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Dark matter only simulations in SIDM
can be expensive, especially with core collapse.

Baryonic simulations in SIDM
are even more expensive.

We need a faster way to reliably compute
observable properties of many galaxies in SIDM!
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how halo evolution affects baryons

EDGE

“Genetically modified” one 10’ M, DM halo to grow at different rates:

earlier > later

forming . forming
lower stellar mass

Could these help constrain later stars mainly accreted

DM models where halos  formers < larger galaxy size

evolve unlike CDM? have more elliptical
lower metallicity
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what underlies these trends’?

The star formation rate correlates with the central density.

SYK+ 2024 (arXiv:2408.15214),
Read+ 2017, Posti+ 2019, & others
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what underlies these trends? | DarkLight

The star formation rate correlates with the central density.
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>
SFHs and M, differ in models with different central densities or growth histories.
For example, in WDM:
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implications for SIDM | star formation histories

SFHs and M, differ in models with different central densities or growth histories.

Yang & Yu 2022
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SFHs and M, differ in models with different central densities or growth histories.
Star formation stochasticity results in scatter, but general trends expected:
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implications for SIDM | star formation histories

SFHs and M, differ in models with different central densities or growth histories.
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star formation histories

SFHs and M, differ in models with different central densities or growth histories.
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implications for SIDM | deep core collapse

Star formation quenching deep in core collapse? Gas is finite!
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implications for SIDM
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implications for SIDM | scaling relations
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implications for SIDM | scaling relations

Changes in the stellar-mass—halo-mass (SMHM) relation!?
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implications for SIDM | scaling relations
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implications for SIDM
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implications for SIDM | the faintest dwarfs
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insights on SIDM from the EDGE dwarfs

A dwarf galaxy’s dark matter density evolution and growth history
can significantly affect its observational properties.

Relation between SFR and vmax indicates that core expansion
and core collapse may affect SFHs and thus M, in dwarfs.

Increase in vmax in deep core collapse could cause an increase in star
formation then quenching (and potentially a nuclear star cluster).

Globular cluster-like dwarf galaxies can form in 10’ M_ halos.
Changes in vmax due to SIDM at high redshifts could affect dwarf abundances.
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resolving the faintest galaxies
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resolving the faintest galaxies
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resolving the faintest galaxies
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towards dark matter constraints | WDM
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Dwarf galaxies fewer, fainter... and puffier?
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Accreted subhalos disrupt when their densities ~ host halo’s densities.

WDM halos have lower densities — disrupts at larger radii — puffier?
SYK, Read+, in prep



towards dark matter constraints | WDM
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modeling other dwarf populations | DarkLight

-
New model for sizes of dwarf galaxies—truncated by reionization!  Sushanta Nigudkar
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modeling other dwarf populations

Where are all the gas-rich dwarfs!?

t=12.9 Gyr

t=13.2 Gyr

DarkLight
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EDGE finds significant variability in star-forming dwarfs!
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Building gas variability model into DarkLight.
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Sue is a Daphne Jackson Postdoctoral Fellow (given to those with career breaks)!

Hutton, SYK+, in prep



the impact of reionization quenching
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the impact of reionization quenching
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Changing redshift of reionization quenching affects SMHM scatter; slope, and knee!
SYK+, in prep
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| o scatter decreases by 0.07 dex
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If more low-mass halos are occupied, SMHM will have smaller scatter.
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