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The DM spike around supermassive black holesThe DM spike around supermassive black holes

The adiabatic growth of the black hole produces a “spike” in the dark matter 
distribution

In the center of the Milky Way it is located a supermassive black hole, with 
mass ~ 4106 Msun.

Gondolo, Silk’99, Peebles ‘72, Quinlan, Hernquist, Sigurdsson ‘95
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The DM spike around supermassive black holesThe DM spike around supermassive black holes
Different effects can soften the spike:

 Self-interactions: momentum exchange produce a core (depends on          )

  n→m  processes (n>m): deplete the number of DM particles in the 
spike (depends on            )

  n→m  processes (n>m) produce energetic DM particles. If they scatter, 
they heat-up the spike and produce a core (depends on            and            )  

The n→m process produces a highly 
boosted DM particle. 

Implications for direct DM searches?
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Large parameter space:

 Example 1: Only 2→2 and 2→1  Example 2: Only 2→2 and 3→2 
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 Example 2: Only 2→2 and 3→2 
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 The structure of the dark matter spike surrounding a black hole can be
   significantly affected by dark matter processes (scatterings, annihilations,
   semi-annihilations, 3→2 processes, etc.)

ConclusionsConclusions

 The rate for annihilations and semi-annihilations in the spike can be
   significantly modified by the existence of self-interactions. 
   Implications for indirect searches.

 The rate for semi-annihilations and 3→2 processes in the spike can be
   significantly modified by the existence of self-interactions. 
   Implications for direct searches.
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