ID de la contribución : 14 Tipo : no especificado

Exotic decays and octupole collectivity of neutron-deficient Ba region

jueves, 27 de marzo de 2025 15:00 (15)

The neutron-deficient isotope 112 Ba is possibly the heaviest N=Z nucleus, providing a unique opportunity to explore exotic nuclear phenomena. Two particularly interesting aspects in this region are exotic decay modes and octupole deformation.

Super-allowed alpha decay is a type of alpha decay where the emission of an alpha particle is significantly enhanced due to strong proton-neutron interactions, as the valence nucleons occupy identical orbitals on the doubly magic 100 Sn core. The alpha-decay chain 108 Xe \rightarrow 104 Te \rightarrow 100 Sn was experimentally observed [1], but only an upper limit for the half-life of 104 Te was reported. From this, the authors concluded that at least one of 104 Te or 108 Xe must have an alpha preformation factor greater than 5, indicating the existence of super-allowed alpha decay. This decay chain was remeasured at RIBF as RIBF-168, and the results are yet to be published. It remains an open question whether the 112 Ba \rightarrow 108 Xe decay also exhibits a large preformation factor.

Cluster radioactivity has long been a subject of theoretical interest, though experimental evidence, such as ¹²C emission, remains elusive. Theoretical predictions for the half-life of ¹²C decay from the ¹¹²Ba region vary significantly [2,3], primarily due to uncertainties in model Q-values and other parameters. Some calculations predict half-lives shorter than the experimental lower limit of ¹²C decay from ¹¹⁴Ba [4], suggesting that current models are not yet reliable. Experimental measurements of Q-values, particle decay energies, and half-lives in this region are crucial for constraining and validating theoretical models predicting such exotic cluster decays.

Moreover, the region around ¹¹²Ba (Z=N=56) is particularly interesting due to its predicted octupole collectivity. Nuclei where N or Z = 34, 56, 88, and 134 are considered octupole magic, owing to strong octupole correlations among orbitals at the Fermi surface. Experimental evidence from neutron-rich Ba isotopes at N=88 strongly supports this octupole collectivity, with observed low-energy 3⁻ states and large B(E3) values. Recent theoretical studies, employing self-consistent mean-field calculations with the Gogny-D1M functional and Interacting Boson Model (IBM) calculations [7], predict that octupole deformation also appears in lighter isotopes, notably ¹¹²Ba and ¹¹⁴Ba, where 3⁻ states are expected to lie below 1 MeV. The same study predicts 3⁻ states slightly above 1 MeV in ¹¹⁰Xe and ¹¹²Xe. Direct experimental confirmation of these states via gamma-ray spectroscopy would be crucial for verifying these theoretical models.

Possible measurements at RIBF of this region will be discussed.

- [1] K. Auranen et al., Phys. Rev. Lett. 121 182501 (2018)
- [2] Yonghao Gao et al., Sci. Rep. 10, 9119 (2010)
- [3] Joshua T. Majekodunmi et al., Phys. Rev. C 105, 044617 (2022)
- [4] C. Mazzocchi et al., Phys. Lett. B 532, 29-36 (2002)
- [5] B. Bucher et al., Phys. Rev. Lett. 116, 112503 (2016)
- [6] B. Bucher et al., Phys. Rev. Lett. 118, 152504 (2017)
- [7] K. Nomura et al., Phys. Rev. C 104, 054320 (2021)

Primary author(s): YOKOYAMA, Rin

Presenter(s): YOKOYAMA, Rin

Clasificación de la sesión: Proton Rich Nuclei IV