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Nacho Trujillo (IAC, Spain) Angel R. Plastino (UNNOBA, Argentina)

Based on Various Papers:

- SA+20, A&A, 642,114

_ 5A+23, ApJ, 954, 153

- SA 24a, RNAAS, 8, 167
- SA+24b A&A, 690A, 151
_ SA+24c, ApIL, 973, L15
- SA+25, A&A, 694A, 283 4
- SA 25, in prep. N
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1.- Motivation & Rationale
2.- Eddington Inversion Method (EIM) comes to help

3.- Ultra Faint Dwarfs challenge the Cold Dark Matter paradigm

4 - Constraints from UFDs if the DM were SIDM

5.- Take-home message

Valencia SIDM, 2025
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Within the CDM paradigm: stellar
feedback on the DM distribution

Governato+10)
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The Eddington inversion metiod coimes fo hejp:

For spherically symmetric systems of particles with isotropic velocity distribution, the
phase-space DF f(¢) depends only on the particle energy c«.

1 € 3 d&p e=W — %'vz is the relative energy
f(e) = vVe—Udu, o
Vor? Jo d¥?

U(r) = &9 — ®(r) is the relative potential

Give a stellar mass density profile, p(r), and a potential, ¥(r), the Eddington Inversion Method
provides the distribution function consistent with both, f(e).

— Banyons (m.=5)

— 271v/2 / - de.z O implies f(e) <0 10°; . ,F:(tt)l e P

%)

7

1 -0 H/'c:

A cored stellar p(r) is inconsistent l‘. %
with a cuspy CDM ¥(r) ",| =)

10! \ — >0 Il‘ =

M, /M, =1.2¢-04 0 | _4
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The inconsistency between CDM halos and cored stellar distributions
goes beyond the assumption of spherical symmetry, isotropic
velocities, and NFW potentials (An&Evans06, Ciotti & Morganti 10,

SA+23, SA+24b, SA25).
- holds for quasi-cores embedded in quasi-NFW potentials
- holds for Einasto profiles (not singular as r--> 0)
- holds for non-spherical axi-symmetric systems.

- holds for radially biased orbits and Opsikov-Merritt kind of
anisotropy (isotropic in the center turning radial in the outskirts)

- consistency requires strongly tangentially biased orbits

Valencia SIDM, 2025



Ultra Faint Dwarits challenge
The Cold Dark Maiter Paradigim

- 6 UFD galaxies from Richstein+24, ApJ
- stellar mass ~10° - 10* M |

- DM mass/stellar mass ~ 103
(within the effective radius)

Richstein+24
x2/v=1.06
RMS=0.10

—— Polynomial

| == Inner Slope = -0.026+0.058
HOROLOGIUM-1 exp
HOROLOGIUM-I plum
HOROLOGIUM-II exp
HOROLOGIUM-II plum
HYDRA-II exp
HYDRA-II plum
PHOENIX-Il exp
PHOENIX-II plum
SAGITTARIUS-Il exp
SAGITTARIUS-II plum
TRIANGULUM-II exp
TRIANGULUM-II plum

o w
R/b

1.- All have the same
universal shape

2.- All have a core
(central plateau)

Z(R)/Z(0)

10_1?

10_2?
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3. EDDINGTON INVERSION METHOD APPROACH

The details and tests of the technique are given elsewhere (Sdnchez Almeida et al. 2024a), but here we summarize
the approach used to compute the DF in the phase-space f required for the observed profile (Fig. 1) to reside in a
particular potential. For a spherically symmetric system of identical stars with isotropic velocity distribution, f(e)
depends only on the particle energy €. (The impact of relaxing these assumptions is addressed in Sect. 5.) Then, the
stellar volume density p(r) turns out to be (e.g., Binney & Tremaine 2008, Sect. 4.3),

p(r) = 4wv2 .[u

W (r)
T(r) — ede, (2)

withe =T — %1}2 the relative energy per unit mass of a star and ¥(r) = ®, — ®(r) its relative potential energy. The

symbol ®(r) stands for the gravitational potential energy and @, is ®(r) evaluated at the edge of the system. The
previous equation can be rewrittefl as

o) = [ s e e ®

E(e,T) —4#%1/ . X-r) (4)

€maz = ¥(0), X the radius implicitly defined as ¥(X)/¥( 0) = e/ €max, and II(z) the step function,
0 =<0,
n@={] =

1 z>0.

The symbol £(e, ) represents a family of densities that are characteristic of the potential and dependent on the energy
€. Then, according to Eq. (3), the stellar density is just the superposition of these characteristic densities with the DF
f(e) giving the contribution of each energy to p(r). (The characteristic densities for a Schuster-Plummer potential are
shown as an example in Appendix A.) Following Eq. (3), f(e;) could be retrieved by fitting the observable p(r) with
a linear superposition of £(e;,r) at various ¢;. (We will see below that p can be replaced with the projected stellar
surface density, which is the true observable.) In practice, however, there is no error-proof way to discretize Eq. (3).
‘We approach the practical problem by expanding f(e) as a polynomial of order n,

with

()

T

fle) = et > ai(e/emaz)’, (6)

SA+25, A&A

so that The free parameter of the fit is
A the shape of the distribution
function

L

1
Fi(r) = e;}ﬁf o' £(a €maz, 1) do,
0

with o = €/€,,,4.. Equation (7) gives a simple expansion of the stellar density p(r) in terms of potential-dependent but
known functions F;(r). The chosen functional form in Eq. (6) is both flexible and, by starting at ¢ = 3, it
describes a system of finite mass despite the mass given by £(e, ) diverges as =¥ when ¢ — 0, with 2 <y < 3
depending on the potential (Sinchez Almeida et al. 2024a). The normalization in Eq. (6) has been chosen so that
F;(r) does not depend on €,,,,. The discretization in Eq. (7) also holds for the projection of the volume density in
the plane of the sky, i.e.,

S(R)~ Y 4 Si(R), (9)

i=3

1
i 52 (aerna:r; R)
S,-R=/ o —— doy, 10

(8) 0 VEmaz (10)
where X(R) and £x(e;, R) stand the 2D projection (i.e., the Abel transform) of p(r) and £(e;,7), respectively. R
represents for the radial coordinate in the plane of the sky projection, as in Sect. 2.
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Is any of the assumptions involved in EIM responsible of the conclusion?

- Isotropic velocities?

- Spherical symmetry? “n P““B\.‘-M

- Satellites?

coare

- Shape of the potential?

- Stellar feedback irrelevant?

- Is stellar self-gravity negligible?

- Centers and observed ellipticities are a problem?

Valencia SIDM, 2025



Thus, the stellar distribution in UFDs is incompatible with cuspy CDM
potentials and so it suggests the DM to deviate from the Collision-less
Cold Dark Matter paradigm .. e.g, SIDM?

- —

|“-.q
L 5

g By e

100_ i._‘,

Richstein+24
x2/v=1.06
RMS=0.10

—— Polynomial

| == Inner Slope = -0.026+0.058
HOROLOGIUM-I exp
HOROLOGIUM-I plum
HOROLOGIUM-II exp
HOROLOGIUM-II plum
HYDRA-II exp
HYDRA-II plum
PHOENIX-Il exp
PHOENIX-Il plum
SAGITTARIUS-Il exp
SAGITTARIUS-II plum
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o w
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Valencia SIDM, 2025 SA+24, ApJL



Constraints ffrom UFDs
i1t fihe DM were SILDM

= Theory
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o/m [cm?g71]

10_1'E

1072 3
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10t
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m— Theory
= |MBHSs (Jiang+25)
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4

UFDs (SA+24)

Bullet (Randall+08)
Cluster (Roberson+19)
Cluster (Kahl.+15)
NGC 720 (Peter+13)
Draco (Read+18)
Cluster (Harvey+19)
Cluster (Ekert+22)
Lensing (Gilman+23)
Cluster (Ebert+18)
Lensing (Adhi.+25)
Group (Gopika+24)
Cluster (Tam+23)
Lensing (Andrade+22)
Irr (Shi+21)

Dwarf (Correa 21)
Dwarf (Kap.+16)

LSBG (Kap.+16)
Cluster (Kap.+16)
Lensing (Vega+21)
Group-Cluster (Sag.+21)
Lensing (Harvey+15)
MACS00-12 (Bradac+08)
Fornax (Leung+20)

Irr (Leung+21)

core formation timescale < age < core collapse timescale

Outmezguine+23, MNRAS

SA+25, in prep
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SA+25, in prep
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Tite-iie fessage

1.- The stellar feedback cannot thermalize DM halos with stellar mass < 10° M
(HUGs)

2.- Halo shape diagnostic in the HUG regime doable from photometry using EIM
(Eddington Inversion Method)

3.- Through the EIM, we know a stellar distribution with a "core” cannot be in a
Cold Dark Matter potential (NFW-like).

4.- A number of Ultra Faint Dwarf UFD galaxies have cores, inconsistent with
NFW potentials. Since their stellar mass is well within the HUGs range (10°--10°
M) the existence of these core suggests the need to go beyond CDM
(SIDM, fermion DM, fuzzy DM, warm ...)

5.- Interpreted as produced by SIDM, these cores require
o/m & 2 cm?/g and 30 cm?®/q.

.. work in progress, though. Help to improve it welcomel!
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57

One expects a large dependence on the halo mass, e.g., the Bullet Cluster
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e.g., Ghosh+22, JCAP
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e.g., Correa+22, MNRAS



Stellar core Universal stellar shape
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Einasto potentials are also good representation of CDM halos but they do
hot diverge when r->0. Cored stellar distributions are inconsistent with
Einasto CDM halos.
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Is any of the assumptions involved in EIM responsible of the conclusion?

- Isotropic velocities?

* The incompatibility NFW-cores holds for radially biased orbits and
Osipkov-Merrit models

* Tangentially biased orbits can fit any stellar distribution ... but
disfavored from theory and numerical simulations

- Spherical symmetry?

* Inconsistency NFW-stellar cores holds for axi-symmetric systems (SA+25)

* Observation of UFDs refer to circular objects ... (+ one of the UDFs is round)

- Satellites? ““ P““B‘.Em

* If important, tidal forces do not explain the existence of a single shape

pS ==

* Tidal forces maintain the inner NFW shape until disruption ... (e.g.,
Errani+23)

Valencia SIDM, 2025



o

- Shape of the potential? ““ P““Btlm

* The incompatibility holds for Einasto potentials and quasi-NFW, whereas cored
potentials and stellar cores are compatible independently of the details of the

cored potential.
0 PROBLEI

« Yes, at UDFs mass of ~103 - 10* M, feedback is unimportant quite

pase

- Stellar feedback irrelevant?

independently of the actual modeling (e.g., Pefiarubia+12)

- Is stellar self-gravity negligible? ““ P““BLEM

* DM mass/stellar mass ~ 10°

- Centers and observed ellipticities are a problem? ﬂ“ P““BLEM

 Several independent trials

T

T

Valencia SIDM, 2025
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