Decay Spectroscopy at the Radioactive Isotope Beam Factory (RIBF) at RIKEN

ID de la contribución : 2 Tipo : no especificado

Shape coexistence in 60Ti and 64Cr

jueves, 27 de marzo de 2025 17:20 (20)

The island of inversion, where the ground and excited states exchange their nuclear deformation, is one of the cornerstones to investigate nuclear shell evolution in nuclei with the extreme neutron-proton ratios. ⁶⁴Cr is the key nucleus for this island of inversion at N = 40 with multi particle and multi hole (np-nh) configurations. Recently, the in-beam γ -ray spectroscopy carried out at FRIB measured the 0_2^+ state in ⁶²Cr with angular momentum distribution [A. Gade et al., Nat. Phys. 21, 37 (2025)]. From this measurement, the ground state was suggested to be formed by the 4p-4h configuration while the excited 0^+ state originated from the 2p-2h configuration by comparing with theoretical predictions. These findings opened a portal to the island of inversion and shape coexistence in this N = 40 region.

In this presentation, we propose to measure the excited states in even-even Ti and Cr isotopes other than ground band structures to thoroughly investigate the np-nh configurations through the β -delayed γ -ray spectroscopy. Particularly, we point out that 60 Ti and 64 Cr nuclei, the isotone and isotope of 62 Cr, respectively, play important roles in this island of inversion and shape coexistence.

Primary author(s): MOON, Byul (CENS, IBS)

Co-author(s): Dr. BAE, Sunghan (CNS, U. Tokyo)

Presenter(s): MOON, Byul (CENS, IBS)

Clasificación de la sesión: Neutron-Rich Nuclei towards 78Ni