ID de la contribución : 27 Tipo : no especificado

Towards ¹⁰⁰Sn along the N=Z line

jueves, 27 de marzo de 2025 14:30 (15)

 100 Sn is the last double magic N=Z nucleus that remains stable considering particle emission. Studying its beta decay is challenging and interesting [1-3], since it is very difficult to produce and the beta decay of 100 Sn shows the lowest estimated Logft or the largest B(GT) (superallowed Gamow-Teller (GT) transition) in the entire nuclide chart. This decay also holds the key for a better understanding of the quenching of the g_A constant in the nuclear medium. Up to know the limited production has constrained the possibility of establishing a firm level scheme populated in the beta decay. The present level scheme of the beta decay into 100 In is based on very limited gamma-gamma coincidences and on a comparison with shell model predictions [1,2]. We propose here to further study the beta decay of 100 Sn using the upgraded intensities of the primary beams at RIFB and the improved efficiency of the new gamma array.

Around 100 Sn, it is also worth studying further the beta decay of 98 Cd. The only data available related to this decay comes from a study performed at ISOLDE in 1992 with limited efficiency [4]. 98 Cd beta decay is one of the cases which resembles better the 100 Sn decay. Recent mass measurements in the region [5] seem to fix partially the conflict of the two different B(GT) values obtained by Hinke et al. [1] and Lubos et al. [2], by looking at the trends predicted by shell model calculations and relying on the beta strength of this decay determined at ISOLDE [4]. Considering the relevance of this data, a new study of its beta decay using a more efficient setup is also desirable.

- [1] C.B. Hinke, et al., Nature 486 (2012) 341.
- [2] D. Lubos, et al., Phys. Rev. Lett. 122 (2019) 222502.
- [3] T. Faestermann, et al., Prog. Part. Nucl. Phys. 69 (2013) 85; M. Górska, Physics 4 (2022) 364.
- [4] A. Plochocki et al., Z. Phys. A Hadrons and Nuclei 342, (1992) 43
- [5] A. Mollaebrahimi et al., Physics Letters B 839 (2023) 137833

Primary author(s): ALGORA, Alejandro (IFIC (CSIC-Univ. Valencia))

Co-author(s): ET AL.

Presenter(s): ALGORA, Alejandro (IFIC (CSIC-Univ. Valencia))

Clasificación de la sesión: Proton Rich Nuclei III