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Why study joint quantum measurements?

Because it is the fair thing to do
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In this talk:
How do joint quantum measurements combine with relativistic causality?



Individual measurements on separated subsystems
are consistent with relativistic causality

A~a ∗
ρAB

B~ b= ∗
ρB = TrA(ρAB)

B~ b

p(b) =
∑

a Tr[ρAB · (Ea ⊗ Fb)] = Tr{ρAB · [(
∑

aEa)⊗ Fb]} = Tr[ρAB · (1 ⊗ Fb)] = Tr(ρB · Fb)

Born’s rule accounts for the impossibility of instantaneous transfer of information

Bob’s statistics are the same regardless of whatever (even if) Alice measures



What about joint measurements?

In quantum mechanics, we can perform joint measurements over several subsystems

For example, the Bell state measurement

Ea = {|ϕ+⟩ ⟨ϕ+| , |ϕ−⟩ ⟨ϕ−| , |ψ+⟩ ⟨ψ+| , |ψ−⟩ ⟨ψ−|}
|ϕ±⟩ = 1√

2
(|00⟩ ± |11⟩), |ψ±⟩ = 1√

2
(|01⟩ ± |10⟩)

H

What if we cannot bring the subsystems together? Can we perform (nontrivial) joint measurements?
Is there a conflict with relativity in this case?
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Superluminal signaling in nonrelativistic QM!

Borsten et al., PRD 2019

https://www.arxiv.org/abs/1912.06141


Superluminal signaling in nonrelativistic QM!
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Superluminal signaling in nonrelativistic QM!

σx |0⟩ = |1⟩ |0⟩

|1⟩ |±⟩

p(0) = 1
2

|00⟩ , |01⟩ , |1+⟩ , |1−⟩



Signaling is a very big problem

There is a (real) lot of measurements that lead to signaling, even in non-relativistic QM

Joint measurements that do not lead to signaling erase all local information
⇒ for two qubits, the BSM is the only measurement that does not lead to signaling
⇒ the BSM is not a typical measurement, it is exceptional

https://arxiv.org/abs/hep-th/9306087
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The problem may be with ideal measurements

A =
∑

i aiPi, Pi ⪰ 0 ∀ i,
∑

i Pi = 1

Born’s rule: p(ai|ρ) = Tr (ρPi)

Lüders’ rule: ρ
ai→ ρi = PiρPi/Tr (ρPi)



The problem may be with ideal measurements

A =
∑

i aiPi, Pi ⪰ 0 ∀ i,
∑

i Pi = 1

Born’s rule: p(ai|ρ) = Tr (ρPi)

(((((((((((((((((hhhhhhhhhhhhhhhhh
Lüders’ rule: ρ

ai→ ρi = PiρPi/Tr (ρPi)

https://arxiv.org/abs/quant-ph/0111012
https://arxiv.org/abs/quant-ph/0111124


Performing (non-ideal) measurements in a way consistent with relativity

Definition (localized measurement): the quantum-to-classical transition occurs locally

A B

A′ B′

ψ

R⊗n

Alice Bob

Aa Bb

p(c|a, b) = Tr(Mcψ)

Refereea b

c

A quantum measurement {Mc}c is n-localizable with
resource R if there exist local measurements {Aa}a ⊂ HAA′

and {Bb}b ⊂ HBB′ , and distributions p(c|a, b) such that

Mc =
∑
a,b

p(c|a, b)TrA′B′
[
(Aa ⊗ Bb)

(
1AB ⊗R⊗n

A′B′

)]



Localization of measurements: blind ping-pong teleportation

Rationale: “move” the full state to one party and measure it there → teleportation.

Problem: teleportation induces distortions on the states.

ψ

Db1ψ

Da1,a2
Db1ψ

ϕ+

ϕ+

ϕ+

...

Alice Bob

Cirac et al., PRL 2001; Vaidman, PRL 2003; Clark et al, NJP 2010: any measurement can be localized

Need infinite entanglement either always or in the worst case.

https://arxiv.org/abs/quant-ph/0007057
https://arxiv.org/abs/quant-ph/0111124
https://arxiv.org/abs/1004.0865
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arXiv:2408.00831 (Phys. Rev. X 15, 021013)

Which measurements can we localize with a fixed amount of entanglement?
(reproduce their statistics on any state)

https://arxiv.org/abs/2408.00831
https://doi.org/10.1103/PhysRevX.15.021013


The simplest case: 2-qubit state, 1 shared ebit

A0 B0

A1 B1

ψ

ϕ+

Alice Bob

|i⟩⟨i|M†

b

Referee

i b

c

Step 1: Bob teleports to Alice using the ebit

|ψ⟩ → 1 ⊗ σb |ψ⟩

Step 2: Alice applies M† to rotate the measurement basis to the
computational basis

M = (|v1⟩ , |v2⟩ , |v3⟩ , |v4⟩), ⟨vi|vj⟩ = δij ,
∑

i |vi⟩ ⟨vi| = 1

Step 3: Alice measures in the computational basis∣∣⟨i, j|M† · (1 ⊗ σb) |ψ⟩
∣∣2

=
∣∣

eiϕb(i,j)

⟨

πb(

i, j

)

|M† |ψ⟩
∣∣ 2

M† · (1 ⊗ σb) ·M = Pb · Φb

J. Pauwels, APK, F. del Santo, and N. Gisin, arXiv:2408.00831 (Phys. Rev. X 15, 021013)

https://www.arxiv.org/abs/2408.00831
https://doi.org/10.1103/PhysRevX.15.021013
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M† · (1 ⊗ σb) ·M = Pb · Φb

The solutions are intertwiners between (red.) representations of SU(2)

{1 ⊗ σb}b, {Pb · Φb}b

Only two nontrivial solutions:

1. Bell state measurement

- Dense coding, entanglement swapping, teleportation...

2. π/2-twisted (BB84) basis: {|00⟩ , |01⟩ , |1+⟩ , |1−⟩}
- Position-based cryptography

J. Pauwels, APK, F. del Santo, and N. Gisin, arXiv:2408.00831 (Phys. Rev. X 15, 021013)

https://www.arxiv.org/abs/2408.00831
https://doi.org/10.1103/PhysRevX.15.021013


A less simple case: 2-qubit state, 3 shared ebits

A0 B0

A1 B1

A2 B2

A3 B3

ψ

ϕ+

ϕ+

ϕ+

Alice Bob

M†
a0

a1

b

Ub |i⟩⟨i|

Referee

a0, a1 b, i

c

Bob teleports, Alice rotates and teleports back, Bob amends knowing
his previous outcome

M† · (1 ⊗ σb) ·M · (σa1
⊗ σa2

) ·M† · (1 ⊗ σb) ·M = Pa1,a2,b ·Φa1,a2,b

Five new solutions:

1. Partial BSM: {|00⟩ , |11⟩ , |ψ+⟩ , |ψ−⟩}
- Linear optics

2. Elegant Joint Measurement (Gisin, Entropy 2019)

- Genuine network nonlocality

3. π/2-twisted BSM: {|0+⟩ ± |11⟩ , |0−⟩ ± |10⟩}
- Randomness without inputs (Boreiri et al., Quantum 2025)

4. Two more iso-entangled measurements
{|ψ−⟩ ± |00⟩ , |ψ+⟩ ± |11⟩}
{|1−⟩ ± |01⟩ , |1+⟩ ± i |00⟩}

(which cannot be localized with fewer ebits)

J. Pauwels, APK, F. del Santo, and N. Gisin, arXiv:2408.00831 (Phys. Rev. X 15, 021013)

https://arxiv.org/abs/1809.10901
https://doi.org/10.22331/q-2025-08-27-1830
https://www.arxiv.org/abs/2408.00831
https://doi.org/10.1103/PhysRevX.15.021013
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A criterion for measurement complexity

The set of m-edit measurements localizable at the n-th level of the hierarchy is

Vd,m
n ≡ {M ∈ U(dm) |M† · (1 ⊗ Pm−1) ·M ∈ V̄d,m

n−1}

with
V̄d,m
n ≡ {M ∈ U(dm) |M† · Pm ·M ∈ V̄d,m

n−1}

Generalization of the Clifford hierarchy Cd,m
n ≡ {M ∈ U(dm) |M† · Pm ·M ∈ Cd,m

n−1}
– BB84 basis does not belong to C2,2

1

– {|1−⟩ ± |01⟩ , |1+⟩ ± i |00⟩} does not belong to (at least) C2,2
6

– Position in the Clifford hierarchy is connected to the complexity of implementing M in a
quantum computer (Gottesman & Chuang, Nature 1999)

Also, other localization hierarchy (Clark et al, NJP 2010) relates to T -depth (Speelman, TQC 2016).

Claim:
Entanglement cost of localization is a (physically motivated) measure of measurement complexity

J. Pauwels, APK, F. del Santo, and N. Gisin, arXiv:2408.00831 (Phys. Rev. X 15, 021013)

https://arxiv.org/abs/quant-ph/9908010
https://arxiv.org/abs/1004.0865
https://arxiv.org/abs/1511.02839
https://www.arxiv.org/abs/2408.00831
https://doi.org/10.1103/PhysRevX.15.021013
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Generalizations

Vd,m
n ≡ {M ∈ U(dm) |M† · (1 ⊗ Pm−1) ·M ∈ V̄d,m

n−1}
V̄d,m
n ≡ {M ∈ U(dm) |M† · Pm ·M ∈ V̄d,m

n−1}

Higher levels
2 qubits, 9 ebits: (at least) 27 new bases.
In all cases, all entangled states in the basis
are iso-entangled.

More parties
ψ

ϕ+

ϕ+

a
c

p(o|a, b, c) = Tr(Moψ)
a

b
c

o

1st level: (at least) 8 solutions, nothing surprising
2nd level: (at least) 64 solutions, 2 generalizations of EJM

Higher dimensions
Recall 2-qubit, 2nd level equation:
M†

b · (σa1 ⊗ σa2) · Mb = Pa1,a2,b · Φa1,a2,b

Approach: write {Pa1,a2,b ·Φa1,a2,b}a1,a2,b in
dimension-free form

Goal: generalization of EJM to dimension d

Our analytical methods explode combinatorially for all cases

J. Pauwels, APK, F. del Santo, and N. Gisin, arXiv:2408.00831 (Phys. Rev. X 15, 021013)
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Conclusions

– Joint quantum measurements deserve attention. We have only scratched the surface.

– If we only care about measurement outcomes, it is possible to perform any joint measurement in
a way consistent with relativity, if given enough entanglement.

– Entanglement cost of localization is a sound and physically motivated measure of measurement
complexity.

– Improve methods for analytical/numerical characterization.

– Applications: network nonlocality, cryptography...

– Foundations: is relativistic causality sufficient to describe joint quantm measurements? Do we
need new update rules for the post-measurement states?



Thanks for your attention
Questions? Comments?
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Extra: A simple example of localization
Bell state measurement

A0 B0

A1 B1

ψ

ψb

ϕ+

Alice Bob

ba

Referee

a b

c

Step 1: Bob performs BSM → teleports his particle (with a distortion)

|ψ⟩ → 1 ⊗ σb |ψ⟩

Step 2: Alice performs BSM

p(a) = | ⟨Ea|1⊗σb |ψ⟩ |2
∗
= | ⟨ϕ+|1⊗(σa ·σb) |ψ⟩ |2

∗∗
= | ⟨Ea⊕b|ψ⟩ |2

Step 3: Alice and Bob put in common their results

c = a⊕ b

Alice Bob Real outcome
00 (1) b b
a 00 a

01 (X) 01 00
01 10 (Z) 11 (Y )

...

∗ |Ea⟩ = 1 ⊗ σa |ϕ+⟩ , ∗ ∗ σa · σb ∼ σa⊕b
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Extra: applications
Quantum position verification

Goal: convince two verifiers (V0 and V1) that I’m at P

V0 P V1

a Ua |x⟩

x̃

V0 V1

time

M0 M1

t = 0: V0 sends a, V1 sends Ua |x⟩

t < 1: two coordinated adversaries intercept the
information and run a localization protocol

t = 1: P receives both pieces of information,
applies U†

a and measures in the computational
basis, transmitting the result back to V0 and V1

t = 2: V0 and V1 accept if they receive x, and
they receive it on time

Entanglement cost of localization quantifies how secure a measurement is for QPV
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