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The standard cold and collisionless
dark matter model (CDM) successfully
describes the universe on large scales.
However, N-body simulations reveal
discrepancies between CDM
predictions and observations on small
scales, such as the core-cusp problem
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Core - Cusp problem

Standard CDM predicts cuspy
halo profiles with p oc r=! (NFW),
but observations of dwarf
galaxies and clusters favor cored
profiles  with  approximately
constant central density p ~ po
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Core - Cusp problem

Standard CDM predicts cuspy
halo profiles with p oc r=! (NFW),
but observations of dwarf
galaxies and clusters favor cored
profiles  with  approximately
constant central density p ~ po

Self-interacting DM offers a
possible solution to this and
other problems.
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SIDM proposes that collisions between DM
particles thermalize the inner halo,
transferring energy inward and forming a
central core.

SIDM requires o/m, ~ 1 —10cm?/g to
address small-scale structure issues
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* Light mediators must decay before BBN
and are constrained by direct detection.

* Sommerfeld enhanced s-wave annihilations
can conflict with CMB and indirect detection.
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SIDM proposes that collisions between DM
particles thermalize the inner halo,
transferring energy inward and forming a
central core.

SIDM requires o/m, ~ 1 —10cm?/g to
address small-scale structure issues
However for elastic SIDM,

* Light mediators must decay before BBN
and are constrained by direct detection.

* Sommerfeld enhanced s-wave annihilations
can conflict with CMB and indirect detection.

A phenomenologically viable alternative is
inelastic dark matter (iDM)
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Inelastic Dark Matter Model

The dark sector contains a U(1)' gauge symmetry with a gauge
boson A’ with mass ma.

Lnp = [-"X + Ly,
. — . — = 1 —C 1 —C
EX :leMxL + LXREXR — MpX1LXR — 2 LX1 XL — B RXrXR 1 h.C.
1 1 €
Ly=—-A"A,, — B A!
Y 4 Y92 cos By, pv o

It includes a Dirac fermion Xp = XL + Xr



Inelastic Dark Matter Model

After diagonalizing this system, the
mass eigenstates correspond to a
pseudo-Dirac pair X X"



Inelastic Dark Matter Model

After diagonalizing this system, the 1 1
mass eigenstates correspond to a My+ = m%+ Z(m}? —my)% + §(mR+mL)
pseudo-Dirac pair X X~ . The mass

eigenstates and splitting mass

§ = My> — My,

1 1
m, = \/m% + i(mR — mL)Q — —(mR -+ mL)
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Inelastic Dark Matter Model

After diagonalizing this system, the
mass eigenstates correspond to a

pseudo-Dirac pair X X~ . The mass
eigenstates and splitting mass

§ = My> — My,
In our work, we consider that

_ 2
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Inelastic Dark Matter Model

After diagonalizing this system, the 1 1
mass eigenstates correspond to a Myx = mg% + Z(mR —my)? + 5(””«}? +my)
pseudo-Dirac pair X X~ . The mass
eigenstates and splitting mass
§ = My> — My,
In our work, we consider that
my = \/mp + i(mR —my)* — 5(””}? +my)
The coupling to A’ is off-diagonal

Ly Die'A, X"y x + O(8/my)
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Inelastic Dark Matter Model

Phenomenologically Viable iDM

* Suppressed direct detection bounds.
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Phenomenologically Viable iDM

* Suppressed direct detection bounds.

* For my- > my annihilation channels are either

kinematically suppressed relaxing CMB and BBN
constraints.
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Inelastic Dark Matter Model

Phenomenologically Viable iDM

* Suppressed direct detection bounds.

* For my- > my annihilation channels are either
kinematically suppressed relaxing CMB and BBN
constraints.

* The total relic abundance can be generated
through thermal DM production (freeze-out).
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Inelastic Dark Matter Model

Phenomenologically Viable iDM

Thermal iDM, A = 0.1m,, ,m4 = 3m, ,ap = 0.1

* Suppressed direct detection bounds.

fap(my, fmy)*
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* For m,- > my annihilation channels are either
kinematically suppressed relaxing CMB and BBN

constraints. i3 e o :
My,s GV Mongillo, Abdullahi, 2023
* The total relic abundance can be generated T —
. 1077 MiniBooNE P
through thermal DM production (freeze-out). /W/
~ 107 4 ./
* Several experiments projections (e.g., NA64, ERG /
LDMX, Belle II) are sensitive to off-diagonal £ B /
. . Q 10-12 B(%e\' ”/,
interactions. T o &
S /E; ’ Missing Momentum
1071 ;
1016 -3 Pseudo—Dirac DM 16
o = 1o 1 Akesson, Berlin, 2018

m, [MeV]



Cosmic evolution of iDM

Time evolution of iDM

Tt Tia T_f(le‘: time
DM-SM Chemical DM-SM Kinetic DM-DM
Decoupling Decoupling Decoupling

Berlin, Krnjaic, 2023
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Evolution of Excited-States Abundance

After the total freeze-out, the time evolution of the number density of X*

- <Ux*x*%xx "1)”;2(* + <Uxx%x*x* ’1/’)”?(
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Evolution of Excited-States Abundance

Time evolution of the number density of X*
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Evolution of Excited-States Abundance

Time evolution of the number density of X*

~ (T x* > xx v)ni* + (Txx—x*x* U)”i




Evolution of Excited-States Abundance

My + BHN v = — (O vet _yyot U)yx Mot + (T ot _yyv ot V)T Mt

— (O X —xx v)ni* + (Txx—=xx U)”i

We fixed the total number density as My tot = My* + My

- *
We defined the fraction of excited states ~ f= —*— 0<f<0.5
n
X, tot
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Evolution of the Fraction of Excited states

Time evolution of f

d
Y 0 e
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Evolution of the Fraction of Excited states

Time evolution of f

d
d—]; = — (DM T%F2) + [TM(1 —f) + T2(1 — H?]

with

= <c7 spt _yyet v>nei,

DS —
F’r —nx,tot: X — X* Up-scattering (endothermic)

DS
[ = {0y x*—xx V) ixtot -
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Evolution of the Fraction of Excited states

Time evolution of f

d
d—]; = — (DM T%F2) + [TM(1 —f) + T2(1 — H?]

with

SM
V" = <gx*ei%~xei U> et

DS —
FT — <O_X —x*x* U> H’X,tOt )
L= x.tot+ Y —> X Down-scattering (exothermic) 24



Evolution of the Fraction of Excited states
Time evolution of f

d
d—]; = — (DM T%F2) + [TM(1 —f) + T2(1 — H?]

M o TM 6—6/T5m

05 P ~ T2 x 8—25/TX
I = (Oxx—x*x* V) My tot ! v
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Evolution of the Fraction of Excited states

b__

- (TMF4+TF) + [T — /) + T2(1 — H?]

After kinetic decoupling (T < H), the dark sector
> = <0XX—>X*X* v) My tot s and the SM evolve with different temperatures.
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Evolution of the Fraction of Excited states

df 2
vl (TMF4+TF) + [T — /) + T2(1 — H?]

FiM - <Jxei—>x*ei U> Rex DS temperature Tx:

FiM = <Jx*ei—>xei U> Ret B Tem for Tsm > Tid,
F > — <O-XX_>‘X*X* ’U> H,X tot » X f(Tsm) for Tsm < Tka.

Twa is defined as:
SM
h ~ 1

I'=Txq
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Results
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Preliminary Results
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Preliminary
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Summary

SIDM remains a promising solution to small-scale structure problems.

Elastic SIDM models face strong constraints from direct detection and CMB.

Inelastic DM naturally avoids direct detection bounds, relaxes cosmological
constraints, and maintains a viable relic density through freeze-out.

A more detailed analysis is required to the dark sector temperature evolution.
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Benchmark (line style) | my  ma | my  ma | my  ma | oV
A (solid) 5 1 |40 1 | 5lea 1
B (dashed) %t 7 80 1.5 | 110 1
C (dash-dotted) | 100 4 |120 1 | 140 1 | Mev
D (dotted) 140 4 160 2 180 1.5
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Observations and constraints on self-interaction cross section per DM mass

Positive observations o/m Vrel Observation Refs.

Cores in spiral galaxies >1em?/g | 30 —200km/s |Rotation curves [102}|116)]

(dwarf/LSB galaxies)

Too-big-to-fail problem

Milky Way > 0.6 cm?/g 50 km/s Stellar dispersion [110]

Local Group > 0.5 cm?/g 50 km/s Stellar dispersion [111]

Cores in clusters ~0.1 cm?/g 1500 km/s Stellar dispersion, lensing

Abell 3827 subhalo merger| ~ 1.5 cm?/g 1500 km/s DM-galaxy offset [127]

Abell 520 cluster merger ~ 1 cm? /g | 2000 — 3000 km/s |DM-galaxy offset [128,1129]|130]

Constraints

Halo shapes/ellipticity <1lcm?/g 1300 km/s Cluster lensing surveys  [[95]

Substructure mergers <2cm?/g |~ 500 — 4000 km /s DM-galaxy offset

Merging clusters < few cm?/g| 2000 — 4000 km/s |Post-merger halo survival Table|2|
(Scattering depth 7 < 1)

Bullet Cluster < 0.7 cm?/g 4000 km /s Mass-to-light ratio 106

Tulin, Yu (2017)
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Results
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