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Relative abundance

Introduction

Thermal freeze-out stands out as a plausible mechanism to generate the
DM 1n our Universe (analogous to photon decoupling, neutron decoupling)
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The DM spike around supermassive black holes

In the center of the Milky Way it 1s located a supermassive black hole, with
mass ~ 4x10% Msun.

The adiabatic growth of the black hole produces a “spike” in the dark matter
distribution Gondolo, Silk’99, Peebles ‘72, Quinlan, Hernquist, Sigurdsson 95
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The DM spike around supermassive black holes

Different effects can soften the spike:

* Self-interactions: momentum exchange produce a core (depends on 02—2)
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The DM spike around supermassive black holes

Different effects can soften the spike:

* Self-interactions: momentum exchange produce a core (depends on 02—2)

* n—m processes (n>m): deplete the number of DM particles in the

spike (depends on 0y —im )
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* n—m processes (n>m) produce energetic DM particles. If they scatter,
they heat-up the spike and produce a core (depends on 0n—m and 022 )



The DM spike around supermassive black holes

Different effects can soften the spike:

* Self-interactions: momentum exchange produce a core (depends on 02—2)

* n—m processes (n>m): deplete the number of DM particles in the
spike (depends on oy, )

* n—m processes (n>m) produce energetic DM particles. If they scatter,
they heat-up the spike and produce a core (depends on 0n—m and 022 )

The n—m process produces a highly
boosted DM particle.

Implications for direct DM searches?



The DM spike around supermassive black holes

Large parameter space: {m,,, oo .5 /m,, (02_0), (0210), (03_520%), ...}
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The fate of the DM spike

e Example 1: Only 2—2 and 2—1

Oryo/my = 10719ecm? g1 ||
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The fate of the DM spike

e Example 1: Only 2—2 and 2—1

e [ (031v) = 10726 cm? 57! }
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The fate of the DM spike

e Example 1: Only 2—2 and 2—1
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The fate of the DM spike

e Example 1: Only 2—2 and 2—1
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The fate of the DM spike

e Example 2: Only 2—2 and 3—2
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Implications for J-factors
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Implications for direct detection experiments

D

Flux of boosted DM particles, with T, = m, /4
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Conclusions

e The structure of the dark matter spike surrounding a black hole can be
significantly affected by dark matter processes (scatterings, annihilations,
semi-annihilations, 3—2 processes, etc.)

e The rate for annihilations and semi-annihilations in the spike can be
significantly modified by the existence of self-interactions.
Implications for indirect searches.

e The rate for semi-annihilations and 3—2 processes in the spike can be
significantly modified by the existence of self-interactions.
Implications for direct searches.



Back-up

Benchmark || (ov)2-4 [c':u] Ef:?;& [%] (ov?)3 42 [@] X339 931 330
A 10—26 10-10 0 2.14 x 1075 | 2.93 x 106 0
B 10726 5x 1078 0 4.78 x 1074 | 2.93 x 10°° 0
C 1026 5x 10" 0 1.51 x 1072 | 293 x 106 0
D 10726 5x 1072 0 4.78 x 107! | 293 x 1076 0
E 0 1077 10757 6.77 x 1074 0 4.81 x 1072
F 0 5% 1075 10757 1.51 x 102 0 4.81 x 1072
G 0 1073 10757 6.77 x 1072 0 4.81 x 102
H 0 5x 102 10-57 4.78 x 10~} 0 4.81 x 102
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