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The LMC is currently at = 50 kpc from the MW's center, moving on a radial orbit, with
its most recent pericentric passage occurring only = 50 Myr ago

> Orbital histories derived from
new proper motions data
Besla+07, Kallivayalil+13,
Vasiliev+24b
\ ’ i



The MW is currently interacting with the LMC, its most massive satellite with a total
mass of 10% the mass of the MW

Image credit: Oscar Jimenez Arranz

Mass estimates of the LMC come from rotation curve (van der Marel+14, Watkins+24), perturbations on streams (Erkal+19,
Shipp+18 & 21, Warren+25), in the MW disk (Laporte+18b), and the timing argument (Penarrubia+16, Chamberlain+24)



Measuring the response of the MW'’s DM halo to the LMC will allow to test how DM behave in
the perturbative regime. Which dependents on the properties of the DM particle

There are plenty of models simulating the impact of the LMC on the MW's halo Weinberg+89, Gomez+15,
Garavito-Camargo+19 & 21, Petersen+20, Vasiliev+21, Tamfal+21, Rozier+22, Sheng+24



The LMC displaces the MW’'s COM, whose magnitude is maximal soon after
the fist pericenter passage (ideal for the MW+LMC system)
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COM displacements are sensitive to the halos concentration and

DM cross section

Higher halo concentration induce smaller

the COM displacement.
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The MW's disk is moving at =34 km/s towards the south relative to the outer
halo of the MW consistent with the predictions from simulations
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Stellar overdensities and underdensities owing to the
perturbations from the LMC has been observed in the
MW's stella halo

2425 BHB candidates - 50 < r,/kpc < 120 data
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Also detected by Fushima+24 and Cavieres+24
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The morphology and amplitude of the wakes depend on the

host's density profile and velocity dispersion, offering a probe
of dark matter in the MW
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Differences on wake morphologies in a ULDM
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See also Foote+23 for a fuzzy DM simulation of
the LMC’s wake Nico Garavito-Camargo | jngaravitoc@arizona.edu 9



Decomposing the halo's response to LMC-like satellites
in the MWest and Symphony cosmological simulations

Nadler et. al., 23 & Buch et. al,, 24
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MWest:
18 MW-LMC like DM only halos
MW/LMC mass ratio mean: 1:6
15 satellites on first infall
3 on second approach
Pericenters: 13-77 kpc
Symphony:
8 MW-like quiet halos
No massive accretion in the last 5 Gyr
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DM wakes are detected in the MWest suite. While their amplitudes align with those in

idealized simulations, there are more overdensities with complicated morphologies.
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The halo response can be decomposes in harmonic modes that
characterize the COM motion, halo shape and wakes

BFE density field decomp05|t|on
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The amplitude and direction of the dipoles are proportional to the mass
of the MW and LMC and the halo displacement (DM dependent) and
independent on the halo shape

e e e Dipole — COM displacement correlation
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Dipoles have long dynamical times (Weinberg+23) and can produce observable signatures in
galaxies such as disk warps (Gomez+16), lopsided galaxies (Varela+24, Shashank+25), isophotal
twists (Amvrosiadis+25), and gravitational lensing (Miller+25).



The amplitude of the quadrupole is correlated with the shape of the halo (DM dependent).
However, the peak response of the quadrupole at pericenter is not correlated with the LMC
mass. lllustrating that the quadrupole response is telling us about how different DM halo
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Current challenges for measuring the MW’s DM halo
response

e The stellar halo is not smooth, the outer halo is comprised of shells and
streams (e.g., Cunningham+21)

e Stellar wakes are collisionless and it's unclear how they will trace DM wakes

e Stellar halos overdensities do not translate to DM overdensities, but the
directions do (Han+23b).

e We don't know the MW's halo shape before the LMC, but we could infer ir from
disk dynamics (e.g., Han+23a) and streams (e.g., Vasiliev+21).

Nico Garavito-Camargo | jngaravitoc@arizona.edu 15



In the FIRE suite of simulations, the quadrupoles are align with
the filamentary structure (DM dependent), but the LMC

induces misalignment after the pericentric passage.
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The Local Group is the only place where we have access to 6D
coordinates + chemistry (ideal for galactic dynamics)
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Conclusions:

e The Milky Way's halo response to the LMC's passage offers an unique
opportunity to study the behaviour of DM in the disequilibrium regime.

e Thedipoleis solely correlated with the mass of the LMC and reflects the
displacement of the halo, which is sensitive to the nature of dark matter.

e The quadrupole response depends on the intrinsic shape of the halo—
dark matter dependent—which in turn modulates the amplitude of the
wake.

e The morphology, location, and amplitude of the wake depend on the

underlying dark matter model, although the differences may not be large
enough to be observationally significant.
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Back up
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Stellar halo DM halo tilt
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Example: A BFE decomposition of one of the MWest halos

Particle data BFE representatlon
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Petersen, Weinberg, and Katz 22

EXP docs: https://exp-docs.readthedocs.io/
Github: https://github.com/EXP-code/
BFEs are also available in AGAMA, Gala and Galpy

Nico Garavito-Camargo | jngaravitoc@arizona.edu 21
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The MW's dipole response is only present in halos with LMC's and it
peaks right after the pericentric passage
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The gravitational response of the 18 MWest halos is characterized

by the amplitudes of the individual BFE terms
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systems

Basis Function Expansions (BFE) are ideal to
study the dynamics of self-gravitating X P
Petersen, Weinberg, and Katz 22

1. The density and potential field of a
halo is represented by finite series p(r,0,9) = Z Antm Puim (75 0, @),
of basis functions. nlm

2. BFE Satisfy poisson’s equation. V2D, (r, 0, ) = ATLG pum(r, 6, D),

3. Each coefficient only depends on a
single potential basis function. P Dty (Yt A8 = O Out Sy
bi-orthogonal condition

The temporal evolution of the halo is represented by the time series of coefficients

EXP docs: https://exp-docs.readthedocs.io/
Github: https://github.com/EXP-code/
BFEs are also available in AGAMA, Gala and Galpy
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Filaments influence on the DM host is less strong at
present day and it is not as strong as
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DM wakes are detected in the MWest suite. While their amplitudes align with
those in idealized simulations, their shapes are more complex.

100 Density contrast at pericenter Density contrast 0.5 Gyr after Pericenter
: @® Conroy+21 E ® i 4 <
2 0.75F @ Amarante + 24 O 1 E ¢ 1 . %
S L %  GC+ 21 (model3) ® [ ° 8 ] 2
7 ’ ] [ () @ g Q
B ) 5 L ] 0.3
= 0.50 =
@ i ® 1 i 4 1 )
e § @) 1 [ O ] —~~
< 0.25F 3 ¥ ° E 2 =
s o © ® i i ] =
@) N *. o i O O o ] §
Q L @ 4 L N ~
: 9 [ o i =
_025 _1 el lol (IR N TN N TN TN TN T N N TN SN W AN TN N 1 1_ —1 IR N SN [N TN TN TN TN N Y SN TN NN AN TN TN SN SN NN TN NN 1 1— 0 0 é
0.00 025 050 0.75 1.00 1.25 0.00 0.25 0.50 0.75 1.00 1.25 '
A,O Wake AP Wake

Darragh-Ford, NGC, + in prep



Density Density

Density

—_
(o=}
|

_
=

1052

10-7

An NFW density profile as the ng|s model across halos
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Lopsided distributions in cosmological simulations are rare and transient

Stellar halo
structure at
the pericentric
passage of the
satellite

Stellar halo
structure before
the infall of the
satellite
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BFE allow to systematically compare across the halos and simulations!
Monopoles, dipoles, and quadrupoles, capture most of the halos response

Mean Gravitational Energy across halos
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