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Introduction

The standard cold and collisionless 
dark matter model (CDM) successfully 
describes the universe on large scales. 
However, N-body simulations reveal 
discrepancies between CDM 
predictions and observations on small 
scales, such as the core-cusp problem 

Tegmark, 2004
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Introduction

Standard CDM predicts cuspy 
halo profiles with ρ ∝ r−1 (NFW), 
but observations of dwarf 
galaxies and clusters favor cored 
profiles with approximately 
constant central density ρ ∼ ρ0  

Core – Cusp problem

Tulin, Yu, 2017
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but observations of dwarf 
galaxies and clusters favor cored 
profiles with approximately 
constant central density ρ ∼ ρ0 

Core – Cusp problem

Tulin, Yu, 2017

Self-interacting DM offers a 
possible solution to this and 
other problems.
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Introduction
SIDM proposes that collisions between DM 
particles thermalize the inner halo, 
transferring energy inward and forming a 
central core.

SIDM requires                                     to 
address small-scale structure issues
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Introduction
SIDM proposes that collisions between DM 
particles thermalize the inner halo, 
transferring energy inward and forming a 
central core.

SIDM requires                                     to 
address small-scale structure issues

However for elastic SIDM: 
● Light mediators must decay before BBN 

and are constrained by direct detection.
● Sommerfeld enhanced s-wave annihilations 

can conflict with CMB and indirect detection.  
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Introduction
SIDM proposes that collisions between DM 
particles thermalize the inner halo, 
transferring energy inward and forming a 
central core.

Blennow et al. (2017)

SIDM requires                                     to 
address small-scale structure issues

However for elastic SIDM, 
● Light mediators must decay before BBN 

and are constrained by direct detection.
● Sommerfeld enhanced s-wave annihilations 

can conflict with CMB and indirect detection.  
      

A phenomenologically viable alternative is 
inelastic dark matter (iDM)
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Inelastic Dark Matter Model

The dark sector contains a U(1)‘ gauge symmetry with a gauge 
boson A’ with mass mA’.

It includes a Dirac fermion
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After diagonalizing this system, the 
mass eigenstates correspond to a 
pseudo-Dirac pair      

Inelastic Dark Matter Model
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After diagonalizing this system, the 
mass eigenstates correspond to a 
pseudo-Dirac pair      . The mass 
eigenstates and splitting mass

Inelastic Dark Matter Model

In our work, we consider that

The coupling to A’ is off-diagonal
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Inelastic Dark Matter Model
Phenomenologically Viable iDM

● Suppressed direct detection bounds.
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Inelastic Dark Matter Model

● Several experiments projections (e.g., NA64, 
LDMX, Belle II) are sensitive to off-diagonal 
interactions.

Phenomenologically Viable iDM

● Suppressed direct detection bounds.

● For                   annihilation channels are either 
kinematically suppressed relaxing CMB and BBN 
constraints.

● The total relic abundance can be generated 
through thermal DM production (freeze-out).

Akesson, Berlin, 2018

Mongillo, Abdullahi, 2023
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Cosmic evolution of iDM

Berlin, Krnjaic, 2023

Time evolution of iDM
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Evolution of Excited-States Abundance

After the total freeze-out, the time evolution of the number density of
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Evolution of Excited-States Abundance

Time evolution of the number density of
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Evolution of Excited-States Abundance

Time evolution of the number density of



  21

Evolution of Excited-States Abundance

We fixed the total number density as

We defined the fraction of excited states
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Evolution of the Fraction of Excited states

Time evolution of 

with
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Evolution of the Fraction of Excited states

Time evolution of 

with

Up-scattering (endothermic)
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Evolution of the Fraction of Excited states

Time evolution of 

with

Down-scattering (exothermic)
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Evolution of the Fraction of Excited states

Time evolution of 

with
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Evolution of the Fraction of Excited states

After kinetic decoupling              , the dark sector 
and the SM evolve with different temperatures.
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Evolution of the Fraction of Excited states

DS temperature Tx:

Tkd is defined as:
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Preliminary Results
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Preliminary Results
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Preliminary Results
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• SIDM remains a promising solution to small-scale structure problems.

• Elastic SIDM models face strong constraints from direct detection and CMB.

• Inelastic DM naturally avoids direct detection bounds, relaxes cosmological 
constraints, and maintains a viable relic density through freeze-out.

• A more detailed analysis is required to the dark sector temperature evolution.

Summary
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Thanks
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Back-up
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GeV

MeV

Blennow et al. (2017)
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Observations and constraints on self-interaction cross section per DM mass

Tulin, Yu (2017)
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Results
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