ID de la contribución : 18 Tipo : no especificado

Exploring the proton and neutron shell evolution in the "South-west" of doubly magic 132Sn

viernes, 28 de marzo de 2025 9:30 (15)

The monopole-driven shell evolution has been revealed in the south of doubly magic 132 Sn for both neutron and proton shells. From the neutron shell side, an inversion of the $3/2^+$ and $11/2^-$ state, which corresponds to the neutron $d_{3/2}$ and $h_{11/2}$ orbitals, respectively, from $^{131}Sn_{81}$ to $^{129}Cd_{81}$, has been discovered in a recent mass measurement. According to the trend, the splitting between neutron $d_{3/2}$ and $h_{11/2}$ orbitals is getting larger from $^{129}\text{Cd}_{81}$ to $^{127}\text{Pd}_{81}$ where the $3/2^+$ state has not been discovered yet. From the proton shell side, a reduction of Z=40 sub-shell gap, which is formed by proton $p_{1/2}$ and $g_{9/2}$ orbitals, was suggested at N=82 in Ag isotopes by an extrapolation from the last known data point at ^{125}Ag . The $1/2^-$ state has not been discovered yet in ^{127}Ag . According to the systematics, long-lived beta isomers $3/2^+$ and $11/2^-$ are expected in ^{127}Pd and $1/2^-$ and $9/2^+$ are expected in ^{127}Ag . By establishing the beta-decay level scheme through the $^{127}\text{Pd} \to ^{127}\text{Ag} \to ^{127}\text{Cd}$ decay chain, combined with possible mass measurements using MR-TOF-MS, we can assess whether a significant change occurs in the proton subshell gap and neutron major shell gap in this region.

Primary author(s): Dr. CHEN, Zhiqiang (GSI)

Presenter(s): Dr. CHEN, Zhiqiang (GSI)

Clasificación de la sesión : Neutron Rich Nuclei towards 132Sn