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Weak-coupling quantum thermodynamics

= Isolated system éaw) = [Hs . \eg(:b):‘ AUSHr) =0

= Work protocol (driving)
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Heat and work definitions:

-E .
§ Wsth) = fodrvTr{‘rkcc) )]
§ Qs =J;1:Trf H; o) 5 0:)6

= Heating (bath)
ésw) LN, [l—lsoc), ();eb)] + DJC[&(*)]

AUstr) = SW; UT)-*SQ\Q&)_

—_—

Effective modeling, relies on:

«  Weak coupling

« Absence of memory
 Infinitely large thermal bath

Beyond:

* Intermediate to strong coupling
« Memory effects and finite size environments
» Coherent or non-thermal environments



Interaction energy assignment

= Microscopic modelling

H= H) + Hy + Hg @

= Question of how to “assign”
the interaction energy
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Two popular sets of definitions
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“Interaction” approach “Bare” approach
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General open quantum systems

Exact generator for the open system
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Describes information backflow and strong coupling effects
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Time-local master equation in generalized Lindblad form:
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Minimal dissipation thermodynamics

“Minimal dissipation” approach
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Coherent driving by
external fields,
Lamb and Stark shifts
(vacuum and thermal
fluctuations), ...
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Interacting “heat baths”
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signment for two interacting quantum thermal reservoirs
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Parameters and regimes

= Main subsystem frequencies w. , m,_ Hamiltonian
parameters
= |ntra-system coupling parameter 18_
= |nter-system coupling parameter I'Y
Leading = Leading subsystem eigenvalues \)' = (A). <= (N, -l) %_

guantities

= Effective detuning A = \]| -— \)2.

= Effective coupling strength r' = 2IN. Nz. ‘Y

Dispersive regime Ultrastrong coupling regime
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Dispersive limit

Energies Subsystem 1 Subsystem 2
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Dispersive limit

Subsystem 1
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Subsystem 2
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Minimal dissipation peaks

Ultrastrong coupling

Strong coupling
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Recap & outlook

= Two principal set of definitions for first law quantities are
incompatible - need for careful consideration

= Non-negligible role of interaction energy also in the dispersive limit

= Only minimal dissipation heat compatible with the weak-coupling limit

= Unbounded work peaks predicted in the minimal dissipation
definitions - exploitable?

= Entropic aspects and the second law?

= Appropriate macroscopic limit?
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