

# Thermal Evolution of the Excited States in Inelastic Dark Matter Models

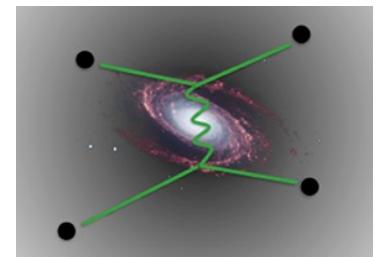
**Javier Silva Malpartida**

Pontificia Universidad Católica del Perú (PUCP)

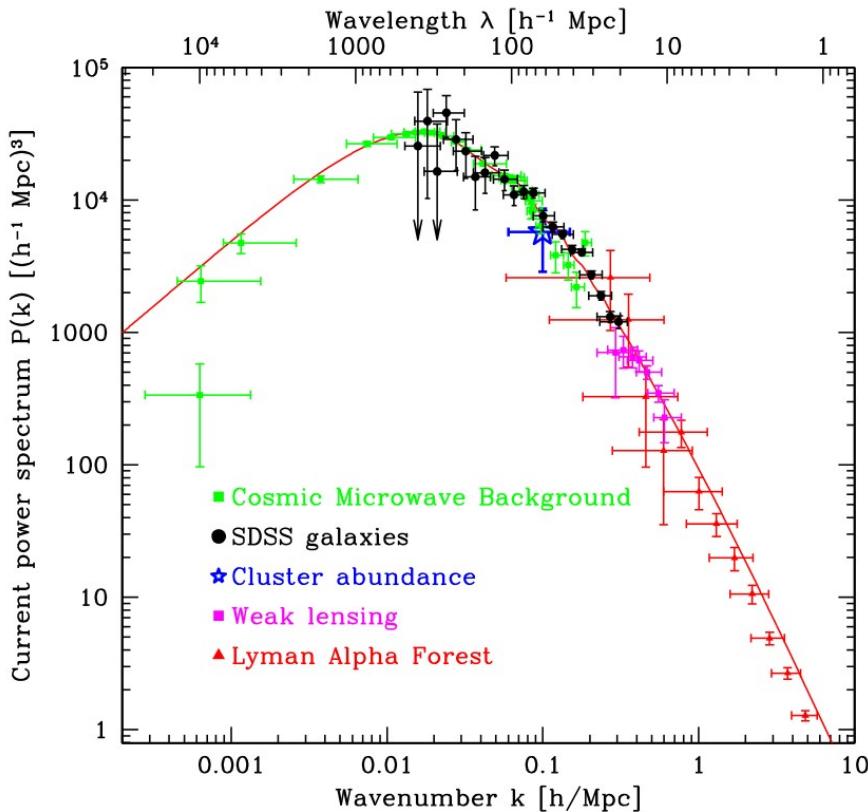
In colaboration with:

Giovani Dalla Valle, Juan Herrero-García and Joel Jones

250X.XXXXX

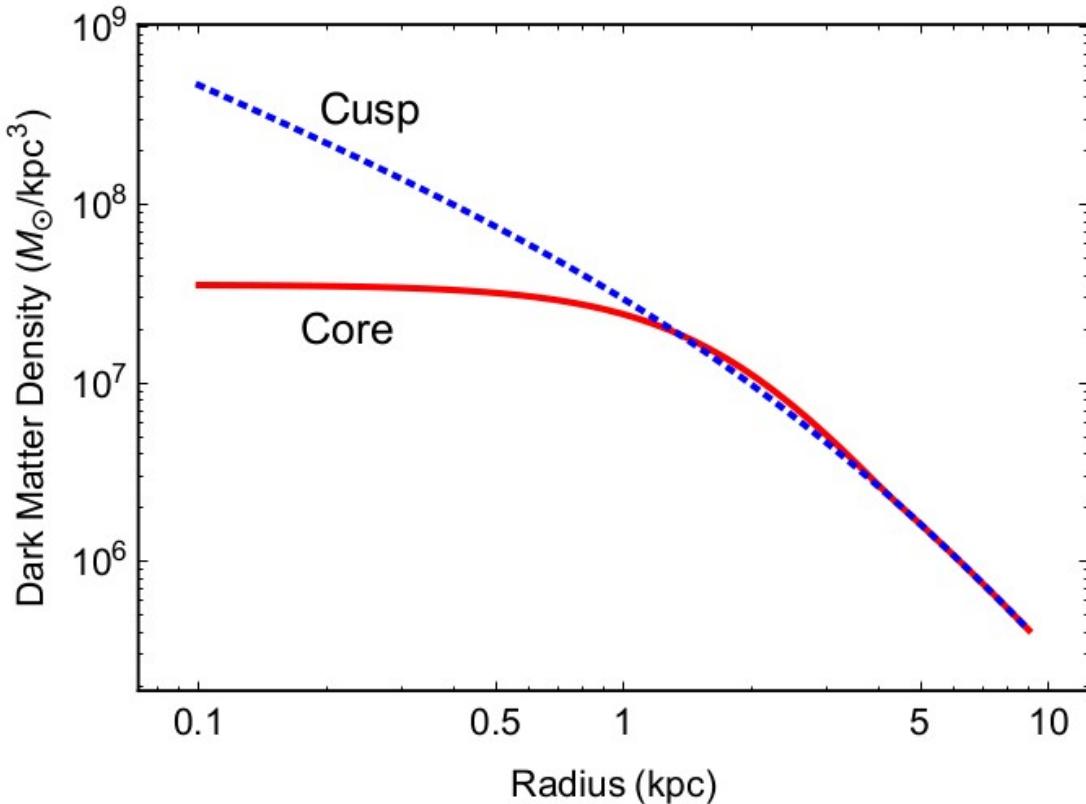


# Introduction



The standard **cold and collisionless dark matter model** (CDM) successfully describes the universe on large scales. However, N-body simulations reveal discrepancies between CDM predictions and observations on small scales, such as the **core-cusp problem**

# Introduction

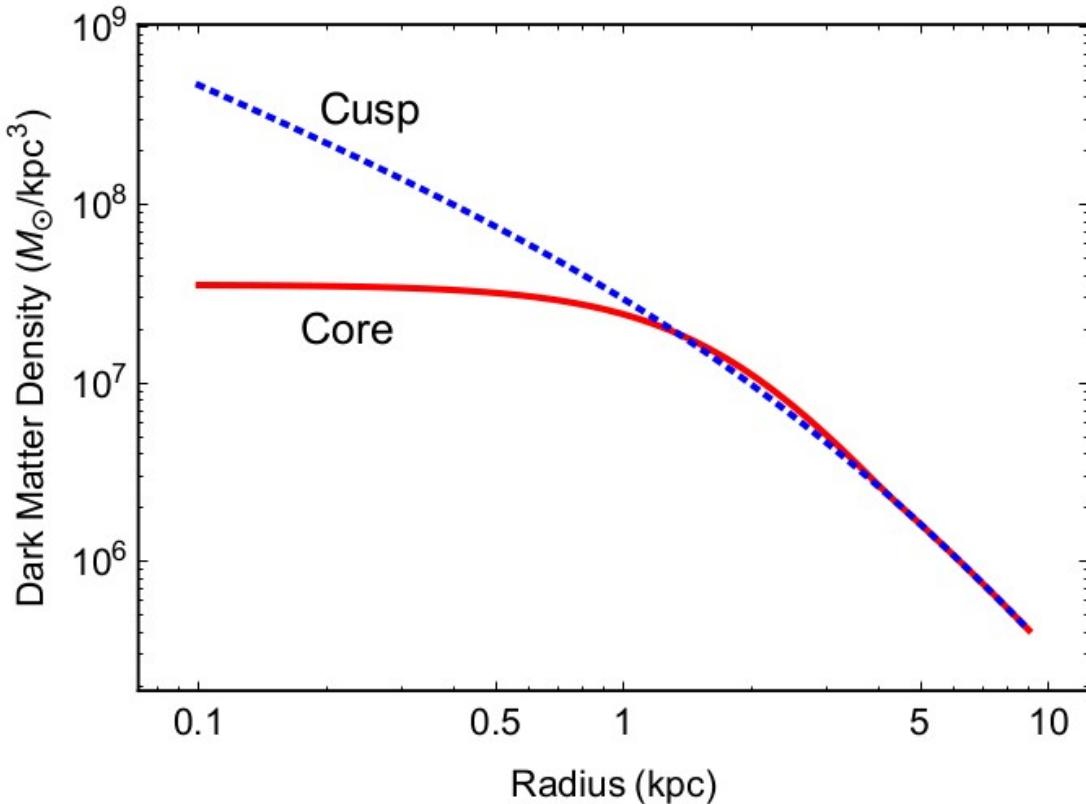


Tulin, Yu, 2017

## Core – Cusp problem

Standard CDM predicts cuspy halo profiles with  $\rho \propto r^{-1}$  (NFW), but observations of dwarf galaxies and clusters favor cored profiles with approximately constant central density  $\rho \sim \rho_0$

# Introduction



Tulin, Yu, 2017

## Core – Cusp problem

Standard CDM predicts cuspy halo profiles with  $\rho \propto r^{-1}$  (NFW), but observations of dwarf galaxies and clusters favor cored profiles with approximately constant central density  $\rho \sim \rho_0$

Self-interacting DM offers a possible solution to this and other problems.

# Introduction

SIDM proposes that collisions between DM particles thermalize the inner halo, transferring energy inward and forming a central core.

SIDM requires  $\sigma/m_\chi \sim 1 - 10 \text{ cm}^2/\text{g}$  to address small-scale structure issues

# Introduction

SIDM proposes that collisions between DM particles thermalize the inner halo, transferring energy inward and forming a central core.

SIDM requires  $\sigma/m_\chi \sim 1 - 10 \text{ cm}^2/\text{g}$  to address small-scale structure issues

However for elastic SIDM:

- Light mediators must decay before BBN and are constrained by direct detection.
- Sommerfeld enhanced s-wave annihilations can conflict with CMB and indirect detection.

# Introduction

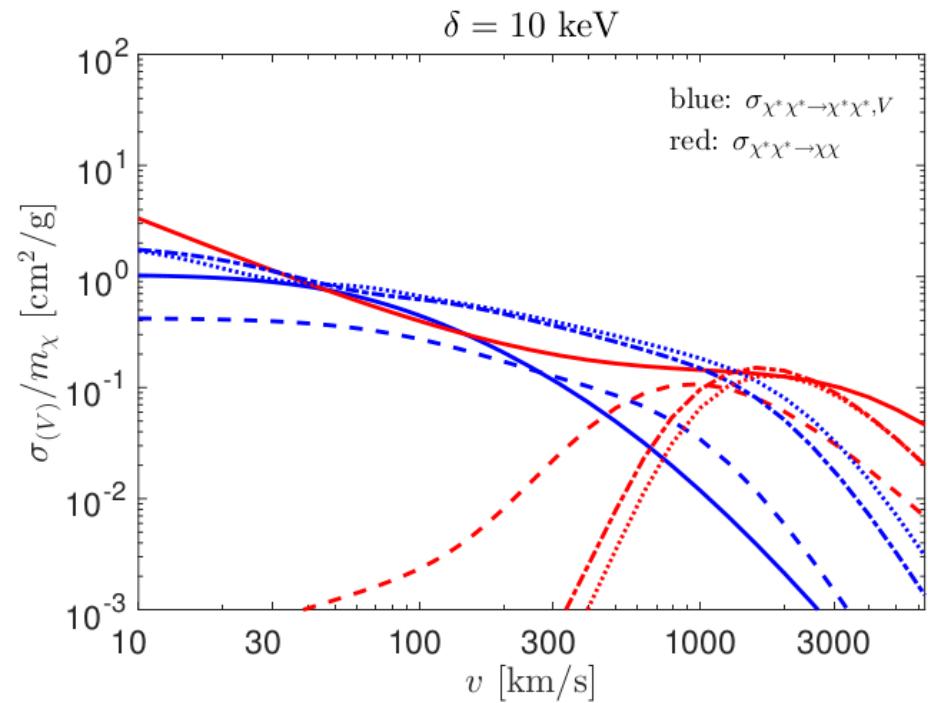
SIDM proposes that collisions between DM particles thermalize the inner halo, transferring energy inward and forming a central core.

SIDM requires  $\sigma/m_\chi \sim 1 - 10 \text{ cm}^2/\text{g}$  to address small-scale structure issues

However for elastic SIDM,

- Light mediators must decay before BBN and are constrained by direct detection.
- Sommerfeld enhanced s-wave annihilations can conflict with CMB and indirect detection.

A phenomenologically viable alternative is inelastic dark matter (iDM)



Blennow et al. (2017)

# Inelastic Dark Matter Model

The dark sector contains a  $U(1)'$  gauge symmetry with a gauge boson  $A'$  with mass  $m_{A'}$ .

$$\mathcal{L}_{NP} = \mathcal{L}_\chi + \mathcal{L}_V,$$

$$\mathcal{L}_\chi = i\bar{\chi}_L \not{D} \chi_L + i\bar{\chi}_R \not{D} \chi_R - m_D \bar{\chi}_L \chi_R - \frac{1}{2} m_L \bar{\chi}_L^c \chi_L - \frac{1}{2} m_R \bar{\chi}_R^c \chi_R + \text{h.c.}$$

$$\mathcal{L}_V = -\frac{1}{4} A'^{\mu\nu} A'_{\mu\nu} - \frac{1}{2} \frac{\epsilon}{\cos \theta_W} B^{\mu\nu} A'_{\mu\nu},$$

It includes a Dirac fermion  $\chi_D = \chi_L + \chi_R$

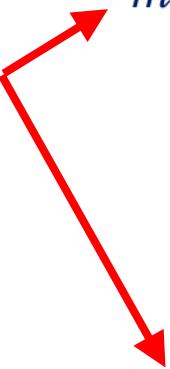
# Inelastic Dark Matter Model

After diagonalizing this system, the mass eigenstates correspond to a pseudo-Dirac pair  $\chi \chi^*$

# Inelastic Dark Matter Model

After diagonalizing this system, the mass eigenstates correspond to a pseudo-Dirac pair  $\chi \chi^*$ . The mass eigenstates and splitting mass

$$\delta \equiv m_{\chi^*} - m_{\chi}$$


$$m_{\chi^*} = \sqrt{m_D^2 + \frac{1}{4}(m_R - m_L)^2} + \frac{1}{2}(m_R + m_L)$$
$$m_{\chi} = \sqrt{m_D^2 + \frac{1}{4}(m_R - m_L)^2} - \frac{1}{2}(m_R + m_L)$$

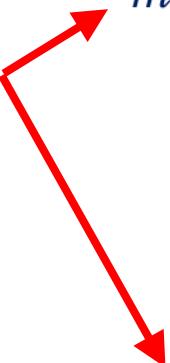
# Inelastic Dark Matter Model

After diagonalizing this system, the mass eigenstates correspond to a pseudo-Dirac pair  $\chi \chi^*$ . The mass eigenstates and splitting mass

$$\delta \equiv m_{\chi^*} - m_{\chi}$$

In our work, we consider that

$$m_{A'} > m_{\chi} \gg \delta$$

$$m_{\chi^*} = \sqrt{m_D^2 + \frac{1}{4}(m_R - m_L)^2} + \frac{1}{2}(m_R + m_L)$$

$$m_{\chi} = \sqrt{m_D^2 + \frac{1}{4}(m_R - m_L)^2} - \frac{1}{2}(m_R + m_L)$$

# Inelastic Dark Matter Model

After diagonalizing this system, the mass eigenstates correspond to a pseudo-Dirac pair  $\chi \chi^*$ . The mass eigenstates and splitting mass

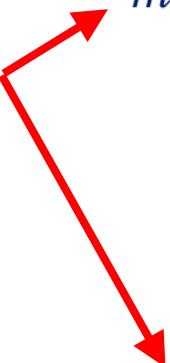
$$\delta \equiv m_{\chi^*} - m_\chi$$

In our work, we consider that

$$m_{A'} > m_\chi \gg \delta$$

The coupling to  $A'$  is off-diagonal

$$\mathcal{L}_\chi \supset ie' A'_\mu \bar{\chi}^* \gamma^\mu \chi + \mathcal{O}(\delta/m_\chi)$$

$$m_{\chi^*} = \sqrt{m_D^2 + \frac{1}{4}(m_R - m_L)^2} + \frac{1}{2}(m_R + m_L)$$

$$m_\chi = \sqrt{m_D^2 + \frac{1}{4}(m_R - m_L)^2} - \frac{1}{2}(m_R + m_L)$$

# Inelastic Dark Matter Model

## Phenomenologically Viable iDM

- Suppressed direct detection bounds.

# Inelastic Dark Matter Model

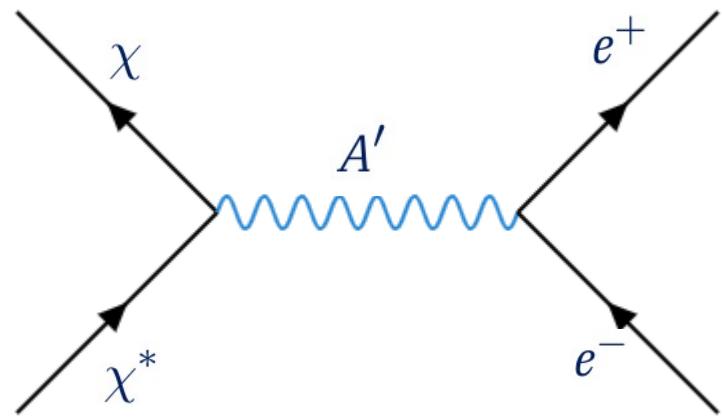
## Phenomenologically Viable iDM

- Suppressed direct detection bounds.
- For  $m_{A'} > m_\chi$  annihilation channels are either kinematically suppressed relaxing CMB and BBN constraints.

# Inelastic Dark Matter Model

## Phenomenologically Viable iDM

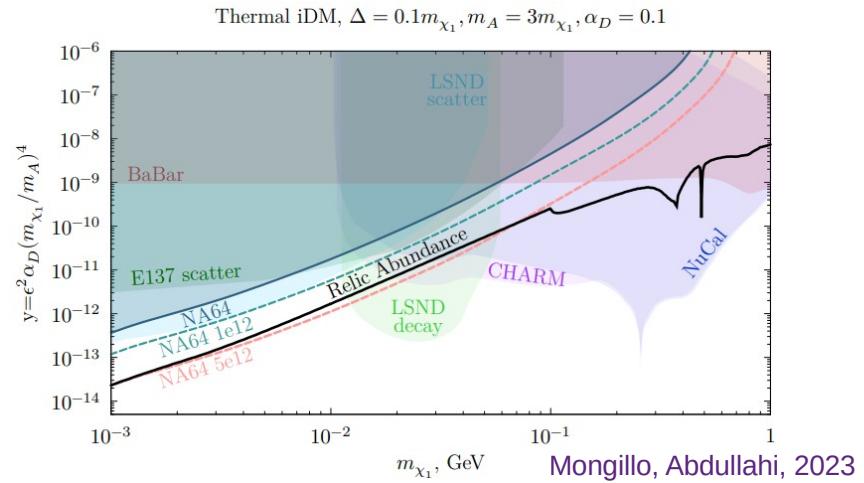
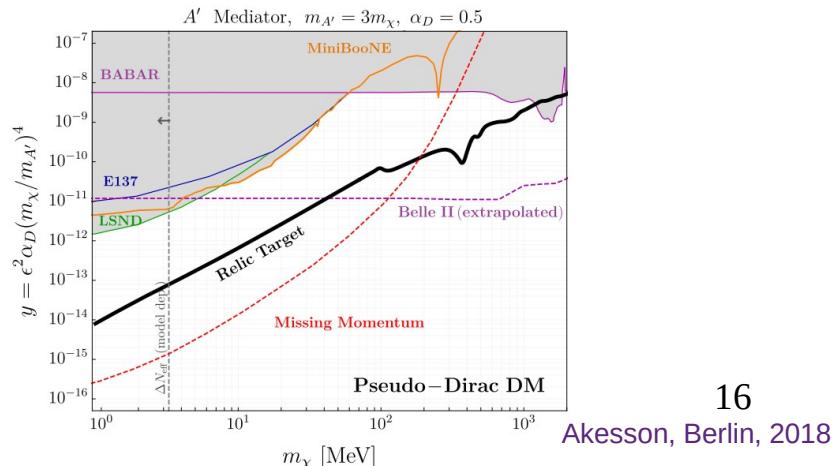
- Suppressed direct detection bounds.
- For  $m_{A'} > m_\chi$  annihilation channels are either kinematically suppressed relaxing CMB and BBN constraints.
- The total relic abundance can be generated through thermal DM production (freeze-out).



# Inelastic Dark Matter Model

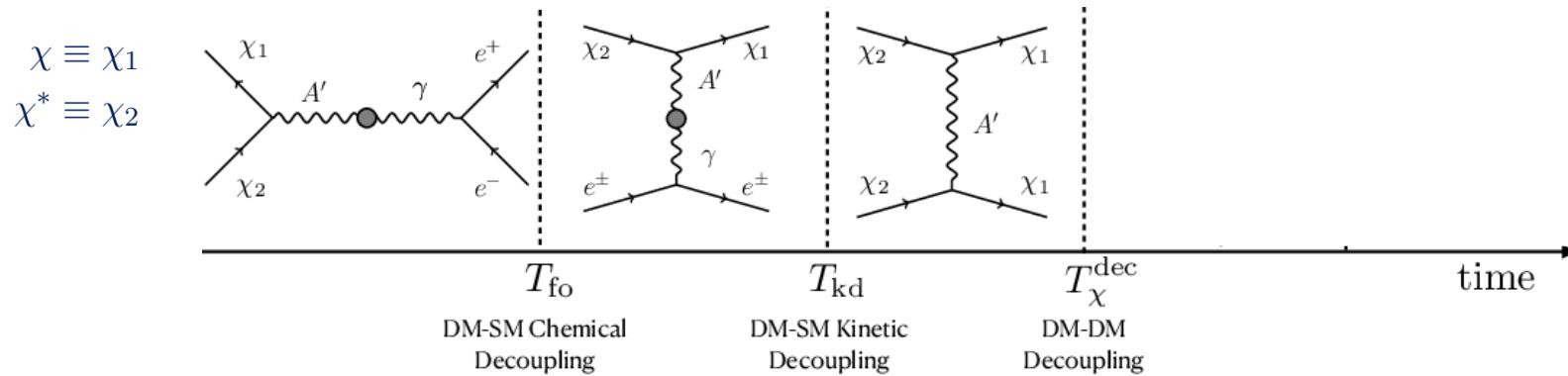
## Phenomenologically Viable iDM

- Suppressed direct detection bounds.
- For  $m_{A'} > m_\chi$  annihilation channels are either kinematically suppressed relaxing CMB and BBN constraints.
- The total relic abundance can be generated through thermal DM production (freeze-out).
- Several experiments projections (e.g., NA64, LDMX, Belle II) are sensitive to off-diagonal interactions.



# Cosmic evolution of iDM

## Time evolution of iDM



Berlin, Krnjaic, 2023

# Evolution of Excited-States Abundance

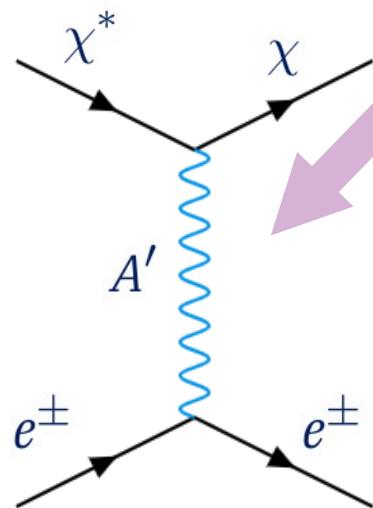
After the total freeze-out, the time evolution of the number density of  $\chi^*$

$$\begin{aligned}\dot{n}_{\chi^*} + 3Hn_{\chi^*} = & - \langle \sigma_{\chi^* e^\pm \rightarrow \chi e^\pm} v \rangle n_{\chi^*} n_{e^\pm} + \langle \sigma_{\chi e^\pm \rightarrow \chi^* e^\pm} v \rangle n_\chi n_{e^\pm} \\ & - \langle \sigma_{\chi^* \chi^* \rightarrow \chi \chi} v \rangle n_{\chi^*}^2 + \langle \sigma_{\chi \chi \rightarrow \chi^* \chi^*} v \rangle n_\chi^2\end{aligned}$$

# Evolution of Excited-States Abundance

Time evolution of the number density of  $\chi^*$

$$\dot{n}_{\chi^*} + 3Hn_{\chi^*} = - \langle \sigma_{\chi^* e^\pm \rightarrow \chi e^\pm} v \rangle n_{\chi^*} n_{e^\pm} + \langle \sigma_{\chi e^\pm \rightarrow \chi^* e^\pm} v \rangle n_\chi n_{e^\pm}$$
$$- \langle \sigma_{\chi^* \chi^* \rightarrow \chi \chi} v \rangle n_{\chi^*}^2 + \langle \sigma_{\chi \chi \rightarrow \chi^* \chi^*} v \rangle n_\chi^2$$

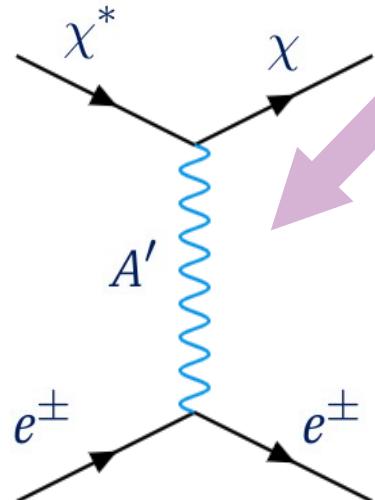
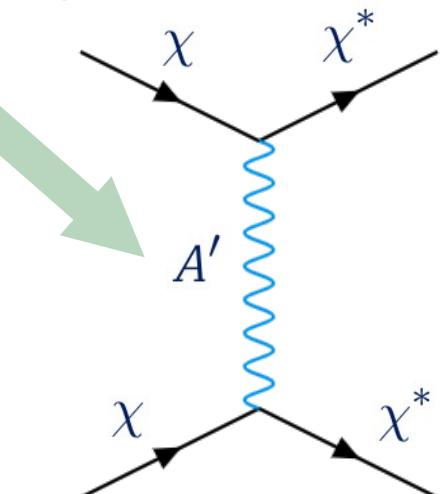


# Evolution of Excited-States Abundance

Time evolution of the number density of  $\chi^*$

$$\dot{n}_{\chi^*} + 3Hn_{\chi^*} = - \langle \sigma_{\chi^* e^\pm \rightarrow \chi e^\pm} v \rangle n_{\chi^*} n_{e^\pm} + \langle \sigma_{\chi e^\pm \rightarrow \chi^* e^\pm} v \rangle n_\chi n_{e^\pm}$$

$$- \langle \sigma_{\chi^* \chi^* \rightarrow \chi \chi} v \rangle n_{\chi^*}^2 + \langle \sigma_{\chi \chi \rightarrow \chi^* \chi^*} v \rangle n_\chi^2$$



# Evolution of Excited-States Abundance

$$\begin{aligned}\dot{n}_{\chi^*} + 3Hn_{\chi^*} = & - \langle \sigma_{\chi^* e^\pm \rightarrow \chi e^\pm} v \rangle n_{\chi^*} n_{e^\pm} + \langle \sigma_{\chi e^\pm \rightarrow \chi^* e^\pm} v \rangle n_\chi n_{e^\pm} \\ & - \langle \sigma_{\chi^* \chi^* \rightarrow \chi \chi} v \rangle n_{\chi^*}^2 + \langle \sigma_{\chi \chi \rightarrow \chi^* \chi^*} v \rangle n_\chi^2\end{aligned}$$

We fixed the total number density as  $n_{\chi, \text{tot}} \equiv n_{\chi^*} + n_\chi$

We defined the fraction of excited states  $f \equiv \frac{n_{\chi^*}}{n_{\chi, \text{tot}}}, \quad 0 \leq f \leq 0.5$

# Evolution of the Fraction of Excited states

Time evolution of  $f$

$$\frac{df}{dt} = - (\Gamma_{\downarrow}^{\text{SM}} f + \Gamma_{\downarrow}^{\text{DS}} f^2) + [\Gamma_{\uparrow}^{\text{SM}} (1-f) + \Gamma_{\uparrow}^{\text{DS}} (1-f)^2]$$

with

$$\Gamma_{\uparrow}^{\text{SM}} \equiv \langle \sigma_{\chi e^{\pm} \rightarrow \chi^* e^{\pm}} v \rangle n_{e^{\pm}},$$

$$\Gamma_{\downarrow}^{\text{SM}} \equiv \langle \sigma_{\chi^* e^{\pm} \rightarrow \chi e^{\pm}} v \rangle n_{e^{\pm}},$$

$$\Gamma_{\uparrow}^{\text{DS}} \equiv \langle \sigma_{\chi \chi \rightarrow \chi^* \chi^*} v \rangle n_{\chi, \text{tot}},$$

$$\Gamma_{\downarrow}^{\text{DS}} \equiv \langle \sigma_{\chi^* \chi^* \rightarrow \chi \chi} v \rangle n_{\chi, \text{tot}}.$$

# Evolution of the Fraction of Excited states

Time evolution of  $f$

$$\frac{df}{dt} = - (\Gamma_{\downarrow}^{\text{SM}} f + \Gamma_{\downarrow}^{\text{DS}} f^2) + [\Gamma_{\uparrow}^{\text{SM}} (1-f) + \Gamma_{\uparrow}^{\text{DS}} (1-f)^2]$$

with

$$\Gamma_{\uparrow}^{\text{SM}} \equiv \langle \sigma_{\chi e^{\pm} \rightarrow \chi^* e^{\pm}} v \rangle n_{e^{\pm}},$$

$$\Gamma_{\downarrow}^{\text{SM}} \equiv \langle \sigma_{\chi^* e^{\pm} \rightarrow \chi e^{\pm}} v \rangle n_{e^{\pm}},$$

$$\Gamma_{\uparrow}^{\text{DS}} \equiv \langle \sigma_{\chi \chi \rightarrow \chi^* \chi^*} v \rangle n_{\chi, \text{tot}}, \quad \chi \rightarrow \chi^* \text{ Up-scattering (endothermic)}$$

$$\Gamma_{\downarrow}^{\text{DS}} \equiv \langle \sigma_{\chi^* \chi^* \rightarrow \chi \chi} v \rangle n_{\chi, \text{tot}}.$$

# Evolution of the Fraction of Excited states

Time evolution of  $f$

$$\frac{df}{dt} = - (\Gamma_{\downarrow}^{\text{SM}} f + \Gamma_{\downarrow}^{\text{DS}} f^2) + [\Gamma_{\uparrow}^{\text{SM}} (1-f) + \Gamma_{\uparrow}^{\text{DS}} (1-f)^2]$$

with

$$\Gamma_{\uparrow}^{\text{SM}} \equiv \langle \sigma_{\chi e^{\pm} \rightarrow \chi^* e^{\pm}} v \rangle n_{e^{\pm}},$$

$$\Gamma_{\downarrow}^{\text{SM}} \equiv \langle \sigma_{\chi^* e^{\pm} \rightarrow \chi e^{\pm}} v \rangle n_{e^{\pm}},$$

$$\Gamma_{\uparrow}^{\text{DS}} \equiv \langle \sigma_{\chi \chi \rightarrow \chi^* \chi^*} v \rangle n_{\chi, \text{tot}},$$

$$\Gamma_{\downarrow}^{\text{DS}} \equiv \langle \sigma_{\chi^* \chi^* \rightarrow \chi \chi} v \rangle n_{\chi, \text{tot}}. \quad \chi^* \rightarrow \chi \quad \text{Down-scattering (exothermic)}$$

# Evolution of the Fraction of Excited states

Time evolution of  $f$

$$\frac{df}{dt} = - (\Gamma_{\downarrow}^{\text{SM}} f + \Gamma_{\downarrow}^{\text{DS}} f^2) + [\Gamma_{\uparrow}^{\text{SM}} (1-f) + \Gamma_{\uparrow}^{\text{DS}} (1-f)^2]$$

with

$$\Gamma_{\uparrow}^{\text{SM}} \equiv \langle \sigma_{\chi e^{\pm} \rightarrow \chi^* e^{\pm}} v \rangle n_{e^{\pm}},$$

$$\Gamma_{\downarrow}^{\text{SM}} \equiv \langle \sigma_{\chi^* e^{\pm} \rightarrow \chi e^{\pm}} v \rangle n_{e^{\pm}},$$

$$\Gamma_{\uparrow}^{\text{DS}} \equiv \langle \sigma_{\chi \chi \rightarrow \chi^* \chi^*} v \rangle n_{\chi, \text{tot}},$$

$$\Gamma_{\downarrow}^{\text{DS}} \equiv \langle \sigma_{\chi^* \chi^* \rightarrow \chi \chi} v \rangle n_{\chi, \text{tot}}.$$



$$\Gamma_{\uparrow}^{\text{SM}} \sim \Gamma_{\downarrow}^{\text{SM}} \times e^{-\delta/T_{\text{sm}}}$$

$$\Gamma_{\uparrow}^{\text{DS}} \sim \Gamma_{\downarrow}^{\text{DS}} \times e^{-2\delta/T_{\chi}}$$

# Evolution of the Fraction of Excited states

$$\frac{df}{dt} = - (\Gamma_{\downarrow}^{\text{SM}} f + \Gamma_{\downarrow}^{\text{DS}} f^2) + [\Gamma_{\uparrow}^{\text{SM}} (1-f) + \Gamma_{\uparrow}^{\text{DS}} (1-f)^2]$$

$$\Gamma_{\uparrow}^{\text{SM}} \equiv \langle \sigma_{\chi e^{\pm} \rightarrow \chi^* e^{\pm}} v \rangle n_{e^{\pm}},$$

$$\Gamma_{\downarrow}^{\text{SM}} \equiv \langle \sigma_{\chi^* e^{\pm} \rightarrow \chi e^{\pm}} v \rangle n_{e^{\pm}},$$

$$\Gamma_{\uparrow}^{\text{DS}} \equiv \langle \sigma_{\chi \chi \rightarrow \chi^* \chi^*} v \rangle n_{\chi, \text{tot}},$$

$$\Gamma_{\downarrow}^{\text{DS}} \equiv \langle \sigma_{\chi^* \chi^* \rightarrow \chi \chi} v \rangle n_{\chi, \text{tot}}.$$

After kinetic decoupling ( $\Gamma_{\uparrow\downarrow}^{\text{SM}} < H$ ), the dark sector and the SM evolve with different temperatures.

# Evolution of the Fraction of Excited states

$$\frac{df}{dt} = - (\Gamma_{\downarrow}^{\text{SM}} f + \Gamma_{\downarrow}^{\text{DS}} f^2) + [\Gamma_{\uparrow}^{\text{SM}} (1-f) + \Gamma_{\uparrow}^{\text{DS}} (1-f)^2]$$

$$\Gamma_{\uparrow}^{\text{SM}} \equiv \langle \sigma_{\chi e^{\pm} \rightarrow \chi^* e^{\pm}} v \rangle n_{e^{\pm}},$$

DS temperature  $T_x$ :

$$\Gamma_{\downarrow}^{\text{SM}} \equiv \langle \sigma_{\chi^* e^{\pm} \rightarrow \chi e^{\pm}} v \rangle n_{e^{\pm}},$$

$$T_x = \begin{cases} T_{\text{sm}} & \text{for } T_{\text{sm}} > T_{\text{kd}}, \\ f(T_{\text{sm}}) & \text{for } T_{\text{sm}} < T_{\text{kd}}. \end{cases}$$

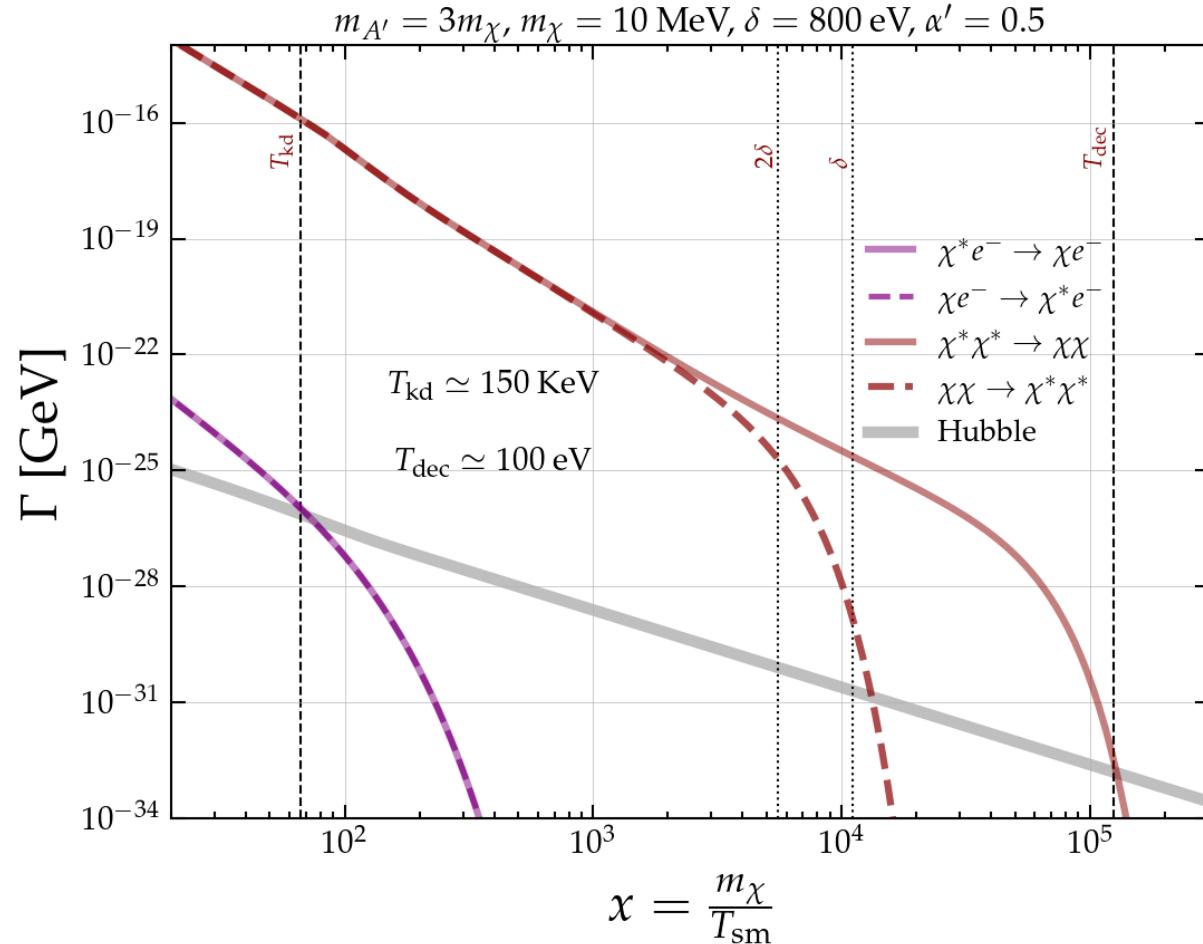
$$\Gamma_{\uparrow}^{\text{DS}} \equiv \langle \sigma_{\chi \chi \rightarrow \chi^* \chi^*} v \rangle n_{\chi, \text{tot}},$$

$T_{\text{kd}}$  is defined as:

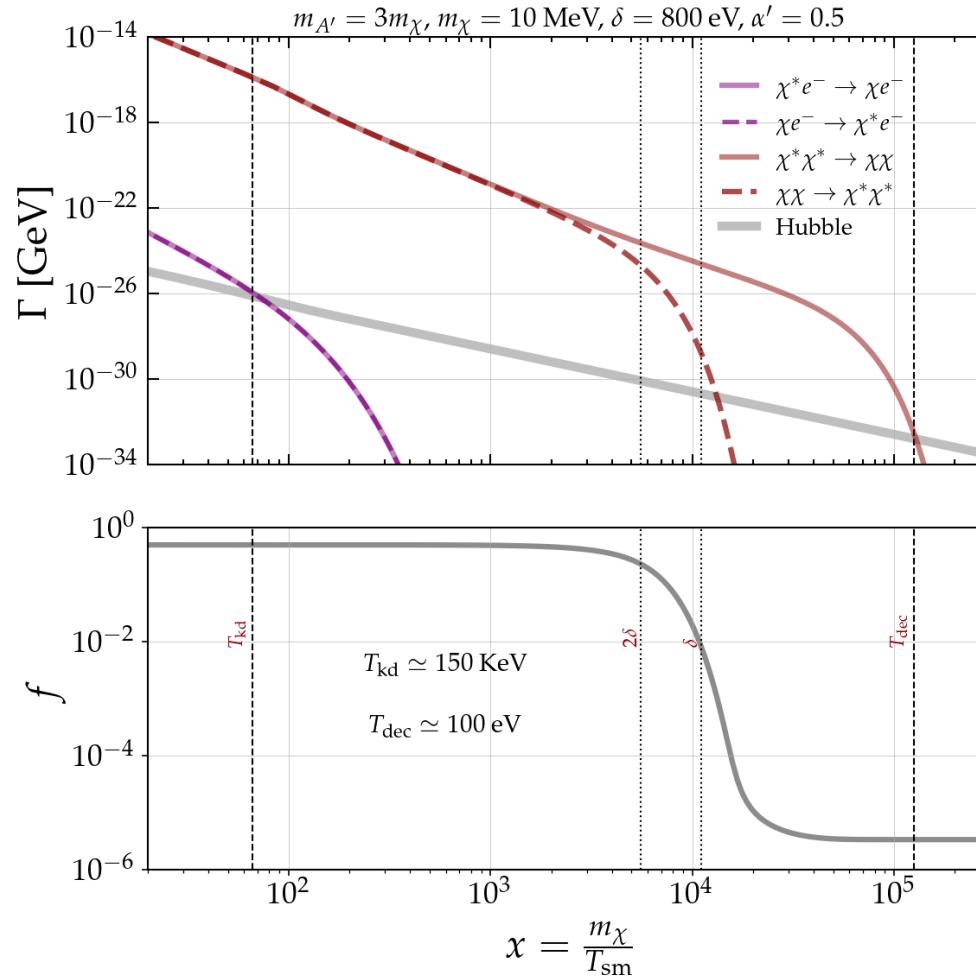
$$\left. \frac{\Gamma_{\uparrow\downarrow}^{\text{SM}}}{H} \right|_{T=T_{\text{kd}}} \simeq 1$$

$$\Gamma_{\downarrow}^{\text{DS}} \equiv \langle \sigma_{\chi^* \chi^* \rightarrow \chi \chi} v \rangle n_{\chi, \text{tot}}.$$

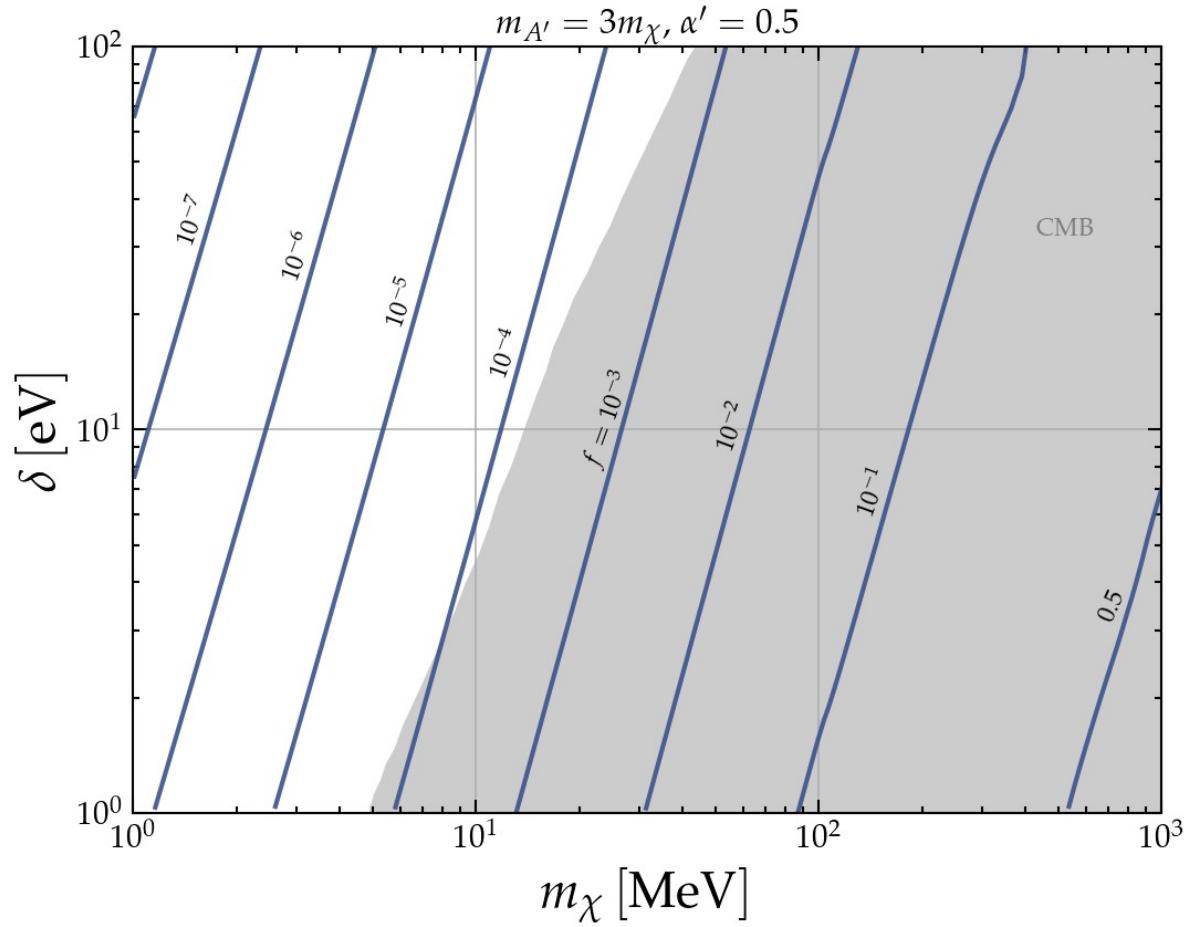
# Preliminary Results



# Preliminary Results



# Preliminary Results

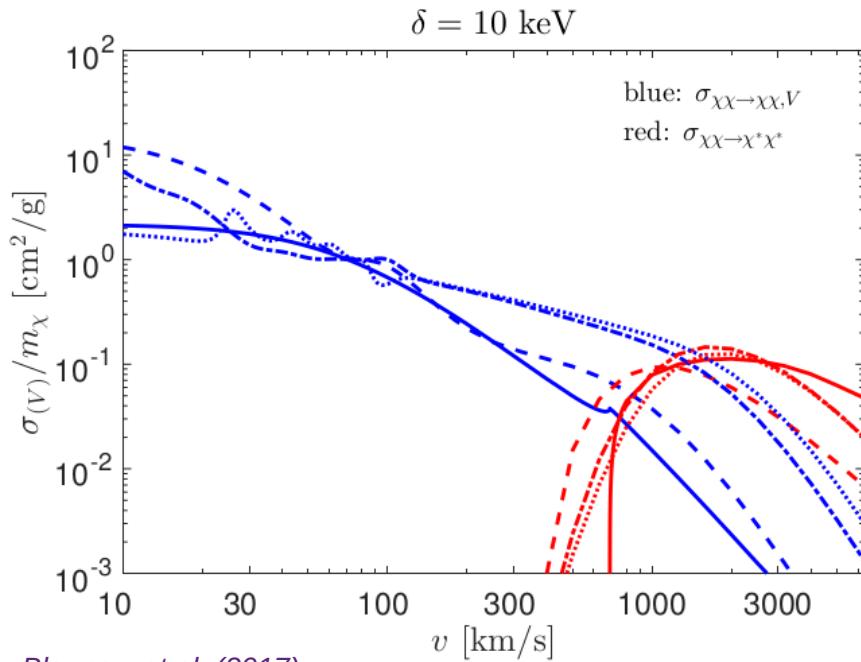
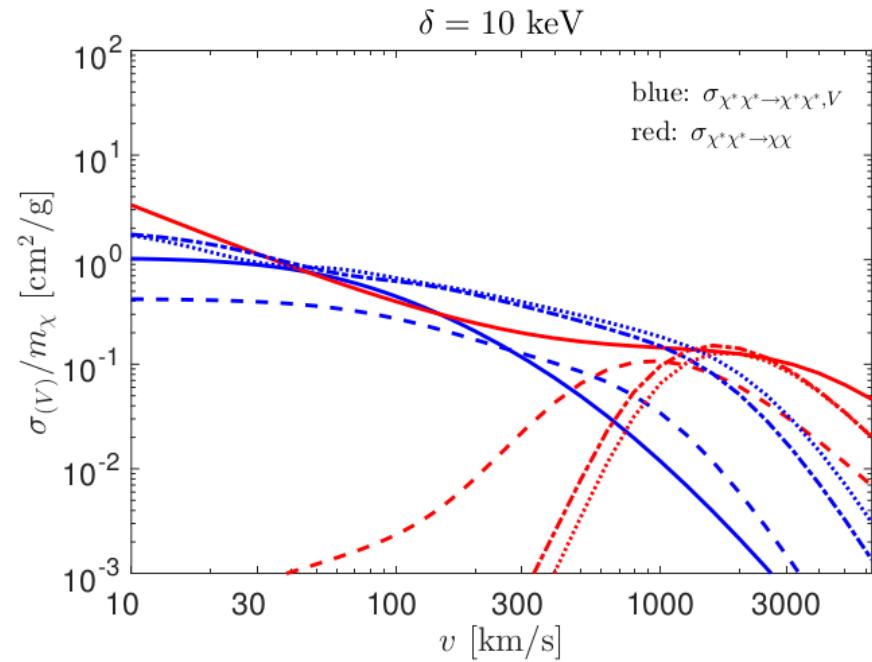


# Summary

- SIDM remains a promising solution to small-scale structure problems.
- Elastic SIDM models face strong constraints from direct detection and CMB.
- Inelastic DM naturally avoids direct detection bounds, relaxes cosmological constraints, and maintains a viable relic density through freeze-out.
- A more detailed analysis is required to the dark sector temperature evolution.

# Thanks

# Back-up



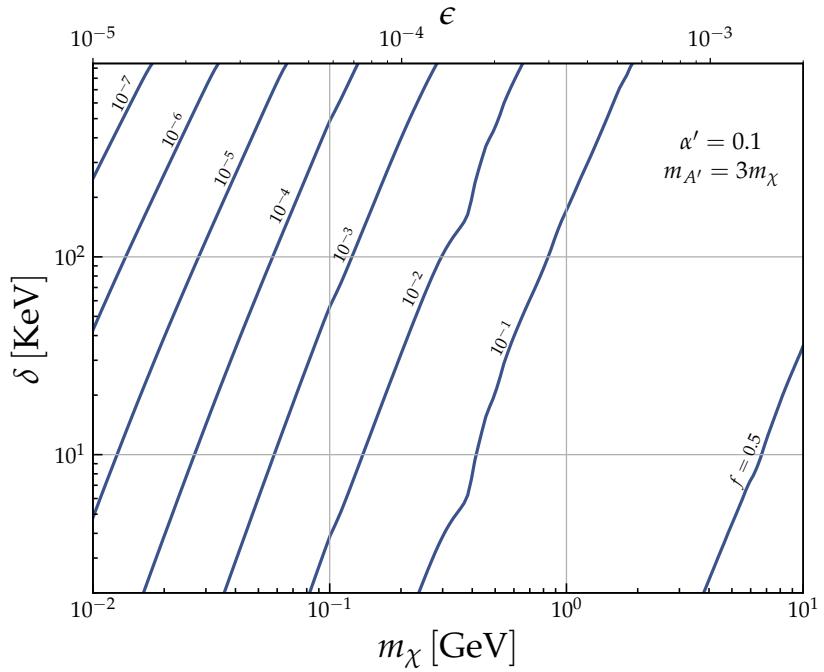
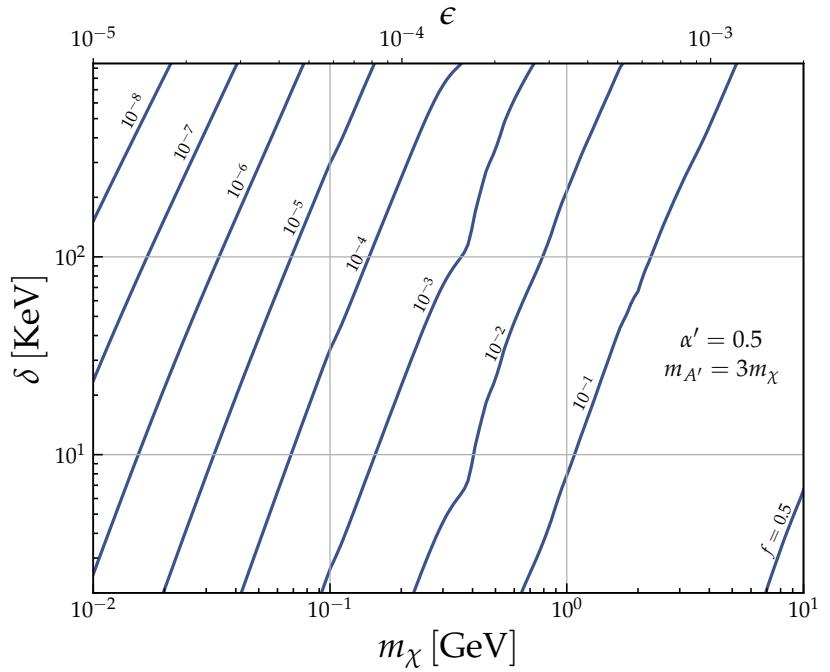
| Benchmark (line style) | $\delta = 10 \text{ keV}$ |          | $\delta = 50 \text{ keV}$ |          | $\delta = 150 \text{ keV}$ |          |
|------------------------|---------------------------|----------|---------------------------|----------|----------------------------|----------|
|                        | $m_\chi$                  | $m_{A'}$ | $m_\chi$                  | $m_{A'}$ | $m_\chi$                   | $m_{A'}$ |
| A (solid)              | 15                        | 1        | 40                        | 1        | 51                         | 1        |
| B (dashed)             | 55                        | 7        | 80                        | 1.5      | 110                        | 1        |
| C (dash-dotted)        | 100                       | 4        | 120                       | 1        | 140                        | 1        |
| D (dotted)             | 140                       | 4        | 160                       | 2        | 180                        | 1.5      |

GeV

MeV

## Observations and constraints on self-interaction cross section per DM mass

| Positive observations                            | $\sigma/m$                           | $v_{\text{rel}}$               | Observation                                                 | Refs.           |
|--------------------------------------------------|--------------------------------------|--------------------------------|-------------------------------------------------------------|-----------------|
| Cores in spiral galaxies<br>(dwarf/LSB galaxies) | $\gtrsim 1 \text{ cm}^2/\text{g}$    | 30 – 200 km/s                  | Rotation curves                                             | [102, 116]      |
| Too-big-to-fail problem                          |                                      |                                |                                                             |                 |
| Milky Way                                        | $\gtrsim 0.6 \text{ cm}^2/\text{g}$  | 50 km/s                        | Stellar dispersion                                          | [110]           |
| Local Group                                      | $\gtrsim 0.5 \text{ cm}^2/\text{g}$  | 50 km/s                        | Stellar dispersion                                          | [111]           |
| Cores in clusters                                | $\sim 0.1 \text{ cm}^2/\text{g}$     | 1500 km/s                      | Stellar dispersion, lensing                                 | [116, 126]      |
| <i>Abell 3827 subhalo merger</i>                 | $\sim 1.5 \text{ cm}^2/\text{g}$     | 1500 km/s                      | DM-galaxy offset                                            | [127]           |
| <i>Abell 520 cluster merger</i>                  | $\sim 1 \text{ cm}^2/\text{g}$       | 2000 – 3000 km/s               | DM-galaxy offset                                            | [128, 129, 130] |
| Constraints                                      |                                      |                                |                                                             |                 |
| Halo shapes/ellipticity                          | $\lesssim 1 \text{ cm}^2/\text{g}$   | 1300 km/s                      | Cluster lensing surveys                                     | [95]            |
| Substructure mergers                             | $\lesssim 2 \text{ cm}^2/\text{g}$   | $\sim 500 – 4000 \text{ km/s}$ | DM-galaxy offset                                            | [115, 131]      |
| Merging clusters                                 | $\lesssim \text{few cm}^2/\text{g}$  | $2000 – 4000 \text{ km/s}$     | Post-merger halo survival<br>(Scattering depth $\tau < 1$ ) | Table II        |
| <i>Bullet Cluster</i>                            | $\lesssim 0.7 \text{ cm}^2/\text{g}$ | 4000 km/s                      | Mass-to-light ratio                                         | [106]           |



# Results

