analysis we consider the quantity S! = max✏ SHom

!
.

We then focus on the ! = � point, where the QFI is op-
timal in the � ! 0 limit. With a numerical fit, we find
that S!=�(�, �) ' c(��)�1 in the �/� . 10�2 regime,
where c ' 0.55, see Fig. 2(a). Let us consider the max-
imal QFI, i.e. I!(�, �) = max✏ I!(�, �, ✏). We always
have that I!=� � S!=�. However, in Fig. 2(b) we see
that S!=� ' I!=� already for �/� . 0.04. One can then
check that N = ⇥(

p
��1) to show that the Heisenberg

scaling is reached already for �/� . 10�2.
Magnetometry.— We now consider an application of

our results for the quantum estimation of magnetic flux.
Let us consider a SQUID coupled with a �/4 resonator.
This system can be described with the Hamitonian in
Eq. (1). A magnetometer can be designed by coupling
the magnetic field into the SQUID loop. The resonator
frequency !r depends on the external magnetic flux as
!r(�) ' !�/4/[1 + �0/| cos(�)|], where !�/4 is the fre-
quency of the �/4 resonator in absence of the SQUID,
� = ⇡�ext/�0 is the applied magnetic flux �ext in unit of
the flux quantum �0, and �0 is the geometrical resonator
inductance. We work in the ⇡/4 . � < ⇡/2 regime,
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FIG. 1. Theory of dissipative phase transitions and
schematic of the experimental set-up. (a) Illustration of
dissipative phase transitions (DPTs) according to Ref. [1].
Sweeping a control parameter ⇣, the expectation value of
the order parameter hÔi = Tr[⇢ss(⇣)Ô] (blue curve) changes
discontinuously (first-order DPT), or continuously with non-
continuous derivative (second-order DPT). The purple dashed
lines indicate the metastable states associated with hystere-
sis across the first-order DPT. (b) Phase-space-like represen-
tation of the system steady (blue) and metastable (purple)
states across the DPTs. The arrows within each panel indi-
cate the decay of an initial state towards the steady state.
The green arrows represents the decay of a non-symmetric
state at a rate �SSB. The orange arrows are associated with
the metastable state of the first-order DPT, decaying at a
rate �1st. (c) The Liouvillian gaps �SSB in green (�1st in or-
ange) associated with the second-order (first-order) DPT. (d)
Schematic illustrating the device and the experimental setup.
The device is a �/4 coplanar waveguide resonator, capaci-
tively coupled on one side to a feedline used only to collect
the emitted signal via heterodyne detection (see Supplemen-
tary). On the other side, the cavity is terminated to ground
via a SQUID. A magnetic field is applied through the SQUID,
tuning both the resonance frequency and the Kerr nonlinear-
ity. A second waveguide, inductively coupled to the SQUID,
is used to supply a coherent pump tone around twice the res-
onant frequency of the cavity (!p ' 2!r). The pump results
in a two-photon drive for the cavity (see Supplementary and
e.g., Refs. [12, 13]). No other input signal is sent into the
resonator.

Critical phenomena are commonly studied in many-
body systems in the thermodynamic limit, where the
number of constituents asymptotically diverges. How-
ever, quantum phase transitions can also take place
in finite-component systems, where the thermodynamic
limit corresponds to a rescaling of the system parame-
ters [28–31]. A preeminent role in the study of finite-
component first-order DPTs has been played by nonlin-
ear quantum-optical oscillators [7, 8, 17, 18]. An exper-
imental analysis of the unexplored fundamental proper-
ties of first- and second-order DPTs requires to engineer
drives and dissipative processes. Superconducting cir-
cuits [32] o↵er the necessary level of control to engineer

these processes [33–35], while also allowing the parame-
ter rescaling required to witness finite-component phase
transitions.

In this article, we use a two-photon driven supercon-
ducting Kerr resonator, and conduct a thorough experi-
mental analysis of both its first- and second-order DPTs.
As a first step, we scale the system towards the ther-
modynamic limit and analyze its steady state proper-
ties. We demonstrate the quantum nature of the system
at the second-order DPT, showing squeezing below vac-
uum. Furthermore, we observe the coexistence of mul-
tiple metastable states in the vicinity of the first-order
DPT, a feature that cannot be captured when neglect-
ing the quantum e↵ects of dissipation. Then, we focus on
the dynamical properties associated with both transitions
by probing the system dynamics through time resolved
measurements. We analyze the data with novel theoreti-
cal tools, based on quantum trajectories and Liouvillian
spectral theory, and extract the characteristic timescales.
From this analysis, we characterize the metastable states
and quantify the critical slowing down of the two DPTs.

A. Steady state properties and phase diagram

The device, shown in Fig. 1(d), is a superconduct-
ing cavity made nonlinear by terminating one end to
ground via a superconducting quantum interference de-
vice (SQUID). A two-photon, i.e., parametric, drive is
applied to the cavity by modulating the magnetic flux
through the SQUID at nearly twice the resonance fre-
quency of the cavity [12, 13, 36]. The emitted signal is
collected through a feedline coupled to the other end of
the cavity, then filtered and amplified with a total gain
G before being measured. Both signal quadratures (Î
and Q̂) are acquired using time-resolved heterodyne de-
tection (see Supplementary). This system is modeled by
the Hamiltonian

Ĥ/~ = �â
†
â +

U

2
â
†
â
†
ââ +

G

2

�
â
†
â
† + ââ

�
, (1)

where â is the photon annihilation operator, � = !r �
!p

2 is the pump-to-cavity detuning, and G is the two-
photon drive field amplitude. In this study, we use �
as the control parameter across the transition [see ⇣ in
Figs. 1(a-c)]. Since the system interacts with the feedline,
fluxline, and other uncontrolled bath degrees of freedom,
its evolution is modeled via the Lindblad master equation

@⇢

@t
= �L⇢ = �

i

~ [Ĥ, ⇢] + (nth + 1)D[â]⇢

+ nthD[â†]⇢ + �D[â†
â]⇢ + 2D[â2]⇢,

(2)

where L is the Liouvillian superoperator, whose spec-
trum is key in characterizing DPTs [1, 2]. The dissipa-
tors are defined as D[Â]⇢ = Â⇢Â

†
� {Â

†
Â, ⇢}/2, and the

rates , �, and 2 are associated with the total pho-
ton loss, dephasing, and two-photon loss, respectively.
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FIG. 1. Theory of dissipative phase transitions and
schematic of the experimental set-up. (a) Illustration of
dissipative phase transitions (DPTs) according to Ref. [1].
Sweeping a control parameter ⇣, the expectation value of
the order parameter hÔi = Tr[⇢ss(⇣)Ô] (blue curve) changes
discontinuously (first-order DPT), or continuously with non-
continuous derivative (second-order DPT). The purple dashed
lines indicate the metastable states associated with hystere-
sis across the first-order DPT. (b) Phase-space-like represen-
tation of the system steady (blue) and metastable (purple)
states across the DPTs. The arrows within each panel indi-
cate the decay of an initial state towards the steady state.
The green arrows represents the decay of a non-symmetric
state at a rate �SSB. The orange arrows are associated with
the metastable state of the first-order DPT, decaying at a
rate �1st. (c) The Liouvillian gaps �SSB in green (�1st in or-
ange) associated with the second-order (first-order) DPT. (d)
Schematic illustrating the device and the experimental setup.
The device is a �/4 coplanar waveguide resonator, capaci-
tively coupled on one side to a feedline used only to collect
the emitted signal via heterodyne detection (see Supplemen-
tary). On the other side, the cavity is terminated to ground
via a SQUID. A magnetic field is applied through the SQUID,
tuning both the resonance frequency and the Kerr nonlinear-
ity. A second waveguide, inductively coupled to the SQUID,
is used to supply a coherent pump tone around twice the res-
onant frequency of the cavity (!p ' 2!r). The pump results
in a two-photon drive for the cavity (see Supplementary and
e.g., Refs. [12, 13]). No other input signal is sent into the
resonator.

Critical phenomena are commonly studied in many-
body systems in the thermodynamic limit, where the
number of constituents asymptotically diverges. How-
ever, quantum phase transitions can also take place
in finite-component systems, where the thermodynamic
limit corresponds to a rescaling of the system parame-
ters [28–31]. A preeminent role in the study of finite-
component first-order DPTs has been played by nonlin-
ear quantum-optical oscillators [7, 8, 17, 18]. An exper-
imental analysis of the unexplored fundamental proper-
ties of first- and second-order DPTs requires to engineer
drives and dissipative processes. Superconducting cir-
cuits [32] o↵er the necessary level of control to engineer

these processes [33–35], while also allowing the parame-
ter rescaling required to witness finite-component phase
transitions.

In this article, we use a two-photon driven supercon-
ducting Kerr resonator, and conduct a thorough experi-
mental analysis of both its first- and second-order DPTs.
As a first step, we scale the system towards the ther-
modynamic limit and analyze its steady state proper-
ties. We demonstrate the quantum nature of the system
at the second-order DPT, showing squeezing below vac-
uum. Furthermore, we observe the coexistence of mul-
tiple metastable states in the vicinity of the first-order
DPT, a feature that cannot be captured when neglect-
ing the quantum e↵ects of dissipation. Then, we focus on
the dynamical properties associated with both transitions
by probing the system dynamics through time resolved
measurements. We analyze the data with novel theoreti-
cal tools, based on quantum trajectories and Liouvillian
spectral theory, and extract the characteristic timescales.
From this analysis, we characterize the metastable states
and quantify the critical slowing down of the two DPTs.

A. Steady state properties and phase diagram

The device, shown in Fig. 1(d), is a superconduct-
ing cavity made nonlinear by terminating one end to
ground via a superconducting quantum interference de-
vice (SQUID). A two-photon, i.e., parametric, drive is
applied to the cavity by modulating the magnetic flux
through the SQUID at nearly twice the resonance fre-
quency of the cavity [12, 13, 36]. The emitted signal is
collected through a feedline coupled to the other end of
the cavity, then filtered and amplified with a total gain
G before being measured. Both signal quadratures (Î
and Q̂) are acquired using time-resolved heterodyne de-
tection (see Supplementary). This system is modeled by
the Hamiltonian

Ĥ/~ = �â
†
â +

U

2
â
†
â
†
ââ +

G

2

�
â
†
â
† + ââ

�
, (1)

where â is the photon annihilation operator, � = !r �
!p

2 is the pump-to-cavity detuning, and G is the two-
photon drive field amplitude. In this study, we use �
as the control parameter across the transition [see ⇣ in
Figs. 1(a-c)]. Since the system interacts with the feedline,
fluxline, and other uncontrolled bath degrees of freedom,
its evolution is modeled via the Lindblad master equation
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~ [Ĥ, ⇢] + (nth + 1)D[â]⇢

+ nthD[â†]⇢ + �D[â†
â]⇢ + 2D[â2]⇢,

(2)

where L is the Liouvillian superoperator, whose spec-
trum is key in characterizing DPTs [1, 2]. The dissipa-
tors are defined as D[Â]⇢ = Â⇢Â

†
� {Â

†
Â, ⇢}/2, and the

rates , �, and 2 are associated with the total pho-
ton loss, dephasing, and two-photon loss, respectively.
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FIG. 1. Theory of dissipative phase transitions and
schematic of the experimental set-up. (a) Illustration of
dissipative phase transitions (DPTs) according to Ref. [1].
Sweeping a control parameter ⇣, the expectation value of
the order parameter hÔi = Tr[⇢ss(⇣)Ô] (blue curve) changes
discontinuously (first-order DPT), or continuously with non-
continuous derivative (second-order DPT). The purple dashed
lines indicate the metastable states associated with hystere-
sis across the first-order DPT. (b) Phase-space-like represen-
tation of the system steady (blue) and metastable (purple)
states across the DPTs. The arrows within each panel indi-
cate the decay of an initial state towards the steady state.
The green arrows represents the decay of a non-symmetric
state at a rate �SSB. The orange arrows are associated with
the metastable state of the first-order DPT, decaying at a
rate �1st. (c) The Liouvillian gaps �SSB in green (�1st in or-
ange) associated with the second-order (first-order) DPT. (d)
Schematic illustrating the device and the experimental setup.
The device is a �/4 coplanar waveguide resonator, capaci-
tively coupled on one side to a feedline used only to collect
the emitted signal via heterodyne detection (see Supplemen-
tary). On the other side, the cavity is terminated to ground
via a SQUID. A magnetic field is applied through the SQUID,
tuning both the resonance frequency and the Kerr nonlinear-
ity. A second waveguide, inductively coupled to the SQUID,
is used to supply a coherent pump tone around twice the res-
onant frequency of the cavity (!p ' 2!r). The pump results
in a two-photon drive for the cavity (see Supplementary and
e.g., Refs. [12, 13]). No other input signal is sent into the
resonator.

Critical phenomena are commonly studied in many-
body systems in the thermodynamic limit, where the
number of constituents asymptotically diverges. How-
ever, quantum phase transitions can also take place
in finite-component systems, where the thermodynamic
limit corresponds to a rescaling of the system parame-
ters [28–31]. A preeminent role in the study of finite-
component first-order DPTs has been played by nonlin-
ear quantum-optical oscillators [7, 8, 17, 18]. An exper-
imental analysis of the unexplored fundamental proper-
ties of first- and second-order DPTs requires to engineer
drives and dissipative processes. Superconducting cir-
cuits [32] o↵er the necessary level of control to engineer

these processes [33–35], while also allowing the parame-
ter rescaling required to witness finite-component phase
transitions.

In this article, we use a two-photon driven supercon-
ducting Kerr resonator, and conduct a thorough experi-
mental analysis of both its first- and second-order DPTs.
As a first step, we scale the system towards the ther-
modynamic limit and analyze its steady state proper-
ties. We demonstrate the quantum nature of the system
at the second-order DPT, showing squeezing below vac-
uum. Furthermore, we observe the coexistence of mul-
tiple metastable states in the vicinity of the first-order
DPT, a feature that cannot be captured when neglect-
ing the quantum e↵ects of dissipation. Then, we focus on
the dynamical properties associated with both transitions
by probing the system dynamics through time resolved
measurements. We analyze the data with novel theoreti-
cal tools, based on quantum trajectories and Liouvillian
spectral theory, and extract the characteristic timescales.
From this analysis, we characterize the metastable states
and quantify the critical slowing down of the two DPTs.

A. Steady state properties and phase diagram

The device, shown in Fig. 1(d), is a superconduct-
ing cavity made nonlinear by terminating one end to
ground via a superconducting quantum interference de-
vice (SQUID). A two-photon, i.e., parametric, drive is
applied to the cavity by modulating the magnetic flux
through the SQUID at nearly twice the resonance fre-
quency of the cavity [12, 13, 36]. The emitted signal is
collected through a feedline coupled to the other end of
the cavity, then filtered and amplified with a total gain
G before being measured. Both signal quadratures (Î
and Q̂) are acquired using time-resolved heterodyne de-
tection (see Supplementary). This system is modeled by
the Hamiltonian

Ĥ/~ = �â
†
â +

U

2
â
†
â
†
ââ +

G

2

�
â
†
â
† + ââ

�
, (1)

where â is the photon annihilation operator, � = !r �
!p

2 is the pump-to-cavity detuning, and G is the two-
photon drive field amplitude. In this study, we use �
as the control parameter across the transition [see ⇣ in
Figs. 1(a-c)]. Since the system interacts with the feedline,
fluxline, and other uncontrolled bath degrees of freedom,
its evolution is modeled via the Lindblad master equation
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where L is the Liouvillian superoperator, whose spec-
trum is key in characterizing DPTs [1, 2]. The dissipa-
tors are defined as D[Â]⇢ = Â⇢Â

†
� {Â
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rates , �, and 2 are associated with the total pho-
ton loss, dephasing, and two-photon loss, respectively.

2

(a)

H
y
s
t
e
r
e
s
is

r
e
g
io

n

⇣

hÔi
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FIG. 1. Theory of dissipative phase transitions and
schematic of the experimental set-up. (a) Illustration of
dissipative phase transitions (DPTs) according to Ref. [1].
Sweeping a control parameter ⇣, the expectation value of
the order parameter hÔi = Tr[⇢ss(⇣)Ô] (blue curve) changes
discontinuously (first-order DPT), or continuously with non-
continuous derivative (second-order DPT). The purple dashed
lines indicate the metastable states associated with hystere-
sis across the first-order DPT. (b) Phase-space-like represen-
tation of the system steady (blue) and metastable (purple)
states across the DPTs. The arrows within each panel indi-
cate the decay of an initial state towards the steady state.
The green arrows represents the decay of a non-symmetric
state at a rate �SSB. The orange arrows are associated with
the metastable state of the first-order DPT, decaying at a
rate �1st. (c) The Liouvillian gaps �SSB in green (�1st in or-
ange) associated with the second-order (first-order) DPT. (d)
Schematic illustrating the device and the experimental setup.
The device is a �/4 coplanar waveguide resonator, capaci-
tively coupled on one side to a feedline used only to collect
the emitted signal via heterodyne detection (see Supplemen-
tary). On the other side, the cavity is terminated to ground
via a SQUID. A magnetic field is applied through the SQUID,
tuning both the resonance frequency and the Kerr nonlinear-
ity. A second waveguide, inductively coupled to the SQUID,
is used to supply a coherent pump tone around twice the res-
onant frequency of the cavity (!p ' 2!r). The pump results
in a two-photon drive for the cavity (see Supplementary and
e.g., Refs. [12, 13]). No other input signal is sent into the
resonator.

Critical phenomena are commonly studied in many-
body systems in the thermodynamic limit, where the
number of constituents asymptotically diverges. How-
ever, quantum phase transitions can also take place
in finite-component systems, where the thermodynamic
limit corresponds to a rescaling of the system parame-
ters [28–31]. A preeminent role in the study of finite-
component first-order DPTs has been played by nonlin-
ear quantum-optical oscillators [7, 8, 17, 18]. An exper-
imental analysis of the unexplored fundamental proper-
ties of first- and second-order DPTs requires to engineer
drives and dissipative processes. Superconducting cir-
cuits [32] o↵er the necessary level of control to engineer

these processes [33–35], while also allowing the parame-
ter rescaling required to witness finite-component phase
transitions.

In this article, we use a two-photon driven supercon-
ducting Kerr resonator, and conduct a thorough experi-
mental analysis of both its first- and second-order DPTs.
As a first step, we scale the system towards the ther-
modynamic limit and analyze its steady state proper-
ties. We demonstrate the quantum nature of the system
at the second-order DPT, showing squeezing below vac-
uum. Furthermore, we observe the coexistence of mul-
tiple metastable states in the vicinity of the first-order
DPT, a feature that cannot be captured when neglect-
ing the quantum e↵ects of dissipation. Then, we focus on
the dynamical properties associated with both transitions
by probing the system dynamics through time resolved
measurements. We analyze the data with novel theoreti-
cal tools, based on quantum trajectories and Liouvillian
spectral theory, and extract the characteristic timescales.
From this analysis, we characterize the metastable states
and quantify the critical slowing down of the two DPTs.

A. Steady state properties and phase diagram

The device, shown in Fig. 1(d), is a superconduct-
ing cavity made nonlinear by terminating one end to
ground via a superconducting quantum interference de-
vice (SQUID). A two-photon, i.e., parametric, drive is
applied to the cavity by modulating the magnetic flux
through the SQUID at nearly twice the resonance fre-
quency of the cavity [12, 13, 36]. The emitted signal is
collected through a feedline coupled to the other end of
the cavity, then filtered and amplified with a total gain
G before being measured. Both signal quadratures (Î
and Q̂) are acquired using time-resolved heterodyne de-
tection (see Supplementary). This system is modeled by
the Hamiltonian

Ĥ/~ = �â
†
â +

U
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â
†
â
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ââ +
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â
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â
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where â is the photon annihilation operator, � = !r �
!p

2 is the pump-to-cavity detuning, and G is the two-
photon drive field amplitude. In this study, we use �
as the control parameter across the transition [see ⇣ in
Figs. 1(a-c)]. Since the system interacts with the feedline,
fluxline, and other uncontrolled bath degrees of freedom,
its evolution is modeled via the Lindblad master equation
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â]⇢ + 2D[â2]⇢,
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where L is the Liouvillian superoperator, whose spec-
trum is key in characterizing DPTs [1, 2]. The dissipa-
tors are defined as D[Â]⇢ = Â⇢Â
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Â, ⇢}/2, and the

rates , �, and 2 are associated with the total pho-
ton loss, dephasing, and two-photon loss, respectively.
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FIG. 1. Theory of dissipative phase transitions and
schematic of the experimental set-up. (a) Illustration of
dissipative phase transitions (DPTs) according to Ref. [1].
Sweeping a control parameter ⇣, the expectation value of
the order parameter hÔi = Tr[⇢ss(⇣)Ô] (blue curve) changes
discontinuously (first-order DPT), or continuously with non-
continuous derivative (second-order DPT). The purple dashed
lines indicate the metastable states associated with hystere-
sis across the first-order DPT. (b) Phase-space-like represen-
tation of the system steady (blue) and metastable (purple)
states across the DPTs. The arrows within each panel indi-
cate the decay of an initial state towards the steady state.
The green arrows represents the decay of a non-symmetric
state at a rate �SSB. The orange arrows are associated with
the metastable state of the first-order DPT, decaying at a
rate �1st. (c) The Liouvillian gaps �SSB in green (�1st in or-
ange) associated with the second-order (first-order) DPT. (d)
Schematic illustrating the device and the experimental setup.
The device is a �/4 coplanar waveguide resonator, capaci-
tively coupled on one side to a feedline used only to collect
the emitted signal via heterodyne detection (see Supplemen-
tary). On the other side, the cavity is terminated to ground
via a SQUID. A magnetic field is applied through the SQUID,
tuning both the resonance frequency and the Kerr nonlinear-
ity. A second waveguide, inductively coupled to the SQUID,
is used to supply a coherent pump tone around twice the res-
onant frequency of the cavity (!p ' 2!r). The pump results
in a two-photon drive for the cavity (see Supplementary and
e.g., Refs. [12, 13]). No other input signal is sent into the
resonator.

Critical phenomena are commonly studied in many-
body systems in the thermodynamic limit, where the
number of constituents asymptotically diverges. How-
ever, quantum phase transitions can also take place
in finite-component systems, where the thermodynamic
limit corresponds to a rescaling of the system parame-
ters [28–31]. A preeminent role in the study of finite-
component first-order DPTs has been played by nonlin-
ear quantum-optical oscillators [7, 8, 17, 18]. An exper-
imental analysis of the unexplored fundamental proper-
ties of first- and second-order DPTs requires to engineer
drives and dissipative processes. Superconducting cir-
cuits [32] o↵er the necessary level of control to engineer

these processes [33–35], while also allowing the parame-
ter rescaling required to witness finite-component phase
transitions.

In this article, we use a two-photon driven supercon-
ducting Kerr resonator, and conduct a thorough experi-
mental analysis of both its first- and second-order DPTs.
As a first step, we scale the system towards the ther-
modynamic limit and analyze its steady state proper-
ties. We demonstrate the quantum nature of the system
at the second-order DPT, showing squeezing below vac-
uum. Furthermore, we observe the coexistence of mul-
tiple metastable states in the vicinity of the first-order
DPT, a feature that cannot be captured when neglect-
ing the quantum e↵ects of dissipation. Then, we focus on
the dynamical properties associated with both transitions
by probing the system dynamics through time resolved
measurements. We analyze the data with novel theoreti-
cal tools, based on quantum trajectories and Liouvillian
spectral theory, and extract the characteristic timescales.
From this analysis, we characterize the metastable states
and quantify the critical slowing down of the two DPTs.

A. Steady state properties and phase diagram

The device, shown in Fig. 1(d), is a superconduct-
ing cavity made nonlinear by terminating one end to
ground via a superconducting quantum interference de-
vice (SQUID). A two-photon, i.e., parametric, drive is
applied to the cavity by modulating the magnetic flux
through the SQUID at nearly twice the resonance fre-
quency of the cavity [12, 13, 36]. The emitted signal is
collected through a feedline coupled to the other end of
the cavity, then filtered and amplified with a total gain
G before being measured. Both signal quadratures (Î
and Q̂) are acquired using time-resolved heterodyne de-
tection (see Supplementary). This system is modeled by
the Hamiltonian

Ĥ/~ = �â
†
â +
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â
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ââ +
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where â is the photon annihilation operator, � = !r �
!p

2 is the pump-to-cavity detuning, and G is the two-
photon drive field amplitude. In this study, we use �
as the control parameter across the transition [see ⇣ in
Figs. 1(a-c)]. Since the system interacts with the feedline,
fluxline, and other uncontrolled bath degrees of freedom,
its evolution is modeled via the Lindblad master equation
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where L is the Liouvillian superoperator, whose spec-
trum is key in characterizing DPTs [1, 2]. The dissipa-
tors are defined as D[Â]⇢ = Â⇢Â
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rates , �, and 2 are associated with the total pho-
ton loss, dephasing, and two-photon loss, respectively.
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FIG. 1. Theory of dissipative phase transitions and
schematic of the experimental set-up. (a) Illustration of
dissipative phase transitions (DPTs) according to Ref. [1].
Sweeping a control parameter ⇣, the expectation value of
the order parameter hÔi = Tr[⇢ss(⇣)Ô] (blue curve) changes
discontinuously (first-order DPT), or continuously with non-
continuous derivative (second-order DPT). The purple dashed
lines indicate the metastable states associated with hystere-
sis across the first-order DPT. (b) Phase-space-like represen-
tation of the system steady (blue) and metastable (purple)
states across the DPTs. The arrows within each panel indi-
cate the decay of an initial state towards the steady state.
The green arrows represents the decay of a non-symmetric
state at a rate �SSB. The orange arrows are associated with
the metastable state of the first-order DPT, decaying at a
rate �1st. (c) The Liouvillian gaps �SSB in green (�1st in or-
ange) associated with the second-order (first-order) DPT. (d)
Schematic illustrating the device and the experimental setup.
The device is a �/4 coplanar waveguide resonator, capaci-
tively coupled on one side to a feedline used only to collect
the emitted signal via heterodyne detection (see Supplemen-
tary). On the other side, the cavity is terminated to ground
via a SQUID. A magnetic field is applied through the SQUID,
tuning both the resonance frequency and the Kerr nonlinear-
ity. A second waveguide, inductively coupled to the SQUID,
is used to supply a coherent pump tone around twice the res-
onant frequency of the cavity (!p ' 2!r). The pump results
in a two-photon drive for the cavity (see Supplementary and
e.g., Refs. [12, 13]). No other input signal is sent into the
resonator.

Critical phenomena are commonly studied in many-
body systems in the thermodynamic limit, where the
number of constituents asymptotically diverges. How-
ever, quantum phase transitions can also take place
in finite-component systems, where the thermodynamic
limit corresponds to a rescaling of the system parame-
ters [28–31]. A preeminent role in the study of finite-
component first-order DPTs has been played by nonlin-
ear quantum-optical oscillators [7, 8, 17, 18]. An exper-
imental analysis of the unexplored fundamental proper-
ties of first- and second-order DPTs requires to engineer
drives and dissipative processes. Superconducting cir-
cuits [32] o↵er the necessary level of control to engineer

these processes [33–35], while also allowing the parame-
ter rescaling required to witness finite-component phase
transitions.

In this article, we use a two-photon driven supercon-
ducting Kerr resonator, and conduct a thorough experi-
mental analysis of both its first- and second-order DPTs.
As a first step, we scale the system towards the ther-
modynamic limit and analyze its steady state proper-
ties. We demonstrate the quantum nature of the system
at the second-order DPT, showing squeezing below vac-
uum. Furthermore, we observe the coexistence of mul-
tiple metastable states in the vicinity of the first-order
DPT, a feature that cannot be captured when neglect-
ing the quantum e↵ects of dissipation. Then, we focus on
the dynamical properties associated with both transitions
by probing the system dynamics through time resolved
measurements. We analyze the data with novel theoreti-
cal tools, based on quantum trajectories and Liouvillian
spectral theory, and extract the characteristic timescales.
From this analysis, we characterize the metastable states
and quantify the critical slowing down of the two DPTs.

A. Steady state properties and phase diagram

The device, shown in Fig. 1(d), is a superconduct-
ing cavity made nonlinear by terminating one end to
ground via a superconducting quantum interference de-
vice (SQUID). A two-photon, i.e., parametric, drive is
applied to the cavity by modulating the magnetic flux
through the SQUID at nearly twice the resonance fre-
quency of the cavity [12, 13, 36]. The emitted signal is
collected through a feedline coupled to the other end of
the cavity, then filtered and amplified with a total gain
G before being measured. Both signal quadratures (Î
and Q̂) are acquired using time-resolved heterodyne de-
tection (see Supplementary). This system is modeled by
the Hamiltonian
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â +
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where â is the photon annihilation operator, � = !r �
!p

2 is the pump-to-cavity detuning, and G is the two-
photon drive field amplitude. In this study, we use �
as the control parameter across the transition [see ⇣ in
Figs. 1(a-c)]. Since the system interacts with the feedline,
fluxline, and other uncontrolled bath degrees of freedom,
its evolution is modeled via the Lindblad master equation

@⇢

@t
= �L⇢ = �

i
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where L is the Liouvillian superoperator, whose spec-
trum is key in characterizing DPTs [1, 2]. The dissipa-
tors are defined as D[Â]⇢ = Â⇢Â

†
� {Â
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FIG. 1. Theory of dissipative phase transitions and
schematic of the experimental set-up. (a) Illustration of
dissipative phase transitions (DPTs) according to Ref. [1].
Sweeping a control parameter ⇣, the expectation value of
the order parameter hÔi = Tr[⇢ss(⇣)Ô] (blue curve) changes
discontinuously (first-order DPT), or continuously with non-
continuous derivative (second-order DPT). The purple dashed
lines indicate the metastable states associated with hystere-
sis across the first-order DPT. (b) Phase-space-like represen-
tation of the system steady (blue) and metastable (purple)
states across the DPTs. The arrows within each panel indi-
cate the decay of an initial state towards the steady state.
The green arrows represents the decay of a non-symmetric
state at a rate �SSB. The orange arrows are associated with
the metastable state of the first-order DPT, decaying at a
rate �1st. (c) The Liouvillian gaps �SSB in green (�1st in or-
ange) associated with the second-order (first-order) DPT. (d)
Schematic illustrating the device and the experimental setup.
The device is a �/4 coplanar waveguide resonator, capaci-
tively coupled on one side to a feedline used only to collect
the emitted signal via heterodyne detection (see Supplemen-
tary). On the other side, the cavity is terminated to ground
via a SQUID. A magnetic field is applied through the SQUID,
tuning both the resonance frequency and the Kerr nonlinear-
ity. A second waveguide, inductively coupled to the SQUID,
is used to supply a coherent pump tone around twice the res-
onant frequency of the cavity (!p ' 2!r). The pump results
in a two-photon drive for the cavity (see Supplementary and
e.g., Refs. [12, 13]). No other input signal is sent into the
resonator.

Critical phenomena are commonly studied in many-
body systems in the thermodynamic limit, where the
number of constituents asymptotically diverges. How-
ever, quantum phase transitions can also take place
in finite-component systems, where the thermodynamic
limit corresponds to a rescaling of the system parame-
ters [28–31]. A preeminent role in the study of finite-
component first-order DPTs has been played by nonlin-
ear quantum-optical oscillators [7, 8, 17, 18]. An exper-
imental analysis of the unexplored fundamental proper-
ties of first- and second-order DPTs requires to engineer
drives and dissipative processes. Superconducting cir-
cuits [32] o↵er the necessary level of control to engineer

these processes [33–35], while also allowing the parame-
ter rescaling required to witness finite-component phase
transitions.

In this article, we use a two-photon driven supercon-
ducting Kerr resonator, and conduct a thorough experi-
mental analysis of both its first- and second-order DPTs.
As a first step, we scale the system towards the ther-
modynamic limit and analyze its steady state proper-
ties. We demonstrate the quantum nature of the system
at the second-order DPT, showing squeezing below vac-
uum. Furthermore, we observe the coexistence of mul-
tiple metastable states in the vicinity of the first-order
DPT, a feature that cannot be captured when neglect-
ing the quantum e↵ects of dissipation. Then, we focus on
the dynamical properties associated with both transitions
by probing the system dynamics through time resolved
measurements. We analyze the data with novel theoreti-
cal tools, based on quantum trajectories and Liouvillian
spectral theory, and extract the characteristic timescales.
From this analysis, we characterize the metastable states
and quantify the critical slowing down of the two DPTs.

A. Steady state properties and phase diagram

The device, shown in Fig. 1(d), is a superconduct-
ing cavity made nonlinear by terminating one end to
ground via a superconducting quantum interference de-
vice (SQUID). A two-photon, i.e., parametric, drive is
applied to the cavity by modulating the magnetic flux
through the SQUID at nearly twice the resonance fre-
quency of the cavity [12, 13, 36]. The emitted signal is
collected through a feedline coupled to the other end of
the cavity, then filtered and amplified with a total gain
G before being measured. Both signal quadratures (Î
and Q̂) are acquired using time-resolved heterodyne de-
tection (see Supplementary). This system is modeled by
the Hamiltonian
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â +
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where â is the photon annihilation operator, � = !r �
!p

2 is the pump-to-cavity detuning, and G is the two-
photon drive field amplitude. In this study, we use �
as the control parameter across the transition [see ⇣ in
Figs. 1(a-c)]. Since the system interacts with the feedline,
fluxline, and other uncontrolled bath degrees of freedom,
its evolution is modeled via the Lindblad master equation
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where L is the Liouvillian superoperator, whose spec-
trum is key in characterizing DPTs [1, 2]. The dissipa-
tors are defined as D[Â]⇢ = Â⇢Â
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FIG. 2. Characterization of the steady state. (a) Phase diagram showing the number of photons in the resonator as
a function of the detuning � and input power, obtained by heterodyne detection of the emitted field. The three phases are
indicated by: (i) square marker (the vacuum at negative detuning); (ii) hexagon marker (the bright phase); (iii) pentagon
marker (the vacuum at positive detuning). The passage between these phases is accompanied by a second- [(i)!(ii), circle
marker] and first-order DPTs [(ii)!(iii), triangle marker]. (b) Rescaled number of photons ñ = n/L as a function of the
rescaled detuning �̃ = �/L and rescaled drive G = G̃L for increasing scaling parameter L, with G̃ = 65.5 KHz (see also text
and Methods for details). Circles indicate the experimental data, and solid lines are obtained from the numerical simulation
of Eq. (2). The emergent discontinuities at negative and positive detuning with increasing L signal the presence of a second-
and first-order DPT in the thermodynamic limit, respectively. (c) Higher-resolution characterization of the abrupt change in ñ
across the first-order DPT. (d) Husimi-Q function estimated through heterodyne detection. The markers correspond to those in
panel (a), and the values of �̃ corresponds to the vertical dotted gray lines in (b). (e) Histogram of the measured phase � along
single trajectories for L = 1.41. (f) Bimodality coe�cient (i.e., Binder cumulant) B(�), defined in the main text, calculated
from the probability distribution of � for L = 1.41. The vertical dotted line signals the value of the rescaled detuning where
all curves cross.

Finally, nth is the thermal photon number. Through-
out the experiment, the resonator frequency is fixed at
!r/2⇡ = 4.3497 GHz, corresponding to a Kerr nonlinear-
ity of U/2⇡ = 7kHz, and /2⇡ = 77 kHz. The other
parameters of the experiment are theoretically estimated
to be �/2⇡ = 4.4 kHz, 2 = 78 Hz, and nth = 0.055. As
described in Methods, the value of G is measured, and
then refined through a theoretical estimation. The meth-
ods used for determining these parameters are described
in the Supplementary.

We begin our study by characterizing the system
steady state ⇢ss, formally defined by @t⇢ss = 0. To
this end, we initialize the system in the vacuum state,
then switch on the two-photon drive G at frequency !p,
and start acquiring the signal quadratures at frequency
!p/2 after a waiting time ⌧wait. Knowing the output

gain G and total loss rate , the field quadratures Î

and Q̂ of the cavity are then reconstructed (see Methods
and Supplementary). The intracavity photon number is

nss =
⌦
â
†
â
↵
ss

=
D
Î
2 + Q̂

2
E
. In Fig. 2(a), nss is reported

as a function of � and input power, both tunable on de-
mand. We stress that the required wait time ⌧wait to
reach the steady state can be orders-of-magnitude longer
than the typical photon-lifetime 1/ ⇠ 2 µs [see Extended
Data Fig. 1], a clear indication of critical slowing down
[37]. From Fig. 2(a), we distinguish three regimes: (i)
at large negative detuning, the system is in the vacuum
state; (ii) the system transitions from the vacuum state
to a bright state without discontinuity. This happens at

� ⇡ �G (see Methods); (iii) at large positive detuning,
nss falls abruptly from the high population phase to the
vacuum [12].

To better characterize these regimes, we perform a
rescaling of the parameters: G = G̃L and � = �̃L (see
Methods and Refs. [1, 38]). The rescaling parameter is
defined such that L = 1 corresponds to an estimated
pump amplitude of G = 65.5 kHz. In the experiment, the
rescaling is achieved by increasing the two-photon drive
amplitude and correspondingly spanning a larger region
of detuning. In Fig. 2(b), we compare the curves of the
re-scaled steady state intracavity population ñss = nss/L

for the same G̃ and range of �̃, while increasing L. The
solid lines in the figure are the theoretical curves ob-
tained by numerical simulation of the model in Eq. (2)
and show an excellent agreement with the experimen-
tal data. As L increases, the emergence of a continuous
but non-di↵erentiable change in the photon number at
negative detuning, and a discontinuous jump at positive
detuning can be observed [see also Fig. 2(c)]. These are
the fingerprints of second- and first-order DPTs, respec-
tively, as also depicted in Fig. 1(a). The histograms of
the measured Î and Q̂ quadratures – i.e., the Husimi
functions of the steady state convoluted by the noise of
the amplifier – are plotted Fig. 2(d) for the three regimes
mentioned above and at the critical points. As the detun-
ing increases across the second-order DPT, the vacuum
becomes squeezed [see also Fig. 3(d)] and then separates
into two coherent-like states with opposite phase. At
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FIG. 2. Characterization of the steady state. (a) Phase diagram showing the number of photons in the resonator as
a function of the detuning � and input power, obtained by heterodyne detection of the emitted field. The three phases are
indicated by: (i) square marker (the vacuum at negative detuning); (ii) hexagon marker (the bright phase); (iii) pentagon
marker (the vacuum at positive detuning). The passage between these phases is accompanied by a second- [(i)!(ii), circle
marker] and first-order DPTs [(ii)!(iii), triangle marker]. (b) Rescaled number of photons ñ = n/L as a function of the
rescaled detuning �̃ = �/L and rescaled drive G = G̃L for increasing scaling parameter L, with G̃ = 65.5 KHz (see also text
and Methods for details). Circles indicate the experimental data, and solid lines are obtained from the numerical simulation
of Eq. (2). The emergent discontinuities at negative and positive detuning with increasing L signal the presence of a second-
and first-order DPT in the thermodynamic limit, respectively. (c) Higher-resolution characterization of the abrupt change in ñ
across the first-order DPT. (d) Husimi-Q function estimated through heterodyne detection. The markers correspond to those in
panel (a), and the values of �̃ corresponds to the vertical dotted gray lines in (b). (e) Histogram of the measured phase � along
single trajectories for L = 1.41. (f) Bimodality coe�cient (i.e., Binder cumulant) B(�), defined in the main text, calculated
from the probability distribution of � for L = 1.41. The vertical dotted line signals the value of the rescaled detuning where
all curves cross.

Finally, nth is the thermal photon number. Through-
out the experiment, the resonator frequency is fixed at
!r/2⇡ = 4.3497 GHz, corresponding to a Kerr nonlinear-
ity of U/2⇡ = 7kHz, and /2⇡ = 77 kHz. The other
parameters of the experiment are theoretically estimated
to be �/2⇡ = 4.4 kHz, 2 = 78 Hz, and nth = 0.055. As
described in Methods, the value of G is measured, and
then refined through a theoretical estimation. The meth-
ods used for determining these parameters are described
in the Supplementary.

We begin our study by characterizing the system
steady state ⇢ss, formally defined by @t⇢ss = 0. To
this end, we initialize the system in the vacuum state,
then switch on the two-photon drive G at frequency !p,
and start acquiring the signal quadratures at frequency
!p/2 after a waiting time ⌧wait. Knowing the output

gain G and total loss rate , the field quadratures Î

and Q̂ of the cavity are then reconstructed (see Methods
and Supplementary). The intracavity photon number is

nss =
⌦
â
†
â
↵
ss

=
D
Î
2 + Q̂

2
E
. In Fig. 2(a), nss is reported

as a function of � and input power, both tunable on de-
mand. We stress that the required wait time ⌧wait to
reach the steady state can be orders-of-magnitude longer
than the typical photon-lifetime 1/ ⇠ 2 µs [see Extended
Data Fig. 1], a clear indication of critical slowing down
[37]. From Fig. 2(a), we distinguish three regimes: (i)
at large negative detuning, the system is in the vacuum
state; (ii) the system transitions from the vacuum state
to a bright state without discontinuity. This happens at

� ⇡ �G (see Methods); (iii) at large positive detuning,
nss falls abruptly from the high population phase to the
vacuum [12].

To better characterize these regimes, we perform a
rescaling of the parameters: G = G̃L and � = �̃L (see
Methods and Refs. [1, 38]). The rescaling parameter is
defined such that L = 1 corresponds to an estimated
pump amplitude of G = 65.5 kHz. In the experiment, the
rescaling is achieved by increasing the two-photon drive
amplitude and correspondingly spanning a larger region
of detuning. In Fig. 2(b), we compare the curves of the
re-scaled steady state intracavity population ñss = nss/L

for the same G̃ and range of �̃, while increasing L. The
solid lines in the figure are the theoretical curves ob-
tained by numerical simulation of the model in Eq. (2)
and show an excellent agreement with the experimen-
tal data. As L increases, the emergence of a continuous
but non-di↵erentiable change in the photon number at
negative detuning, and a discontinuous jump at positive
detuning can be observed [see also Fig. 2(c)]. These are
the fingerprints of second- and first-order DPTs, respec-
tively, as also depicted in Fig. 1(a). The histograms of
the measured Î and Q̂ quadratures – i.e., the Husimi
functions of the steady state convoluted by the noise of
the amplifier – are plotted Fig. 2(d) for the three regimes
mentioned above and at the critical points. As the detun-
ing increases across the second-order DPT, the vacuum
becomes squeezed [see also Fig. 3(d)] and then separates
into two coherent-like states with opposite phase. At
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FIG. 2. Characterization of the steady state. (a) Phase diagram showing the number of photons in the resonator as
a function of the detuning � and input power, obtained by heterodyne detection of the emitted field. The three phases are
indicated by: (i) square marker (the vacuum at negative detuning); (ii) hexagon marker (the bright phase); (iii) pentagon
marker (the vacuum at positive detuning). The passage between these phases is accompanied by a second- [(i)!(ii), circle
marker] and first-order DPTs [(ii)!(iii), triangle marker]. (b) Rescaled number of photons ñ = n/L as a function of the
rescaled detuning �̃ = �/L and rescaled drive G = G̃L for increasing scaling parameter L, with G̃ = 65.5 KHz (see also text
and Methods for details). Circles indicate the experimental data, and solid lines are obtained from the numerical simulation
of Eq. (2). The emergent discontinuities at negative and positive detuning with increasing L signal the presence of a second-
and first-order DPT in the thermodynamic limit, respectively. (c) Higher-resolution characterization of the abrupt change in ñ
across the first-order DPT. (d) Husimi-Q function estimated through heterodyne detection. The markers correspond to those in
panel (a), and the values of �̃ corresponds to the vertical dotted gray lines in (b). (e) Histogram of the measured phase � along
single trajectories for L = 1.41. (f) Bimodality coe�cient (i.e., Binder cumulant) B(�), defined in the main text, calculated
from the probability distribution of � for L = 1.41. The vertical dotted line signals the value of the rescaled detuning where
all curves cross.

Finally, nth is the thermal photon number. Through-
out the experiment, the resonator frequency is fixed at
!r/2⇡ = 4.3497 GHz, corresponding to a Kerr nonlinear-
ity of U/2⇡ = 7kHz, and /2⇡ = 77 kHz. The other
parameters of the experiment are theoretically estimated
to be �/2⇡ = 4.4 kHz, 2 = 78 Hz, and nth = 0.055. As
described in Methods, the value of G is measured, and
then refined through a theoretical estimation. The meth-
ods used for determining these parameters are described
in the Supplementary.

We begin our study by characterizing the system
steady state ⇢ss, formally defined by @t⇢ss = 0. To
this end, we initialize the system in the vacuum state,
then switch on the two-photon drive G at frequency !p,
and start acquiring the signal quadratures at frequency
!p/2 after a waiting time ⌧wait. Knowing the output

gain G and total loss rate , the field quadratures Î

and Q̂ of the cavity are then reconstructed (see Methods
and Supplementary). The intracavity photon number is

nss =
⌦
â
†
â
↵
ss

=
D
Î
2 + Q̂

2
E
. In Fig. 2(a), nss is reported

as a function of � and input power, both tunable on de-
mand. We stress that the required wait time ⌧wait to
reach the steady state can be orders-of-magnitude longer
than the typical photon-lifetime 1/ ⇠ 2 µs [see Extended
Data Fig. 1], a clear indication of critical slowing down
[37]. From Fig. 2(a), we distinguish three regimes: (i)
at large negative detuning, the system is in the vacuum
state; (ii) the system transitions from the vacuum state
to a bright state without discontinuity. This happens at

� ⇡ �G (see Methods); (iii) at large positive detuning,
nss falls abruptly from the high population phase to the
vacuum [12].

To better characterize these regimes, we perform a
rescaling of the parameters: G = G̃L and � = �̃L (see
Methods and Refs. [1, 38]). The rescaling parameter is
defined such that L = 1 corresponds to an estimated
pump amplitude of G = 65.5 kHz. In the experiment, the
rescaling is achieved by increasing the two-photon drive
amplitude and correspondingly spanning a larger region
of detuning. In Fig. 2(b), we compare the curves of the
re-scaled steady state intracavity population ñss = nss/L

for the same G̃ and range of �̃, while increasing L. The
solid lines in the figure are the theoretical curves ob-
tained by numerical simulation of the model in Eq. (2)
and show an excellent agreement with the experimen-
tal data. As L increases, the emergence of a continuous
but non-di↵erentiable change in the photon number at
negative detuning, and a discontinuous jump at positive
detuning can be observed [see also Fig. 2(c)]. These are
the fingerprints of second- and first-order DPTs, respec-
tively, as also depicted in Fig. 1(a). The histograms of
the measured Î and Q̂ quadratures – i.e., the Husimi
functions of the steady state convoluted by the noise of
the amplifier – are plotted Fig. 2(d) for the three regimes
mentioned above and at the critical points. As the detun-
ing increases across the second-order DPT, the vacuum
becomes squeezed [see also Fig. 3(d)] and then separates
into two coherent-like states with opposite phase. At
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FIG. 2. Characterization of the steady state. (a) Phase diagram showing the number of photons in the resonator as
a function of the detuning � and input power, obtained by heterodyne detection of the emitted field. The three phases are
indicated by: (i) square marker (the vacuum at negative detuning); (ii) hexagon marker (the bright phase); (iii) pentagon
marker (the vacuum at positive detuning). The passage between these phases is accompanied by a second- [(i)!(ii), circle
marker] and first-order DPTs [(ii)!(iii), triangle marker]. (b) Rescaled number of photons ñ = n/L as a function of the
rescaled detuning �̃ = �/L and rescaled drive G = G̃L for increasing scaling parameter L, with G̃ = 65.5 KHz (see also text
and Methods for details). Circles indicate the experimental data, and solid lines are obtained from the numerical simulation
of Eq. (2). The emergent discontinuities at negative and positive detuning with increasing L signal the presence of a second-
and first-order DPT in the thermodynamic limit, respectively. (c) Higher-resolution characterization of the abrupt change in ñ
across the first-order DPT. (d) Husimi-Q function estimated through heterodyne detection. The markers correspond to those in
panel (a), and the values of �̃ corresponds to the vertical dotted gray lines in (b). (e) Histogram of the measured phase � along
single trajectories for L = 1.41. (f) Bimodality coe�cient (i.e., Binder cumulant) B(�), defined in the main text, calculated
from the probability distribution of � for L = 1.41. The vertical dotted line signals the value of the rescaled detuning where
all curves cross.

Finally, nth is the thermal photon number. Through-
out the experiment, the resonator frequency is fixed at
!r/2⇡ = 4.3497 GHz, corresponding to a Kerr nonlinear-
ity of U/2⇡ = 7kHz, and /2⇡ = 77 kHz. The other
parameters of the experiment are theoretically estimated
to be �/2⇡ = 4.4 kHz, 2 = 78 Hz, and nth = 0.055. As
described in Methods, the value of G is measured, and
then refined through a theoretical estimation. The meth-
ods used for determining these parameters are described
in the Supplementary.

We begin our study by characterizing the system
steady state ⇢ss, formally defined by @t⇢ss = 0. To
this end, we initialize the system in the vacuum state,
then switch on the two-photon drive G at frequency !p,
and start acquiring the signal quadratures at frequency
!p/2 after a waiting time ⌧wait. Knowing the output

gain G and total loss rate , the field quadratures Î

and Q̂ of the cavity are then reconstructed (see Methods
and Supplementary). The intracavity photon number is

nss =
⌦
â
†
â
↵
ss

=
D
Î
2 + Q̂

2
E
. In Fig. 2(a), nss is reported

as a function of � and input power, both tunable on de-
mand. We stress that the required wait time ⌧wait to
reach the steady state can be orders-of-magnitude longer
than the typical photon-lifetime 1/ ⇠ 2 µs [see Extended
Data Fig. 1], a clear indication of critical slowing down
[37]. From Fig. 2(a), we distinguish three regimes: (i)
at large negative detuning, the system is in the vacuum
state; (ii) the system transitions from the vacuum state
to a bright state without discontinuity. This happens at

� ⇡ �G (see Methods); (iii) at large positive detuning,
nss falls abruptly from the high population phase to the
vacuum [12].

To better characterize these regimes, we perform a
rescaling of the parameters: G = G̃L and � = �̃L (see
Methods and Refs. [1, 38]). The rescaling parameter is
defined such that L = 1 corresponds to an estimated
pump amplitude of G = 65.5 kHz. In the experiment, the
rescaling is achieved by increasing the two-photon drive
amplitude and correspondingly spanning a larger region
of detuning. In Fig. 2(b), we compare the curves of the
re-scaled steady state intracavity population ñss = nss/L

for the same G̃ and range of �̃, while increasing L. The
solid lines in the figure are the theoretical curves ob-
tained by numerical simulation of the model in Eq. (2)
and show an excellent agreement with the experimen-
tal data. As L increases, the emergence of a continuous
but non-di↵erentiable change in the photon number at
negative detuning, and a discontinuous jump at positive
detuning can be observed [see also Fig. 2(c)]. These are
the fingerprints of second- and first-order DPTs, respec-
tively, as also depicted in Fig. 1(a). The histograms of
the measured Î and Q̂ quadratures – i.e., the Husimi
functions of the steady state convoluted by the noise of
the amplifier – are plotted Fig. 2(d) for the three regimes
mentioned above and at the critical points. As the detun-
ing increases across the second-order DPT, the vacuum
becomes squeezed [see also Fig. 3(d)] and then separates
into two coherent-like states with opposite phase. At
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FIG. 2. Characterization of the steady state. (a) Phase diagram showing the number of photons in the resonator as
a function of the detuning � and input power, obtained by heterodyne detection of the emitted field. The three phases are
indicated by: (i) square marker (the vacuum at negative detuning); (ii) hexagon marker (the bright phase); (iii) pentagon
marker (the vacuum at positive detuning). The passage between these phases is accompanied by a second- [(i)!(ii), circle
marker] and first-order DPTs [(ii)!(iii), triangle marker]. (b) Rescaled number of photons ñ = n/L as a function of the
rescaled detuning �̃ = �/L and rescaled drive G = G̃L for increasing scaling parameter L, with G̃ = 65.5 KHz (see also text
and Methods for details). Circles indicate the experimental data, and solid lines are obtained from the numerical simulation
of Eq. (2). The emergent discontinuities at negative and positive detuning with increasing L signal the presence of a second-
and first-order DPT in the thermodynamic limit, respectively. (c) Higher-resolution characterization of the abrupt change in ñ
across the first-order DPT. (d) Husimi-Q function estimated through heterodyne detection. The markers correspond to those in
panel (a), and the values of �̃ corresponds to the vertical dotted gray lines in (b). (e) Histogram of the measured phase � along
single trajectories for L = 1.41. (f) Bimodality coe�cient (i.e., Binder cumulant) B(�), defined in the main text, calculated
from the probability distribution of � for L = 1.41. The vertical dotted line signals the value of the rescaled detuning where
all curves cross.

Finally, nth is the thermal photon number. Through-
out the experiment, the resonator frequency is fixed at
!r/2⇡ = 4.3497 GHz, corresponding to a Kerr nonlinear-
ity of U/2⇡ = 7kHz, and /2⇡ = 77 kHz. The other
parameters of the experiment are theoretically estimated
to be �/2⇡ = 4.4 kHz, 2 = 78 Hz, and nth = 0.055. As
described in Methods, the value of G is measured, and
then refined through a theoretical estimation. The meth-
ods used for determining these parameters are described
in the Supplementary.

We begin our study by characterizing the system
steady state ⇢ss, formally defined by @t⇢ss = 0. To
this end, we initialize the system in the vacuum state,
then switch on the two-photon drive G at frequency !p,
and start acquiring the signal quadratures at frequency
!p/2 after a waiting time ⌧wait. Knowing the output

gain G and total loss rate , the field quadratures Î

and Q̂ of the cavity are then reconstructed (see Methods
and Supplementary). The intracavity photon number is

nss =
⌦
â
†
â
↵
ss

=
D
Î
2 + Q̂

2
E
. In Fig. 2(a), nss is reported

as a function of � and input power, both tunable on de-
mand. We stress that the required wait time ⌧wait to
reach the steady state can be orders-of-magnitude longer
than the typical photon-lifetime 1/ ⇠ 2 µs [see Extended
Data Fig. 1], a clear indication of critical slowing down
[37]. From Fig. 2(a), we distinguish three regimes: (i)
at large negative detuning, the system is in the vacuum
state; (ii) the system transitions from the vacuum state
to a bright state without discontinuity. This happens at

� ⇡ �G (see Methods); (iii) at large positive detuning,
nss falls abruptly from the high population phase to the
vacuum [12].

To better characterize these regimes, we perform a
rescaling of the parameters: G = G̃L and � = �̃L (see
Methods and Refs. [1, 38]). The rescaling parameter is
defined such that L = 1 corresponds to an estimated
pump amplitude of G = 65.5 kHz. In the experiment, the
rescaling is achieved by increasing the two-photon drive
amplitude and correspondingly spanning a larger region
of detuning. In Fig. 2(b), we compare the curves of the
re-scaled steady state intracavity population ñss = nss/L

for the same G̃ and range of �̃, while increasing L. The
solid lines in the figure are the theoretical curves ob-
tained by numerical simulation of the model in Eq. (2)
and show an excellent agreement with the experimen-
tal data. As L increases, the emergence of a continuous
but non-di↵erentiable change in the photon number at
negative detuning, and a discontinuous jump at positive
detuning can be observed [see also Fig. 2(c)]. These are
the fingerprints of second- and first-order DPTs, respec-
tively, as also depicted in Fig. 1(a). The histograms of
the measured Î and Q̂ quadratures – i.e., the Husimi
functions of the steady state convoluted by the noise of
the amplifier – are plotted Fig. 2(d) for the three regimes
mentioned above and at the critical points. As the detun-
ing increases across the second-order DPT, the vacuum
becomes squeezed [see also Fig. 3(d)] and then separates
into two coherent-like states with opposite phase. At
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FIG. 2. Characterization of the steady state. (a) Phase diagram showing the number of photons in the resonator as
a function of the detuning � and input power, obtained by heterodyne detection of the emitted field. The three phases are
indicated by: (i) square marker (the vacuum at negative detuning); (ii) hexagon marker (the bright phase); (iii) pentagon
marker (the vacuum at positive detuning). The passage between these phases is accompanied by a second- [(i)!(ii), circle
marker] and first-order DPTs [(ii)!(iii), triangle marker]. (b) Rescaled number of photons ñ = n/L as a function of the
rescaled detuning �̃ = �/L and rescaled drive G = G̃L for increasing scaling parameter L, with G̃ = 65.5 KHz (see also text
and Methods for details). Circles indicate the experimental data, and solid lines are obtained from the numerical simulation
of Eq. (2). The emergent discontinuities at negative and positive detuning with increasing L signal the presence of a second-
and first-order DPT in the thermodynamic limit, respectively. (c) Higher-resolution characterization of the abrupt change in ñ
across the first-order DPT. (d) Husimi-Q function estimated through heterodyne detection. The markers correspond to those in
panel (a), and the values of �̃ corresponds to the vertical dotted gray lines in (b). (e) Histogram of the measured phase � along
single trajectories for L = 1.41. (f) Bimodality coe�cient (i.e., Binder cumulant) B(�), defined in the main text, calculated
from the probability distribution of � for L = 1.41. The vertical dotted line signals the value of the rescaled detuning where
all curves cross.

Finally, nth is the thermal photon number. Through-
out the experiment, the resonator frequency is fixed at
!r/2⇡ = 4.3497 GHz, corresponding to a Kerr nonlinear-
ity of U/2⇡ = 7kHz, and /2⇡ = 77 kHz. The other
parameters of the experiment are theoretically estimated
to be �/2⇡ = 4.4 kHz, 2 = 78 Hz, and nth = 0.055. As
described in Methods, the value of G is measured, and
then refined through a theoretical estimation. The meth-
ods used for determining these parameters are described
in the Supplementary.

We begin our study by characterizing the system
steady state ⇢ss, formally defined by @t⇢ss = 0. To
this end, we initialize the system in the vacuum state,
then switch on the two-photon drive G at frequency !p,
and start acquiring the signal quadratures at frequency
!p/2 after a waiting time ⌧wait. Knowing the output

gain G and total loss rate , the field quadratures Î

and Q̂ of the cavity are then reconstructed (see Methods
and Supplementary). The intracavity photon number is

nss =
⌦
â
†
â
↵
ss

=
D
Î
2 + Q̂

2
E
. In Fig. 2(a), nss is reported

as a function of � and input power, both tunable on de-
mand. We stress that the required wait time ⌧wait to
reach the steady state can be orders-of-magnitude longer
than the typical photon-lifetime 1/ ⇠ 2 µs [see Extended
Data Fig. 1], a clear indication of critical slowing down
[37]. From Fig. 2(a), we distinguish three regimes: (i)
at large negative detuning, the system is in the vacuum
state; (ii) the system transitions from the vacuum state
to a bright state without discontinuity. This happens at

� ⇡ �G (see Methods); (iii) at large positive detuning,
nss falls abruptly from the high population phase to the
vacuum [12].

To better characterize these regimes, we perform a
rescaling of the parameters: G = G̃L and � = �̃L (see
Methods and Refs. [1, 38]). The rescaling parameter is
defined such that L = 1 corresponds to an estimated
pump amplitude of G = 65.5 kHz. In the experiment, the
rescaling is achieved by increasing the two-photon drive
amplitude and correspondingly spanning a larger region
of detuning. In Fig. 2(b), we compare the curves of the
re-scaled steady state intracavity population ñss = nss/L

for the same G̃ and range of �̃, while increasing L. The
solid lines in the figure are the theoretical curves ob-
tained by numerical simulation of the model in Eq. (2)
and show an excellent agreement with the experimen-
tal data. As L increases, the emergence of a continuous
but non-di↵erentiable change in the photon number at
negative detuning, and a discontinuous jump at positive
detuning can be observed [see also Fig. 2(c)]. These are
the fingerprints of second- and first-order DPTs, respec-
tively, as also depicted in Fig. 1(a). The histograms of
the measured Î and Q̂ quadratures – i.e., the Husimi
functions of the steady state convoluted by the noise of
the amplifier – are plotted Fig. 2(d) for the three regimes
mentioned above and at the critical points. As the detun-
ing increases across the second-order DPT, the vacuum
becomes squeezed [see also Fig. 3(d)] and then separates
into two coherent-like states with opposite phase. At
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FIG. 2. Characterization of the steady state. (a) Phase diagram showing the number of photons in the resonator as
a function of the detuning � and input power, obtained by heterodyne detection of the emitted field. The three phases are
indicated by: (i) square marker (the vacuum at negative detuning); (ii) hexagon marker (the bright phase); (iii) pentagon
marker (the vacuum at positive detuning). The passage between these phases is accompanied by a second- [(i)!(ii), circle
marker] and first-order DPTs [(ii)!(iii), triangle marker]. (b) Rescaled number of photons ñ = n/L as a function of the
rescaled detuning �̃ = �/L and rescaled drive G = G̃L for increasing scaling parameter L, with G̃ = 65.5 KHz (see also text
and Methods for details). Circles indicate the experimental data, and solid lines are obtained from the numerical simulation
of Eq. (2). The emergent discontinuities at negative and positive detuning with increasing L signal the presence of a second-
and first-order DPT in the thermodynamic limit, respectively. (c) Higher-resolution characterization of the abrupt change in ñ
across the first-order DPT. (d) Husimi-Q function estimated through heterodyne detection. The markers correspond to those in
panel (a), and the values of �̃ corresponds to the vertical dotted gray lines in (b). (e) Histogram of the measured phase � along
single trajectories for L = 1.41. (f) Bimodality coe�cient (i.e., Binder cumulant) B(�), defined in the main text, calculated
from the probability distribution of � for L = 1.41. The vertical dotted line signals the value of the rescaled detuning where
all curves cross.

Finally, nth is the thermal photon number. Through-
out the experiment, the resonator frequency is fixed at
!r/2⇡ = 4.3497 GHz, corresponding to a Kerr nonlinear-
ity of U/2⇡ = 7kHz, and /2⇡ = 77 kHz. The other
parameters of the experiment are theoretically estimated
to be �/2⇡ = 4.4 kHz, 2 = 78 Hz, and nth = 0.055. As
described in Methods, the value of G is measured, and
then refined through a theoretical estimation. The meth-
ods used for determining these parameters are described
in the Supplementary.

We begin our study by characterizing the system
steady state ⇢ss, formally defined by @t⇢ss = 0. To
this end, we initialize the system in the vacuum state,
then switch on the two-photon drive G at frequency !p,
and start acquiring the signal quadratures at frequency
!p/2 after a waiting time ⌧wait. Knowing the output

gain G and total loss rate , the field quadratures Î

and Q̂ of the cavity are then reconstructed (see Methods
and Supplementary). The intracavity photon number is

nss =
⌦
â
†
â
↵
ss

=
D
Î
2 + Q̂

2
E
. In Fig. 2(a), nss is reported

as a function of � and input power, both tunable on de-
mand. We stress that the required wait time ⌧wait to
reach the steady state can be orders-of-magnitude longer
than the typical photon-lifetime 1/ ⇠ 2 µs [see Extended
Data Fig. 1], a clear indication of critical slowing down
[37]. From Fig. 2(a), we distinguish three regimes: (i)
at large negative detuning, the system is in the vacuum
state; (ii) the system transitions from the vacuum state
to a bright state without discontinuity. This happens at

� ⇡ �G (see Methods); (iii) at large positive detuning,
nss falls abruptly from the high population phase to the
vacuum [12].

To better characterize these regimes, we perform a
rescaling of the parameters: G = G̃L and � = �̃L (see
Methods and Refs. [1, 38]). The rescaling parameter is
defined such that L = 1 corresponds to an estimated
pump amplitude of G = 65.5 kHz. In the experiment, the
rescaling is achieved by increasing the two-photon drive
amplitude and correspondingly spanning a larger region
of detuning. In Fig. 2(b), we compare the curves of the
re-scaled steady state intracavity population ñss = nss/L

for the same G̃ and range of �̃, while increasing L. The
solid lines in the figure are the theoretical curves ob-
tained by numerical simulation of the model in Eq. (2)
and show an excellent agreement with the experimen-
tal data. As L increases, the emergence of a continuous
but non-di↵erentiable change in the photon number at
negative detuning, and a discontinuous jump at positive
detuning can be observed [see also Fig. 2(c)]. These are
the fingerprints of second- and first-order DPTs, respec-
tively, as also depicted in Fig. 1(a). The histograms of
the measured Î and Q̂ quadratures – i.e., the Husimi
functions of the steady state convoluted by the noise of
the amplifier – are plotted Fig. 2(d) for the three regimes
mentioned above and at the critical points. As the detun-
ing increases across the second-order DPT, the vacuum
becomes squeezed [see also Fig. 3(d)] and then separates
into two coherent-like states with opposite phase. At
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FIG. 3. Squeezing at the second-order DPT. Photon
number (a), its first (b), and second derivatives (c) calculated
from the experimental data as a function of detuning. (d) The
squeezing parameter �x2

� evaluated across the second-order
DPT. Notice that the minimum is in the vicinity of the critical
point indicated by the maximum of the second derivative of
the photon number in the panel (c). The vertical dotted line
indicates the expected minimum of the squeezing parameter
obtained by numerical simulation of the steady state.

the first-order critical point, two coherent-like states with
large photon number coexist with a vacuum-like state.

We introduce here a new procedure to characterize
criticality, rooted in the theory of quantum trajectories
and DPTs (see Supplementary) [39]. The critical na-
ture of the system is also evident when considering the
“conjugate” parameter of the photon number, i.e., the
system’s phase �(t) = arg(I(t) + iQ(t)). The probabil-
ity distribution p(�) is reconstructed from the histogram
of I(t) = hÎ(t)i and Q(t) = hQ̂(t)i. Figure 2(e) shows
histograms of � as a function of the rescaled detuning
for a fixed value L. While � is uniformly distributed in
the vacuum phase, it displays two narrow peaks in the
bright phase, corresponding to the coherent-like states in
Fig. 2(d). We report the bimodality coe�cient (binder
cumulant) B(�) ⌘ m

2
2/m4 in Fig. 2(f), where the j

th

moments are mj =
R ⇡
�⇡ p(�)�j with p(�) being the

probability distribution of �. The transition between
B(�) = 5/9 (flat distribution) and B(�) ' 1 (bimodal-
ity) is smooth at the second-order and abrupt at the
first-order critical points, thus reinforcing the evidence
for DPTs.

1. Quantum nature of the transitions

Quantum fluctuations play a fundamental role at both
transitions. In fact, at the critical point of the second-
order DPT, the steady state is squeezed below vac-

uum. We define the squeezing parameter as the min-
imal variance �x

2
� ⌘ hx̂

2
�i � hx̂�i

2 of the quadrature

x̂� = (âe
�i� + â

†
e
i�)/

p
2, spanning all possible �. Fig-

ure 3(d) shows the squeezing parameter as a function
of the detuning (see Methods for details on its estima-
tion). At large negative detuning �x

2
� = 1/2 because

the steady state is the vacuum. The minimum of the
squeezing parameter is below 1/2 (squeezing below vac-
uum). The position of this minimum closely aligns with
the second-order critical point, i.e., the maximum of the
second derivative of the photon number, as shown in
Figs. 3(a-c). This analysis supports the claim that quan-
tum fluctuations play an important role at the second-
order DPT.

In the case of the first-order DPT, the e↵ect of
quantum fluctuations is fundamental to correctly deter-
mine the transition point and the region of metasta-
bility. In the one-photon driven Kerr resonator, first-
order DPTs have been observed across multiple plat-
forms [7, 8, 15, 17, 18]. From a theoretical viewpoint, in
the one-photon driven resonator the presence of metasta-
bility, and thus criticality, can be argued using a semi-
classical model, i.e., assuming a coherent state, and just
one-photon loss. This is not the case for the two-photon
driven Kerr resonator. A coherent-state approximation
for the equations of motion obtained by considering one-
photon losses alone cannot predict the presence of this
DPT. The region of metastability requires two-photon
decays to be correctly captured by a coherent-state ap-
proximation. Criticality can only be theoretically ob-
tained within a full quantum picture, as shown in Ex-
tended Data Fig. 2

B. Dynamical properties

1. Second-order

Having characterized the steady state critical prop-
erties, we now focus on the dynamical properties. A
distinctive feature of second-order DPTs is spontaneous
symmetry breaking (SSB) [see Figs. 1(a-c)]. The Eq. (2)
is invariant under the transformation â ! �â. This weak
Z2 symmetry [40–42] imposes constraints on steady state
of the system (see Methods). Namely, when collecting
the signal, for each measured quadrature (I, Q), it must
be equally probable to measure (�I, �Q). As such, the
presence of a Z2 symmetry enforces hÎiss = hQ̂iss = 0.
SSB is defined as the presence of states ⇢

±

SSB that, despite
being stationary, do not respect the previous condition
[1]. These states can only emerge in the thermodynamic
limit L ! 1, or for classical analogues where the number
of excitations can be taken to be infinite [43, 44]. At finite
values of L, however, the emergence of SSB is signaled by
critical slowing down: ⇢

±

SSB are not stationary, but they
decay towards ⇢ss at a rate �SSB ⌧ 1/ [1], as sketched
in Fig. 1(c). For the two-photon driven Kerr resonator
model, ⇢

±

SSB ' |±↵ih±↵| and ⇢ss = (⇢+SSB + ⇢
�

SSB)/2,
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FIG. 4. Analysis of the second-order DPT. (a) A segment of the measured quantum trajectories. As a function of time,
we plot I(t) for L = 1.41 at various rescaled detunings �̃ = �/L, indicated by the marker in each panel. Random jumps
between two opposite values of the quadrature occur as time passes. These correspond to the switches between ⇢+SSB and ⇢�SSB
described in the main text. Using the entire collected signal, we recover a bimodal Husimi function shown on the right. (b)
The autocorrelation function Css(t) (see Eq. (3) and Methods), obtained from single trajectories as those shown in panel (a).
The markers at the end of the curves represent the values of �̃, and the colors indicate the scaling parameter (L = 1.29:
purple, L = 1.41: red). The Liouvillian gap can be extracted from fitting these curves using Eq. (3). The fit are represented
by the black lines. (c) The fitted Liouvillian gap �SSB as a function of �̃ for di↵erent scaling parameters L, such that G = G̃L
with G̃ = 65.5 kHz. Points are the experimental data, while the solid lines describe the theoretical prediction obtained by
diagonalizing the Liouvillian in Eq. (2). The inset shows the minimum of �SSB as a function of the rescaling parameter L. The
black line shows the fit of the function �SSB / exp(↵L) to the data.

where |↵i is a coherent state [45]. Theoretically, this
rate corresponds to one of the Liouvillian eigenvalues (see
Methods and Supplementary).

The continuous measurements along single quantum
trajectories shown in Fig. 4(a) display jumps between
the states ⇢

±

SSB. Notice how the observed rate of phase
jumps is significantly larger than the typical photon life-
time 1/ ⇠ 2 µs and further decreases with increasing
value of L (see the Extended Data Fig. 3).

In order to quantify the critical slowing down, we have
derived a method to extract �SSB from the steady state
auto-correlation function. As proven in the Methods
and Supplementary, in the limit in which critical slow-
ing down takes place, one has

Css(t) = lim
⌧, T!1

1

T

Z ⌧+T

⌧

I(⌧ 0)I(t + ⌧
0)

I2(⌧ 0)
d⌧

0

' exp{��SSBt}

(3)

where I(⌧) is the measured quadrature at time ⌧ along
a single quantum trajectory such as those shown in
Fig. 4(a). In the experiment, given the discrete nature
of the signal, Css(t) is calculated by averaging over mul-
tiple times ⌧ the product of I(⌧) and I(t + ⌧). We plot
the autocorrelation functions and their fit according to
Eq. (3) in Fig. 4(b). From this, we finally obtain �SSB,
shown in Fig. 4(c), as a function of the rescaled detuning
�̃ and for various L. Remarkably, in our measurements,
�SSB spans five orders of magnitude. The numerical sim-
ulations for �SSB closely resemble the experimental data.
It is worth emphasizing that the Liouvillian eigenvalues

associated with the DPTs strongly depend on the model
parameters. This is shown in the Extended Data Fig. 4.
Therefore, the validity of the model in Eq. (2) and of
the chosen parameters is confirmed. By fitting the min-
imum of �SSB and plotting it as a function of L [see
inset of Fig. 4(c)], we clearly see an exponential behav-
ior, characteristic of finite-component phase transitions,
indicating the presence of a true SSB in the thermody-
namic limit L ! 1. Finally, notice that �SSB is asso-
ciated to a bit-flip error rate in Kerr and dissipative cat
qubits [46]. As our results demonstrate, �SSB can be re-
duced by changing the detuning. Moreover, we see that
�SSB(�, L) / e

↵(�)L, where ↵(�) strongly depends on
�, as also shown in Refs. [9, 47, 48]. This is also high-
lighted in greater details in the Extended Data Fig. 5.
These observations demonstrate how criticality can be
exploited for quantum information processing [49].

2. First-order transition

We now focus on the dynamical properties of the first-
order DPT. Similarly to the second-order DPT, critical-
ity can only occur in the thermodynamic limit. In the
case of finite L, however, the emergence of DPT results
again in critical slowing down, associated this time to a
rate �1st. In particular, the photon number at a given
time t follows [1]

n(t) ' nss + �n e
��1stt, (4)

where �n depends on the initial state. Following this
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FIG. 5. Analysis of the first-order DPT. (a-d) For L = 1.41, metastability around the critical detuning �c/2⇡ ⇡ 0.13 MHz
where the first-order transition takes place. �c corresponds to the detuning for which the first-derivative of nss with respect
to detuning is maximal. (b) The photon number n both in the steady state (circles) and in the metastable regimes (squares
and triangles) as a function of detuning. The photon number in the metastable regimes have been obtained by initializing the
system at � < �c (� > �c) in the vacuum (in the high-population) phase and waiting for a time 1/. (a) For � < �c, the
system is initialized in the vacuum, and it evolves towards the bright phase. The red curve is the measured photon number
along a single trajectory, while the green curve is the average over 1000 trajectories, and is fitted by Eq. (4) (black line). (c) As
in (a), but for � > �c, where the system is initialized in the bright phase. (d) Phase coexistence takes place in the proximity
of the critical point � ' �c. Single trajectory display random jumps between the vacuum and the bright phase. From left
to right, � increases and the relative weights of the two phases change, as it can be observed in the Husimi functions. (e)
Liouvillian gap �1st extrapolated using Eq. (4) from data similar to those in panels (a-c). Markers indicate the experimental
data, obtained by fitting the decay from either the vacuum or the bright phase towards the steady state, while the solid lines
are the results of the numerical diagonalization of the Liouvillian in Eq. (2). The inset shows the minimum of �1st as a function
of the rescaling parameter L. The black line shows the fit of the function �1st / exp(↵L) to the data.

definition, we identify three regimes, summarized in
Fig. 5(b), in the proximity of the critical point �c of
the first-order DPT: (i) � < �c shown in Fig. 5(a); (ii)
� ' �c in Fig. 5(d); and (iii) � > �c in Fig. 5(c).

In (i), single quantum trajectories remain in the vac-
uum for a long time before randomly jumping to the
bright phase (red curve). Once the bright phase is
reached, the system never jumps back to the vacuum.
Averaging over many trajectories (the green curve) re-
sults in n(t) following Eq. (4). We conclude that the
steady state ⇢ss is the bright phase, while the vacuum is
metastable with lifetime 1/�1st. In (ii), single trajecto-
ries show that the state jumps between the bright and
the vacuum phase. The relative time they spend in each
of these phases determines the composition of ⇢ss. This
is also evident from the Husimi functions that reflect the
phase coexistence between the vacuum and the bright
phase. This region of coexistence shrinks as the ther-
modynamic limit is approached (not shown). Finally,
in (iii) the quantum trajectories display a jump between
the bright phase and vacuum (red curve). Averaging over
many trajectories (orange curve) results in an exponen-
tial decay from �n ' n(t = 0) to the vacuum following
Eq. (4). In this regime, ⇢ss is the vacuum, and �1st de-
scribes the decay of the bright metastable phase.

We plot the Liouvillian gap �1st in Fig. 5(e), demon-
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with the first-order DPT as we approach the thermody-

namic limit. Notice that both data extrapolated in the
regions (1) and (3) match at the critical point, confirming
the theoretical prediction of Ref. [1] (see also the zoom on
the region in the Extended Data Fig. 6). Furthermore,
as shown in the inset, we also observe an exponential de-
pendence for the minimum of �1st with respect to the
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As we previously discussed, two-photon dissipation
plays a fundamental role in the correct theoretical de-
scription of the observed first-order DPT. While in the
previous simulations shown in Figs. 2 and 4, 2 played
only a marginal role, it now determines the dependence
of �1st with respect to �. This is shown in greater detail
in the Extended Data Fig. 7. Given the sensitivity of �1st

to very small changes in the value of 2, measuring �1st

is a promising tool for determining 2 in Kerr-cat based
quantum devices [46].

As the critical region is characterized by metastable
states, whose lifetime is of the order 1/�1st, an hysteretic
behavior in � is expected. As sketched in Fig. 6(a), the
detuning is ramped between �min and �max, both out-
side the hysteresis range, according to �"(t) = �min +
D t, with D = (�max��min)/T and �#(t) = �max�D t,
where T is the sweep time. Hysteresis is immediately
visible when comparing Figs. 6(c) and (d). For a quanti-
tative description of the e↵ects of hysteresis, we calculate
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is, however, meaningful to compare the results for the
same rescaled parameters. Namely, we should compare

hn̂�,ssi vs � for Scaling (I) and
D
n̂�̃,ss

E
vs �̃ for Scaling

(II). Similarly, P�̃,ss = P�,ss for Scaling (I) and P�̃,ss =
P�/L,ss for Scaling (II). In supplementary Fig. 9, we verify
that the two scalings lead to similar results both for the
photon number and the precision upon the appropriate
rescaling . The overlap of curves with identical values of
L, but di↵erent scaling indicates that the Scaling (II) can
be used to qualitatively explore larger values of L that
cannot be reached in our device using the Scaling (I).

Therefore, we analyze the metrological properties of
the device for larger values of L for the Scaling (II).
In Fig. 4(a), we plot the output photon number at the
steady state, hn̂�̃,ssi, observing the characteristics indica-
tive of the onset of a second-order DPT. In Fig. 4(b) we
plot P�̃,ss and confirm that the system gains in precision
as it scales towards the thermodynamic limit. Figure
4(c) shows the maximum of P�̃max,ss as function of L; the
data are in line with a quadratic scaling, comparable to
that observed in Fig. 3. In the same panel, we also plot
P�̃i,ss

for �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz,
highlighting the fact that the optimal scaling is achieved
around the optimal point �̃max. Finally, in Fig. 4(d) we
show that as L increases, the di↵erence between the crit-
ical point �̃c and the point of maximal precision �̃max

decreases, suggesting that the two will eventually coin-
cide for large enough L. These data show the enhanced
sensing capabilities of the parametrically driven Kerr res-
onator, and that this enhanced sensing occurs near the
critical point.

V. DISCUSSION AND CONCLUSION

In classical pump-and-probe experiments, doubling the
pump power does not result in twice the precision. More
formally, as shown in the Appendix C, it can be demon-
strated that a protocol based on a linear resonator driven
by a coherent drive achieves a maximal precision bounded
by P�max,ss / hâ†âi, the number of photon in the res-
onator, even when optimizing over all system and drive
parameters. This remains true even in the absence of any
noise, internal dissipation or decoherence.

Our experiment is still pump-and-probe, but we have
observed a quadratic scaling of the parameter-estimation
precision, P�max,ss / L2 / hâ†âi2. The key di↵erence is
that the system is operated in the vicinity of the critical
point of a second-order dissipative phase transition. The
system’s nonlinearity and the parametric quantum pro-
cess that converts the external drive into a two-photon
pump make it possible to overcome the classical preci-
sion bound. From a fundamental perspective, our exper-
iment demonstrates that quantum sensing protocols are
a valuable tool for characterizing the quantum nature of
driven-dissipative phase transitions. Technologically, our
results pave the way to the development of a new gen-
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FIG. 4. For the Scaling II in Eq. (4): (a) Output pho-
ton number at the steady state

⌦
n̂�̃,ss

↵
vs scaled detuning

�̃ for increasing L. (b) Precision P�̃,ss as a function of �̃.
The scaling of P�̃,ss as a function of L for various points,

including the optimal point �̃max for each L. (c) P�̃i,ss
for

�̃i = �̃max, �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz. The
solid grey line is a fit of the data demonstrating quadratic
dependence for P�̃max,ss

, while the two light grey dotted lines

linking the markers are included as visual guide. (d) �̃max as a
function of L. The light grey dotted line linking the markers
is included as visual guide. Error bars are calculated as in
Figs. 2(a) and 3. The error on in panel (c) corresponds to the
size of a detuning step.

eration of quantum sensors based on solid-state critical
systems. By selecting an appropriate frequency-tunable
component, our frequency estimation protocol could be
implemented to sense various quantities, such as mag-
netic fields using a superconducting quantum inderfer-
ence device (SQUID), forces with an optomechanical de-
vices and a MHz signals with longitudinally coupled RF
resonators.
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rescaling . The overlap of curves with identical values of
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cannot be reached in our device using the Scaling (I).

Therefore, we analyze the metrological properties of
the device for larger values of L for the Scaling (II).
In Fig. 4(a), we plot the output photon number at the
steady state, hn̂�̃,ssi, observing the characteristics indica-
tive of the onset of a second-order DPT. In Fig. 4(b) we
plot P�̃,ss and confirm that the system gains in precision
as it scales towards the thermodynamic limit. Figure
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show that as L increases, the di↵erence between the crit-
ical point �̃c and the point of maximal precision �̃max

decreases, suggesting that the two will eventually coin-
cide for large enough L. These data show the enhanced
sensing capabilities of the parametrically driven Kerr res-
onator, and that this enhanced sensing occurs near the
critical point.

V. DISCUSSION AND CONCLUSION

In classical pump-and-probe experiments, doubling the
pump power does not result in twice the precision. More
formally, as shown in the Appendix C, it can be demon-
strated that a protocol based on a linear resonator driven
by a coherent drive achieves a maximal precision bounded
by P�max,ss / hâ†âi, the number of photon in the res-
onator, even when optimizing over all system and drive
parameters. This remains true even in the absence of any
noise, internal dissipation or decoherence.

Our experiment is still pump-and-probe, but we have
observed a quadratic scaling of the parameter-estimation
precision, P�max,ss / L2 / hâ†âi2. The key di↵erence is
that the system is operated in the vicinity of the critical
point of a second-order dissipative phase transition. The
system’s nonlinearity and the parametric quantum pro-
cess that converts the external drive into a two-photon
pump make it possible to overcome the classical preci-
sion bound. From a fundamental perspective, our exper-
iment demonstrates that quantum sensing protocols are
a valuable tool for characterizing the quantum nature of
driven-dissipative phase transitions. Technologically, our
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Figs. 2(a) and 3. The error on in panel (c) corresponds to the
size of a detuning step.
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pump make it possible to overcome the classical preci-
sion bound. From a fundamental perspective, our exper-
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a valuable tool for characterizing the quantum nature of
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is, however, meaningful to compare the results for the
same rescaled parameters. Namely, we should compare
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(II). Similarly, P�̃,ss = P�,ss for Scaling (I) and P�̃,ss =
P�/L,ss for Scaling (II). In supplementary Fig. 9, we verify
that the two scalings lead to similar results both for the
photon number and the precision upon the appropriate
rescaling . The overlap of curves with identical values of
L, but di↵erent scaling indicates that the Scaling (II) can
be used to qualitatively explore larger values of L that
cannot be reached in our device using the Scaling (I).

Therefore, we analyze the metrological properties of
the device for larger values of L for the Scaling (II).
In Fig. 4(a), we plot the output photon number at the
steady state, hn̂�̃,ssi, observing the characteristics indica-
tive of the onset of a second-order DPT. In Fig. 4(b) we
plot P�̃,ss and confirm that the system gains in precision
as it scales towards the thermodynamic limit. Figure
4(c) shows the maximum of P�̃max,ss as function of L; the
data are in line with a quadratic scaling, comparable to
that observed in Fig. 3. In the same panel, we also plot
P�̃i,ss

for �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz,
highlighting the fact that the optimal scaling is achieved
around the optimal point �̃max. Finally, in Fig. 4(d) we
show that as L increases, the di↵erence between the crit-
ical point �̃c and the point of maximal precision �̃max

decreases, suggesting that the two will eventually coin-
cide for large enough L. These data show the enhanced
sensing capabilities of the parametrically driven Kerr res-
onator, and that this enhanced sensing occurs near the
critical point.

V. DISCUSSION AND CONCLUSION

In classical pump-and-probe experiments, doubling the
pump power does not result in twice the precision. More
formally, as shown in the Appendix C, it can be demon-
strated that a protocol based on a linear resonator driven
by a coherent drive achieves a maximal precision bounded
by P�max,ss / hâ†âi, the number of photon in the res-
onator, even when optimizing over all system and drive
parameters. This remains true even in the absence of any
noise, internal dissipation or decoherence.

Our experiment is still pump-and-probe, but we have
observed a quadratic scaling of the parameter-estimation
precision, P�max,ss / L2 / hâ†âi2. The key di↵erence is
that the system is operated in the vicinity of the critical
point of a second-order dissipative phase transition. The
system’s nonlinearity and the parametric quantum pro-
cess that converts the external drive into a two-photon
pump make it possible to overcome the classical preci-
sion bound. From a fundamental perspective, our exper-
iment demonstrates that quantum sensing protocols are
a valuable tool for characterizing the quantum nature of
driven-dissipative phase transitions. Technologically, our
results pave the way to the development of a new gen-
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including the optimal point �̃max for each L. (c) P�̃i,ss
for

�̃i = �̃max, �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz. The
solid grey line is a fit of the data demonstrating quadratic
dependence for P�̃max,ss

, while the two light grey dotted lines

linking the markers are included as visual guide. (d) �̃max as a
function of L. The light grey dotted line linking the markers
is included as visual guide. Error bars are calculated as in
Figs. 2(a) and 3. The error on in panel (c) corresponds to the
size of a detuning step.

eration of quantum sensors based on solid-state critical
systems. By selecting an appropriate frequency-tunable
component, our frequency estimation protocol could be
implemented to sense various quantities, such as mag-
netic fields using a superconducting quantum inderfer-
ence device (SQUID), forces with an optomechanical de-
vices and a MHz signals with longitudinally coupled RF
resonators.
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(II). Similarly, P�̃,ss = P�,ss for Scaling (I) and P�̃,ss =
P�/L,ss for Scaling (II). In supplementary Fig. 9, we verify
that the two scalings lead to similar results both for the
photon number and the precision upon the appropriate
rescaling . The overlap of curves with identical values of
L, but di↵erent scaling indicates that the Scaling (II) can
be used to qualitatively explore larger values of L that
cannot be reached in our device using the Scaling (I).

Therefore, we analyze the metrological properties of
the device for larger values of L for the Scaling (II).
In Fig. 4(a), we plot the output photon number at the
steady state, hn̂�̃,ssi, observing the characteristics indica-
tive of the onset of a second-order DPT. In Fig. 4(b) we
plot P�̃,ss and confirm that the system gains in precision
as it scales towards the thermodynamic limit. Figure
4(c) shows the maximum of P�̃max,ss as function of L; the
data are in line with a quadratic scaling, comparable to
that observed in Fig. 3. In the same panel, we also plot
P�̃i,ss

for �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz,
highlighting the fact that the optimal scaling is achieved
around the optimal point �̃max. Finally, in Fig. 4(d) we
show that as L increases, the di↵erence between the crit-
ical point �̃c and the point of maximal precision �̃max

decreases, suggesting that the two will eventually coin-
cide for large enough L. These data show the enhanced
sensing capabilities of the parametrically driven Kerr res-
onator, and that this enhanced sensing occurs near the
critical point.

V. DISCUSSION AND CONCLUSION

In classical pump-and-probe experiments, doubling the
pump power does not result in twice the precision. More
formally, as shown in the Appendix C, it can be demon-
strated that a protocol based on a linear resonator driven
by a coherent drive achieves a maximal precision bounded
by P�max,ss / hâ†âi, the number of photon in the res-
onator, even when optimizing over all system and drive
parameters. This remains true even in the absence of any
noise, internal dissipation or decoherence.

Our experiment is still pump-and-probe, but we have
observed a quadratic scaling of the parameter-estimation
precision, P�max,ss / L2 / hâ†âi2. The key di↵erence is
that the system is operated in the vicinity of the critical
point of a second-order dissipative phase transition. The
system’s nonlinearity and the parametric quantum pro-
cess that converts the external drive into a two-photon
pump make it possible to overcome the classical preci-
sion bound. From a fundamental perspective, our exper-
iment demonstrates that quantum sensing protocols are
a valuable tool for characterizing the quantum nature of
driven-dissipative phase transitions. Technologically, our
results pave the way to the development of a new gen-
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dependence for P�̃max,ss

, while the two light grey dotted lines

linking the markers are included as visual guide. (d) �̃max as a
function of L. The light grey dotted line linking the markers
is included as visual guide. Error bars are calculated as in
Figs. 2(a) and 3. The error on in panel (c) corresponds to the
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systems. By selecting an appropriate frequency-tunable
component, our frequency estimation protocol could be
implemented to sense various quantities, such as mag-
netic fields using a superconducting quantum inderfer-
ence device (SQUID), forces with an optomechanical de-
vices and a MHz signals with longitudinally coupled RF
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same rescaled parameters. Namely, we should compare
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(II). Similarly, P�̃,ss = P�,ss for Scaling (I) and P�̃,ss =
P�/L,ss for Scaling (II). In supplementary Fig. 9, we verify
that the two scalings lead to similar results both for the
photon number and the precision upon the appropriate
rescaling . The overlap of curves with identical values of
L, but di↵erent scaling indicates that the Scaling (II) can
be used to qualitatively explore larger values of L that
cannot be reached in our device using the Scaling (I).

Therefore, we analyze the metrological properties of
the device for larger values of L for the Scaling (II).
In Fig. 4(a), we plot the output photon number at the
steady state, hn̂�̃,ssi, observing the characteristics indica-
tive of the onset of a second-order DPT. In Fig. 4(b) we
plot P�̃,ss and confirm that the system gains in precision
as it scales towards the thermodynamic limit. Figure
4(c) shows the maximum of P�̃max,ss as function of L; the
data are in line with a quadratic scaling, comparable to
that observed in Fig. 3. In the same panel, we also plot
P�̃i,ss

for �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz,
highlighting the fact that the optimal scaling is achieved
around the optimal point �̃max. Finally, in Fig. 4(d) we
show that as L increases, the di↵erence between the crit-
ical point �̃c and the point of maximal precision �̃max

decreases, suggesting that the two will eventually coin-
cide for large enough L. These data show the enhanced
sensing capabilities of the parametrically driven Kerr res-
onator, and that this enhanced sensing occurs near the
critical point.

V. DISCUSSION AND CONCLUSION

In classical pump-and-probe experiments, doubling the
pump power does not result in twice the precision. More
formally, as shown in the Appendix C, it can be demon-
strated that a protocol based on a linear resonator driven
by a coherent drive achieves a maximal precision bounded
by P�max,ss / hâ†âi, the number of photon in the res-
onator, even when optimizing over all system and drive
parameters. This remains true even in the absence of any
noise, internal dissipation or decoherence.

Our experiment is still pump-and-probe, but we have
observed a quadratic scaling of the parameter-estimation
precision, P�max,ss / L2 / hâ†âi2. The key di↵erence is
that the system is operated in the vicinity of the critical
point of a second-order dissipative phase transition. The
system’s nonlinearity and the parametric quantum pro-
cess that converts the external drive into a two-photon
pump make it possible to overcome the classical preci-
sion bound. From a fundamental perspective, our exper-
iment demonstrates that quantum sensing protocols are
a valuable tool for characterizing the quantum nature of
driven-dissipative phase transitions. Technologically, our
results pave the way to the development of a new gen-
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�̃ for increasing L. (b) Precision P�̃,ss as a function of �̃.
The scaling of P�̃,ss as a function of L for various points,

including the optimal point �̃max for each L. (c) P�̃i,ss
for

�̃i = �̃max, �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz. The
solid grey line is a fit of the data demonstrating quadratic
dependence for P�̃max,ss

, while the two light grey dotted lines

linking the markers are included as visual guide. (d) �̃max as a
function of L. The light grey dotted line linking the markers
is included as visual guide. Error bars are calculated as in
Figs. 2(a) and 3. The error on in panel (c) corresponds to the
size of a detuning step.

eration of quantum sensors based on solid-state critical
systems. By selecting an appropriate frequency-tunable
component, our frequency estimation protocol could be
implemented to sense various quantities, such as mag-
netic fields using a superconducting quantum inderfer-
ence device (SQUID), forces with an optomechanical de-
vices and a MHz signals with longitudinally coupled RF
resonators.
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is, however, meaningful to compare the results for the
same rescaled parameters. Namely, we should compare

hn̂�,ssi vs � for Scaling (I) and
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(II). Similarly, P�̃,ss = P�,ss for Scaling (I) and P�̃,ss =
P�/L,ss for Scaling (II). In supplementary Fig. 9, we verify
that the two scalings lead to similar results both for the
photon number and the precision upon the appropriate
rescaling . The overlap of curves with identical values of
L, but di↵erent scaling indicates that the Scaling (II) can
be used to qualitatively explore larger values of L that
cannot be reached in our device using the Scaling (I).

Therefore, we analyze the metrological properties of
the device for larger values of L for the Scaling (II).
In Fig. 4(a), we plot the output photon number at the
steady state, hn̂�̃,ssi, observing the characteristics indica-
tive of the onset of a second-order DPT. In Fig. 4(b) we
plot P�̃,ss and confirm that the system gains in precision
as it scales towards the thermodynamic limit. Figure
4(c) shows the maximum of P�̃max,ss as function of L; the
data are in line with a quadratic scaling, comparable to
that observed in Fig. 3. In the same panel, we also plot
P�̃i,ss

for �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz,
highlighting the fact that the optimal scaling is achieved
around the optimal point �̃max. Finally, in Fig. 4(d) we
show that as L increases, the di↵erence between the crit-
ical point �̃c and the point of maximal precision �̃max

decreases, suggesting that the two will eventually coin-
cide for large enough L. These data show the enhanced
sensing capabilities of the parametrically driven Kerr res-
onator, and that this enhanced sensing occurs near the
critical point.

V. DISCUSSION AND CONCLUSION

In classical pump-and-probe experiments, doubling the
pump power does not result in twice the precision. More
formally, as shown in the Appendix C, it can be demon-
strated that a protocol based on a linear resonator driven
by a coherent drive achieves a maximal precision bounded
by P�max,ss / hâ†âi, the number of photon in the res-
onator, even when optimizing over all system and drive
parameters. This remains true even in the absence of any
noise, internal dissipation or decoherence.

Our experiment is still pump-and-probe, but we have
observed a quadratic scaling of the parameter-estimation
precision, P�max,ss / L2 / hâ†âi2. The key di↵erence is
that the system is operated in the vicinity of the critical
point of a second-order dissipative phase transition. The
system’s nonlinearity and the parametric quantum pro-
cess that converts the external drive into a two-photon
pump make it possible to overcome the classical preci-
sion bound. From a fundamental perspective, our exper-
iment demonstrates that quantum sensing protocols are
a valuable tool for characterizing the quantum nature of
driven-dissipative phase transitions. Technologically, our
results pave the way to the development of a new gen-
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FIG. 4. For the Scaling II in Eq. (4): (a) Output pho-
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�̃ for increasing L. (b) Precision P�̃,ss as a function of �̃.
The scaling of P�̃,ss as a function of L for various points,

including the optimal point �̃max for each L. (c) P�̃i,ss
for

�̃i = �̃max, �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz. The
solid grey line is a fit of the data demonstrating quadratic
dependence for P�̃max,ss

, while the two light grey dotted lines

linking the markers are included as visual guide. (d) �̃max as a
function of L. The light grey dotted line linking the markers
is included as visual guide. Error bars are calculated as in
Figs. 2(a) and 3. The error on in panel (c) corresponds to the
size of a detuning step.

eration of quantum sensors based on solid-state critical
systems. By selecting an appropriate frequency-tunable
component, our frequency estimation protocol could be
implemented to sense various quantities, such as mag-
netic fields using a superconducting quantum inderfer-
ence device (SQUID), forces with an optomechanical de-
vices and a MHz signals with longitudinally coupled RF
resonators.
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(II). Similarly, P�̃,ss = P�,ss for Scaling (I) and P�̃,ss =
P�/L,ss for Scaling (II). In supplementary Fig. 9, we verify
that the two scalings lead to similar results both for the
photon number and the precision upon the appropriate
rescaling . The overlap of curves with identical values of
L, but di↵erent scaling indicates that the Scaling (II) can
be used to qualitatively explore larger values of L that
cannot be reached in our device using the Scaling (I).

Therefore, we analyze the metrological properties of
the device for larger values of L for the Scaling (II).
In Fig. 4(a), we plot the output photon number at the
steady state, hn̂�̃,ssi, observing the characteristics indica-
tive of the onset of a second-order DPT. In Fig. 4(b) we
plot P�̃,ss and confirm that the system gains in precision
as it scales towards the thermodynamic limit. Figure
4(c) shows the maximum of P�̃max,ss as function of L; the
data are in line with a quadratic scaling, comparable to
that observed in Fig. 3. In the same panel, we also plot
P�̃i,ss

for �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz,
highlighting the fact that the optimal scaling is achieved
around the optimal point �̃max. Finally, in Fig. 4(d) we
show that as L increases, the di↵erence between the crit-
ical point �̃c and the point of maximal precision �̃max

decreases, suggesting that the two will eventually coin-
cide for large enough L. These data show the enhanced
sensing capabilities of the parametrically driven Kerr res-
onator, and that this enhanced sensing occurs near the
critical point.

V. DISCUSSION AND CONCLUSION

In classical pump-and-probe experiments, doubling the
pump power does not result in twice the precision. More
formally, as shown in the Appendix C, it can be demon-
strated that a protocol based on a linear resonator driven
by a coherent drive achieves a maximal precision bounded
by P�max,ss / hâ†âi, the number of photon in the res-
onator, even when optimizing over all system and drive
parameters. This remains true even in the absence of any
noise, internal dissipation or decoherence.

Our experiment is still pump-and-probe, but we have
observed a quadratic scaling of the parameter-estimation
precision, P�max,ss / L2 / hâ†âi2. The key di↵erence is
that the system is operated in the vicinity of the critical
point of a second-order dissipative phase transition. The
system’s nonlinearity and the parametric quantum pro-
cess that converts the external drive into a two-photon
pump make it possible to overcome the classical preci-
sion bound. From a fundamental perspective, our exper-
iment demonstrates that quantum sensing protocols are
a valuable tool for characterizing the quantum nature of
driven-dissipative phase transitions. Technologically, our
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FIG. 4. For the Scaling II in Eq. (4): (a) Output pho-
ton number at the steady state
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↵
vs scaled detuning

�̃ for increasing L. (b) Precision P�̃,ss as a function of �̃.
The scaling of P�̃,ss as a function of L for various points,

including the optimal point �̃max for each L. (c) P�̃i,ss
for

�̃i = �̃max, �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz. The
solid grey line is a fit of the data demonstrating quadratic
dependence for P�̃max,ss
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linking the markers are included as visual guide. (d) �̃max as a
function of L. The light grey dotted line linking the markers
is included as visual guide. Error bars are calculated as in
Figs. 2(a) and 3. The error on in panel (c) corresponds to the
size of a detuning step.

eration of quantum sensors based on solid-state critical
systems. By selecting an appropriate frequency-tunable
component, our frequency estimation protocol could be
implemented to sense various quantities, such as mag-
netic fields using a superconducting quantum inderfer-
ence device (SQUID), forces with an optomechanical de-
vices and a MHz signals with longitudinally coupled RF
resonators.
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We compare critical quantum sensing to passive quantum strategies to perform frequency estima-
tion, in the case of single-mode quadratic Hamiltonians. We show that, while in the unitary case
both strategies achieve precision scaling quadratic with the number of photons, in the presence of
dissipation this is true only for critical strategies. We also establish that working at the exceptional
point or beyond threshold provides sub-optimal performance. This critical enhancement is due to
the emergence of a transient regime in the open critical dynamics, and is invariant to temperature
changes. When considering both time and system size as resources, for both strategies the preci-
sion scales linearly with the product of the total time and the number of photons, in accordance
with fundamental bounds. However, we show that critical protocols outperform optimal passive
strategies if preparation and measurement times are not negligible.

Introduction.— The susceptibility developed in prox-
imity of critical phase transitions (PTs) is a valuable
resource in metrological tasks. This concept is widely
exploited in advanced sensors such as transition-edge de-
tectors and bubble chambers. However, these devices
make use of a classical sensing strategy, and they are not
optimal from a quantum-metrology perspective. The re-
cently introduced research field of critical quantum sens-
ing (CQS) consists of leveraging quantum PTs to design
quantum-enhanced sensors. In the last few years, it has
been theoretically shown that it is possible to achieve
quantum advantage in sensing exploiting both static [1–
8] and dynamical [9, 10] critical properties of many-body
quantum systems. First experimental demonstrations of
quantum-enhanced sensing have been achieved with Ry-
dberg atoms [11] and nuclear magnetic resonance tech-
niques [12].

Quantum advantage in sensing is defined in terms of
the scaling of the achievable precision with respect to
fundamental resources, such as system size and proto-
col duration time. Despite the critical slowing down, it
has been shown [13] that CQS protocols implemented on
many-body spin systems can achieve Heisenberg scaling
in both time and system size. This result has been ex-
tended [14] to finite-component PTs, which take place
in quantum resonators with atomic [15–19] or Kerr [20–
23] nonlinearities, where the thermodynamic limit is re-
placed with a rescaling of the system parameters. On the
one hand, finite-component PTs make it possible to im-
plement CQS protocols with small-scale devices, such as
parametric resonators [24–27], single trapped-ions [28],
optomechanical [29, 30] or magnomechanical [31] devices
and Rabi-like systems [32–34]. On the other hand, finite-
component PTs provide a compelling theoretical frame-
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FIG. 1. Sketch of PQS and CQS strategies. Top: The
initial state of PQS, an optimized displaced squeezed thermal
state, acquires a phase shift ' = !t in the free time evolution.
Bottom: In CQS, the system, initially at the equilibrium with
the environment, evolves according to (1). The final state is
a squeezed thermal state with covariance matrix depending
non-trivially on the system parameters. In both strategies,
we consider interaction with a thermal environment as in (2).

work to analyze CQS protocols with analytical or semi-
analytical methods [14, 25, 35–41]. Recent theoretical ef-
forts have been dedicated to the identification and design
of optimal CQS protocols. It has been shown that the
dynamical approach has a constant-factor advantage over
static protocols [36, 37]. An apparent super-Heisenberg
scaling can be achieved when focusing on a specific re-
source such as system size [38, 39] or time [40]. CQS pro-
tocols achieve quantum advantage also for global sensing
using adaptive strategies [42, 43] in the driven-dissipative
case with continuous measurements [44, 45] and in the
multi-parameter case [5, 46].
Beyond the analysis of specific applicable protocols, in

recent years, fundamental bounds on the quantum Fisher
information (QFI) have been derived [47–51]. Not only
do they allow quick identification of which systems can
benefit from quantum metrology, but they also clarify
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resource in metrological tasks. This concept is widely
exploited in advanced sensors such as transition-edge de-
tectors and bubble chambers. However, these devices
make use of a classical sensing strategy, and they are not
optimal from a quantum-metrology perspective. The re-
cently introduced research field of critical quantum sens-
ing (CQS) consists of leveraging quantum PTs to design
quantum-enhanced sensors. In the last few years, it has
been theoretically shown that it is possible to achieve
quantum advantage in sensing exploiting both static [1–
8] and dynamical [9, 10] critical properties of many-body
quantum systems. First experimental demonstrations of
quantum-enhanced sensing have been achieved with Ry-
dberg atoms [11] and nuclear magnetic resonance tech-
niques [12].

Quantum advantage in sensing is defined in terms of
the scaling of the achievable precision with respect to
fundamental resources, such as system size and proto-
col duration time. Despite the critical slowing down, it
has been shown [13] that CQS protocols implemented on
many-body spin systems can achieve Heisenberg scaling
in both time and system size. This result has been ex-
tended [14] to finite-component PTs, which take place
in quantum resonators with atomic [15–19] or Kerr [20–
23] nonlinearities, where the thermodynamic limit is re-
placed with a rescaling of the system parameters. On the
one hand, finite-component PTs make it possible to im-
plement CQS protocols with small-scale devices, such as
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work to analyze CQS protocols with analytical or semi-
analytical methods [14, 25, 35–41]. Recent theoretical ef-
forts have been dedicated to the identification and design
of optimal CQS protocols. It has been shown that the
dynamical approach has a constant-factor advantage over
static protocols [36, 37]. An apparent super-Heisenberg
scaling can be achieved when focusing on a specific re-
source such as system size [38, 39] or time [40]. CQS pro-
tocols achieve quantum advantage also for global sensing
using adaptive strategies [42, 43] in the driven-dissipative
case with continuous measurements [44, 45] and in the
multi-parameter case [5, 46].
Beyond the analysis of specific applicable protocols, in

recent years, fundamental bounds on the quantum Fisher
information (QFI) have been derived [47–51]. Not only
do they allow quick identification of which systems can
benefit from quantum metrology, but they also clarify
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both strategies achieve precision scaling quadratic with the number of photons, in the presence of
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imity of critical phase transitions (PTs) is a valuable
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tectors and bubble chambers. However, these devices
make use of a classical sensing strategy, and they are not
optimal from a quantum-metrology perspective. The re-
cently introduced research field of critical quantum sens-
ing (CQS) consists of leveraging quantum PTs to design
quantum-enhanced sensors. In the last few years, it has
been theoretically shown that it is possible to achieve
quantum advantage in sensing exploiting both static [1–
8] and dynamical [9, 10] critical properties of many-body
quantum systems. First experimental demonstrations of
quantum-enhanced sensing have been achieved with Ry-
dberg atoms [11] and nuclear magnetic resonance tech-
niques [12].

Quantum advantage in sensing is defined in terms of
the scaling of the achievable precision with respect to
fundamental resources, such as system size and proto-
col duration time. Despite the critical slowing down, it
has been shown [13] that CQS protocols implemented on
many-body spin systems can achieve Heisenberg scaling
in both time and system size. This result has been ex-
tended [14] to finite-component PTs, which take place
in quantum resonators with atomic [15–19] or Kerr [20–
23] nonlinearities, where the thermodynamic limit is re-
placed with a rescaling of the system parameters. On the
one hand, finite-component PTs make it possible to im-
plement CQS protocols with small-scale devices, such as
parametric resonators [24–27], single trapped-ions [28],
optomechanical [29, 30] or magnomechanical [31] devices
and Rabi-like systems [32–34]. On the other hand, finite-
component PTs provide a compelling theoretical frame-
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a squeezed thermal state with covariance matrix depending
non-trivially on the system parameters. In both strategies,
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work to analyze CQS protocols with analytical or semi-
analytical methods [14, 25, 35–41]. Recent theoretical ef-
forts have been dedicated to the identification and design
of optimal CQS protocols. It has been shown that the
dynamical approach has a constant-factor advantage over
static protocols [36, 37]. An apparent super-Heisenberg
scaling can be achieved when focusing on a specific re-
source such as system size [38, 39] or time [40]. CQS pro-
tocols achieve quantum advantage also for global sensing
using adaptive strategies [42, 43] in the driven-dissipative
case with continuous measurements [44, 45] and in the
multi-parameter case [5, 46].
Beyond the analysis of specific applicable protocols, in

recent years, fundamental bounds on the quantum Fisher
information (QFI) have been derived [47–51]. Not only
do they allow quick identification of which systems can
benefit from quantum metrology, but they also clarify
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Dipartimento di Fisica, Università degli Studi di Pavia, Via Agostino Bassi 6, I-27100, Pavia, Italy

We compare critical quantum sensing to passive quantum strategies to perform frequency estima-
tion, in the case of single-mode quadratic Hamiltonians. We show that, while in the unitary case
both strategies achieve precision scaling quadratic with the number of photons, in the presence of
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quantum-enhanced sensing have been achieved with Ry-
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has been shown [13] that CQS protocols implemented on
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one hand, finite-component PTs make it possible to im-
plement CQS protocols with small-scale devices, such as
parametric resonators [24–27], single trapped-ions [28],
optomechanical [29, 30] or magnomechanical [31] devices
and Rabi-like systems [32–34]. On the other hand, finite-
component PTs provide a compelling theoretical frame-

⇤ These two authors contributed equally
† felicetti.simone@gmail.com
‡ rob.dicandia@gmail.com

Critical Quantum Sensing
Initial State Final State Measurement

Passive Quantum Sensing
Initial State Final State MeasurementLinear Resonator

Ƚ

Ƚࣅ Ƚࣅ

Ƚ

Parametric 
Resonator

FIG. 1. Sketch of PQS and CQS strategies. Top: The
initial state of PQS, an optimized displaced squeezed thermal
state, acquires a phase shift ' = !t in the free time evolution.
Bottom: In CQS, the system, initially at the equilibrium with
the environment, evolves according to (1). The final state is
a squeezed thermal state with covariance matrix depending
non-trivially on the system parameters. In both strategies,
we consider interaction with a thermal environment as in (2).

work to analyze CQS protocols with analytical or semi-
analytical methods [14, 25, 35–41]. Recent theoretical ef-
forts have been dedicated to the identification and design
of optimal CQS protocols. It has been shown that the
dynamical approach has a constant-factor advantage over
static protocols [36, 37]. An apparent super-Heisenberg
scaling can be achieved when focusing on a specific re-
source such as system size [38, 39] or time [40]. CQS pro-
tocols achieve quantum advantage also for global sensing
using adaptive strategies [42, 43] in the driven-dissipative
case with continuous measurements [44, 45] and in the
multi-parameter case [5, 46].
Beyond the analysis of specific applicable protocols, in

recent years, fundamental bounds on the quantum Fisher
information (QFI) have been derived [47–51]. Not only
do they allow quick identification of which systems can
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3

FIG. 1. We illustrate a) an ensemble of independent critical resonators and b) a chain of parametrically-coupled critical
resonators. A single critical sensor is described by the Hamiltonian (1), while the coupled-resonator chain is modeled by
the Hamiltonian (2). Focusing on a single independent critical sensor, we plot c) the QFI Ism and d) the local number of
photons Nloc as functions of ✏. As the squeezing parameter ✏ approaches the critical point ✏c = !, both Ism and Nloc diverge.
Furthermore, we show e) the energy gap � and f) the estimate of the protocol duration time T as a function of ✏. When
✏ ! ✏c, � tends to zero, indicating that the energy gap between the ground and first-excited state closes. Consequently, the
time required to perform the adiabatic sweep diverges. To obtain the plot for T we set ⌘ = 1.

models [36], a broad class of quantum-optical critical sys-
tems. The CQS protocol consists of initializing the sys-
tem in the vacuum state, and adiabatically tuning ✏ to
a value close to ✏c. To work in this critical regime, we
assume to have good prior information on the parame-
ter to be estimated, namely ! = !0 + �!, where !0 is
known and �! ⌧ !0 is an unknown frequency shift to be
estimated. For global quantum sensing, i.e., when prior
information is not available, e�cient adaptive strategies
can be implemented [19, 20].

As shown in Sec. III, under Gaussian approximation
(� = 0), we can obtain analytical results. Indeed, we
first compute the ground state manifold, and then eval-
uate the QFI for the estimation of !. Consequently, we
provide an upper-bound on the estimation precision with
respect to the involved resources, i.e., the number of pho-
tons Nloc = ha†

1
a1i and the protocol duration time T .

Here, the subscript stands for local and will be meaning-
ful in the multipartite case. By applying time-dependent
perturbation theory, it can be shown [25] that the time
required to perform the adiabatic sweep is of the order
of T ⇠ (⌘�)�1, where � is the energy gap between the
ground and first-excited state, and ⌘ < 1 is a parame-
ter which controls the adiabaticity of the protocol. As
shown in Fig. 1, when approaching the critical point the
QFI and the photon number diverge, while the energy
gap between the ground and the first-excited state van-
ishes, as expected. For a single-mode critical sensor, the
QFI scales as Ism ⇠ 2⌘2T 2N2

loc
. Here, the subscript

“sm” stands for “single-mode”. We stress that in the
limit � ! 0, this result can be analytically derived. In
the case of finite nonlinearity, this scaling is valid until
the photon number becomes large enough to break the
Gaussian approximation and reach saturation. As shown

in Appendix C, perturbation theory reveals that the sat-
uration point occurs when Nloc ⇠

3
p
!/132�.

C. Collective quantum advantage in CQS

Let us now summarize the main results of this
work. We perform a comparison between an ensem-
ble of M independent critical sensors, with a chain of
parametrically-coupled resonators (see Fig. 1). The QFI
is additive when using M independent sensors or, equiv-
alently, M uncorrelated repetitions of the parameter-
estimation protocol. Accordingly, when M independent
critical sensors are used, we straightforwardly obtain
Iind ⇠ 2M⌘2T 2N2

loc
, with the subscript “ind” standing

for “independent”. This result can also be rewritten in
terms of the total number of photons N = MNloc, as
Iind ⇠ 2⌘2T 2N2/M .
Our collective critical sensor is defined as a coupled-

resonator chain with Hamiltonian

H =
MX

j=1

h
!a†

j
aj +

✏

2

⇣
ajaj+1 + a†

j
a†
j+1

⌘
+ �a†

j
a†
j
ajaj

i
.

(2)
In Sec IV, we derive analytical solutions for the QFI for
the estimation of !, as well as for the photon number and
the energy gap, under Gaussian approximation. The re-
sult for the QFI is shown in Eqs. (21) and (22) for even
and odd M , respectively. We then obtain approximate
closed-form analytical solutions in two relevant limits: in
proximity of the phase transition and in the continuous
limit (large M). The analysis unveils interesting features
of this many-body model composed of locally critical con-

Collective
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Critical parametric quantum sensor (Theory & Experiment)

- R. Di Candia*, F. Minganti*,  K. V. Petrovnin, G. S. Paraoanu, and S. Felicetti, 
npj Quantum Information 9,23 (2023)

- U Alushi, W Górecki, S Felicetti, R Di Candia, 
               Physical Review Letters 133 (4), 040801(2024)

- U Alushi, A. Coppo, V. Brosco, R. Di Candia, S Felicetti, 
               Comm. Phys. 8 (1), 74 (2025)

Conclusions

Optimal scalings with time, photons and resonators (Theory)

- G. Beaulieu, F. Minganti, S. Frasca, V. Savona, S. Felicetti, R. Di Candia, and P. Scarlino  
Nature Communication 16 (1), 1954 (2025)

- G. Beaulieu, F. Minganti, S. Frasca, M. Scigliuzzo, S. Felicetti, R. Di Candia, and P. Scarlino  
PRX Quantum 6 (2), 020301 (2025)

5

is, however, meaningful to compare the results for the
same rescaled parameters. Namely, we should compare

hn̂�,ssi vs � for Scaling (I) and
D
n̂�̃,ss

E
vs �̃ for Scaling

(II). Similarly, P�̃,ss = P�,ss for Scaling (I) and P�̃,ss =
P�/L,ss for Scaling (II). In supplementary Fig. 9, we verify
that the two scalings lead to similar results both for the
photon number and the precision upon the appropriate
rescaling . The overlap of curves with identical values of
L, but di↵erent scaling indicates that the Scaling (II) can
be used to qualitatively explore larger values of L that
cannot be reached in our device using the Scaling (I).

Therefore, we analyze the metrological properties of
the device for larger values of L for the Scaling (II).
In Fig. 4(a), we plot the output photon number at the
steady state, hn̂�̃,ssi, observing the characteristics indica-
tive of the onset of a second-order DPT. In Fig. 4(b) we
plot P�̃,ss and confirm that the system gains in precision
as it scales towards the thermodynamic limit. Figure
4(c) shows the maximum of P�̃max,ss as function of L; the
data are in line with a quadratic scaling, comparable to
that observed in Fig. 3. In the same panel, we also plot
P�̃i,ss

for �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz,
highlighting the fact that the optimal scaling is achieved
around the optimal point �̃max. Finally, in Fig. 4(d) we
show that as L increases, the di↵erence between the crit-
ical point �̃c and the point of maximal precision �̃max

decreases, suggesting that the two will eventually coin-
cide for large enough L. These data show the enhanced
sensing capabilities of the parametrically driven Kerr res-
onator, and that this enhanced sensing occurs near the
critical point.

V. DISCUSSION AND CONCLUSION

In classical pump-and-probe experiments, doubling the
pump power does not result in twice the precision. More
formally, as shown in the Appendix C, it can be demon-
strated that a protocol based on a linear resonator driven
by a coherent drive achieves a maximal precision bounded
by P�max,ss / hâ†âi, the number of photon in the res-
onator, even when optimizing over all system and drive
parameters. This remains true even in the absence of any
noise, internal dissipation or decoherence.

Our experiment is still pump-and-probe, but we have
observed a quadratic scaling of the parameter-estimation
precision, P�max,ss / L2 / hâ†âi2. The key di↵erence is
that the system is operated in the vicinity of the critical
point of a second-order dissipative phase transition. The
system’s nonlinearity and the parametric quantum pro-
cess that converts the external drive into a two-photon
pump make it possible to overcome the classical preci-
sion bound. From a fundamental perspective, our exper-
iment demonstrates that quantum sensing protocols are
a valuable tool for characterizing the quantum nature of
driven-dissipative phase transitions. Technologically, our
results pave the way to the development of a new gen-
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FIG. 4. For the Scaling II in Eq. (4): (a) Output pho-
ton number at the steady state

⌦
n̂�̃,ss
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vs scaled detuning

�̃ for increasing L. (b) Precision P�̃,ss as a function of �̃.
The scaling of P�̃,ss as a function of L for various points,

including the optimal point �̃max for each L. (c) P�̃i,ss
for

�̃i = �̃max, �̃i/2⇡ = �0.23 MHz and �̃i/2⇡ = �0.13 MHz. The
solid grey line is a fit of the data demonstrating quadratic
dependence for P�̃max,ss

, while the two light grey dotted lines

linking the markers are included as visual guide. (d) �̃max as a
function of L. The light grey dotted line linking the markers
is included as visual guide. Error bars are calculated as in
Figs. 2(a) and 3. The error on in panel (c) corresponds to the
size of a detuning step.

eration of quantum sensors based on solid-state critical
systems. By selecting an appropriate frequency-tunable
component, our frequency estimation protocol could be
implemented to sense various quantities, such as mag-
netic fields using a superconducting quantum inderfer-
ence device (SQUID), forces with an optomechanical de-
vices and a MHz signals with longitudinally coupled RF
resonators.
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FIG. 1. We illustrate a) an ensemble of independent critical resonators and b) a chain of parametrically-coupled critical
resonators. A single critical sensor is described by the Hamiltonian (1), while the coupled-resonator chain is modeled by
the Hamiltonian (2). Focusing on a single independent critical sensor, we plot c) the QFI Ism and d) the local number of
photons Nloc as functions of ✏. As the squeezing parameter ✏ approaches the critical point ✏c = !, both Ism and Nloc diverge.
Furthermore, we show e) the energy gap � and f) the estimate of the protocol duration time T as a function of ✏. When
✏ ! ✏c, � tends to zero, indicating that the energy gap between the ground and first-excited state closes. Consequently, the
time required to perform the adiabatic sweep diverges. To obtain the plot for T we set ⌘ = 1.

models [36], a broad class of quantum-optical critical sys-
tems. The CQS protocol consists of initializing the sys-
tem in the vacuum state, and adiabatically tuning ✏ to
a value close to ✏c. To work in this critical regime, we
assume to have good prior information on the parame-
ter to be estimated, namely ! = !0 + �!, where !0 is
known and �! ⌧ !0 is an unknown frequency shift to be
estimated. For global quantum sensing, i.e., when prior
information is not available, e�cient adaptive strategies
can be implemented [19, 20].

As shown in Sec. III, under Gaussian approximation
(� = 0), we can obtain analytical results. Indeed, we
first compute the ground state manifold, and then eval-
uate the QFI for the estimation of !. Consequently, we
provide an upper-bound on the estimation precision with
respect to the involved resources, i.e., the number of pho-
tons Nloc = ha†

1
a1i and the protocol duration time T .

Here, the subscript stands for local and will be meaning-
ful in the multipartite case. By applying time-dependent
perturbation theory, it can be shown [25] that the time
required to perform the adiabatic sweep is of the order
of T ⇠ (⌘�)�1, where � is the energy gap between the
ground and first-excited state, and ⌘ < 1 is a parame-
ter which controls the adiabaticity of the protocol. As
shown in Fig. 1, when approaching the critical point the
QFI and the photon number diverge, while the energy
gap between the ground and the first-excited state van-
ishes, as expected. For a single-mode critical sensor, the
QFI scales as Ism ⇠ 2⌘2T 2N2

loc
. Here, the subscript

“sm” stands for “single-mode”. We stress that in the
limit � ! 0, this result can be analytically derived. In
the case of finite nonlinearity, this scaling is valid until
the photon number becomes large enough to break the
Gaussian approximation and reach saturation. As shown

in Appendix C, perturbation theory reveals that the sat-
uration point occurs when Nloc ⇠

3
p
!/132�.

C. Collective quantum advantage in CQS

Let us now summarize the main results of this
work. We perform a comparison between an ensem-
ble of M independent critical sensors, with a chain of
parametrically-coupled resonators (see Fig. 1). The QFI
is additive when using M independent sensors or, equiv-
alently, M uncorrelated repetitions of the parameter-
estimation protocol. Accordingly, when M independent
critical sensors are used, we straightforwardly obtain
Iind ⇠ 2M⌘2T 2N2

loc
, with the subscript “ind” standing

for “independent”. This result can also be rewritten in
terms of the total number of photons N = MNloc, as
Iind ⇠ 2⌘2T 2N2/M .
Our collective critical sensor is defined as a coupled-

resonator chain with Hamiltonian

H =
MX

j=1

h
!a†

j
aj +

✏

2

⇣
ajaj+1 + a†

j
a†
j+1

⌘
+ �a†

j
a†
j
ajaj

i
.

(2)
In Sec IV, we derive analytical solutions for the QFI for
the estimation of !, as well as for the photon number and
the energy gap, under Gaussian approximation. The re-
sult for the QFI is shown in Eqs. (21) and (22) for even
and odd M , respectively. We then obtain approximate
closed-form analytical solutions in two relevant limits: in
proximity of the phase transition and in the continuous
limit (large M). The analysis unveils interesting features
of this many-body model composed of locally critical con-
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