
CASE OF GRAVITATIONAL WAVES
The same as for Pulsars will happen for any radiation at a fixed frequency 𝜔𝑒 ⇒ GW will 
experience frequency modulation.  First, let’s consider a monochromatic GW:

ℎ𝐺𝑊 = 𝐴𝑐𝑜𝑠 (𝜔𝑒𝑢 + 𝜑) +𝐴 𝜔𝑒
𝜔𝛿

Υȁ𝑒sin[(𝜔𝑒 ± 𝜔𝛿) 𝑢 + 𝜑)]

• GW emitters could come from inside the 
soliton (not contaminated by dust in the GC)

• Could be more abundant than Pulsars in PTA
• No limitation on observation time (higher 

frequency could be reached)
• Signal from other Galaxies

Signal-to-Noise-Ratio (SNR) of sidebands:
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Dark Matter: where to look?

WIMPs Composite DM“Light” DM“Ultralight” DM PBH, MACHOs
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Many-body effects
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This talk Many-body effects
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ULDM and CDM similar at large-scales

Scale of ~30 Mpc, Schive et al. 1406.6586m ⇠ 10�22 eV



ULDM differs from CDM at small-scales
L =
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Virialized configuration: collection of waves with 
distribution determined by virialization in the galaxy
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The DM potential has coherent oscillations at 
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gravitational potential

pure CDM part
new phenomena at small scales! 

(repulsive effect: “quantum pressure”)

⇢ / m2�2

+ other interactions 
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When vorticity can be neglected

+ other interactions 
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ω
Changes in DF, relaxation, etc.

ϕk ∼ ei(ωt−kx)

Non-relativistic
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New handles to find the nature of DM

� /
Z vmax

0
d3v e�v2/�2

0ei!vte�im~v·~xeif~v + c.c.

Gravitational field also oscillates  
These oscillations inject heat in 

any dynamical situation  
(may be resonantly absorbed)    

Affect streams, binaries,  
halo more prone to collapse,  
splashback radius …  
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!” → ω → ε2 → cos(m(1 + v1)t) cos(m(1 + v2)t) → (cos(m(v1 ↑ v2)t) + cos(2mt))

Kim 2306.13348

<latexit sha1_base64="9GkKcEDC0zpBB8xEnuHlOaOM1yY=">AAACBnicbVDLSgMxFM3UV62vUZciBIvQgpYZkeqy6MZlBfuAzlAyaaYNk8mEJCOUoSs3/oobF4q49Rvc+Tem7Sy0euByD+fcS3JPIBhV2nG+rMLS8srqWnG9tLG5tb1j7+61VZJKTFo4YYnsBkgRRjlpaaoZ6QpJUBww0gmi66nfuSdS0YTf6bEgfoyGnIYUI22kvn0YVvRJVIVegCT0hKIVUc37aVTt22Wn5swA/xI3J2WQo9m3P71BgtOYcI0ZUqrnOkL7GZKaYkYmJS9VRCAcoSHpGcpRTJSfzc6YwGOjDGCYSFNcw5n6cyNDsVLjODCTMdIjtehNxf+8XqrDSz+jXKSacDx/KEwZ1AmcZgIHVBKs2dgQhCU1f4V4hCTC2iRXMiG4iyf/Je2zmluv1W/Py42rPI4iOABHoAJccAEa4AY0QQtg8ACewAt4tR6tZ+vNep+PFqx8Zx/8gvXxDQl6lvU=</latexit>

f(t, k)ω̄(p)ω(p→ k)

SIDM may add extra phenomena

Mass fluctuates!



~̇v +H~v +

✓
~v · r

a

◆
~v = �r

a

✓
V � 1

2m2a2

r2p
⇢

p
⇢

◆
⇢̇+ 3H⇢+

r
a
(⇢~v) = 0

gravitational potential

pure CDM part repulsive term

Schive et al.1407.7762

halo

<latexit sha1_base64="iZnHcmnGj/iwIIDi+IrQRjF4GGQ="></latexit>

ωsol =
ω0(

1 + 0.091
(

r
rc

)2
)8

<latexit sha1_base64="9XkEden6xQ5NtQeUxglka09EPWo="></latexit>

rc → 0.2kpc

(
10→22eV

m

)2 (
109M↑
Msol

)
→ 0.4ωdb

<latexit sha1_base64="Sqv9O8T7TMZ5H3avSAlJVuPiICY="></latexit>

Msol → 1.4↑ 109
(
10→22eV

mDM

)(
Mhalo

1012M↑

) 1
3

Hui et al 2101.11735
Chan et al 2110.11882

there is some scattering
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FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.

as a can be regarded as a constant, the SP equation
can be rewritten into a redshift-independent form by in-
troducing a set of rescaled variables: (τ ′,x′,ψ′, V ′) ≡
(a1/2τ, a1/4x,ψ, a1/2V ). It follows that the soliton ra-
dius in the comoving (unprimed) coordinates scales as
a−1/4 for a fixed peak core density. Figure 1 shows the
density profiles of typical halos in the simulations at five
different epochs, z = 12.0, 8.0, 2.2, 0.9 and 0.0, in the
unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M⊙. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M⊙ are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-

New handles to find the nature of DM

core structure (“soliton”) 
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Where to look for these features?



GRAVITATIONAL REDSHIFT
Because of the inhomogeneities of the gravitational 

background along the line of sight a signal experiences 
gravitational redshift 

Δ𝜔𝑒
𝜔𝑒

≃ Φȁ𝑒𝑟 + 𝑛𝑖 𝑣𝑖ȁ𝑒𝑟 − 𝐼𝑖𝑆𝑊 where 

𝐼𝑖𝑆𝑊 = Φ +Ψ ȁ𝑒𝑟 + 𝑛𝑖 𝑒׬
𝑟 𝜕𝑖 Φ + Ψ 𝑑𝜆

The DM background oscillates, then the gravitational 
potentials also oscillate.

Decomposing Ψ = Ψ + 𝛿Ψcos 𝜔𝛿𝑡 as well as for Φ, 
from Einstein equations one finds 

𝛿Ψ = − 𝜋𝜌
𝑚2 and 𝜔𝛿 = 2𝑚

Periodic modulation in the time of arrival residuals of 
millisecond Pulsars

Δ𝑡 ≃ 0׬−
𝑡 Δ𝜔𝑒 𝑡′

𝜔𝑒
𝑑𝑡′ ≃ 0׬−

𝑡(Ψ𝑒−Ψ𝑟) 𝑑𝑡′

𝑓𝑙𝑜𝑤 =
1

𝑇𝑜𝑏𝑠
𝑓ℎ𝑖𝑔ℎ =

1
𝛿𝑡𝑜𝑏𝑠

𝑇𝑜𝑏𝑠 ∼ 25 𝑦𝑒𝑎𝑟𝑠 𝛿𝑡𝑜𝑏𝑠 ∼ 3 𝑤𝑒𝑒𝑘𝑠

Clemente et al. 2023, 2306.16228

Khmelnitsky & 
Rubakov 1309.5888
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GRAVITATIONAL REDSHIFT
Because of the inhomogeneities of the gravitational 

background along the line of sight a signal experiences 
gravitational redshift 

Δ𝜔𝑒
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The DM background oscillates, then the gravitational 
potentials also oscillate.

Decomposing Ψ = Ψ + 𝛿Ψcos 𝜔𝛿𝑡 as well as for Φ, 
from Einstein equations one finds 

𝛿Ψ = − 𝜋𝜌
𝑚2 and 𝜔𝛿 = 2𝑚

Periodic modulation in the time of arrival residuals of 
millisecond Pulsars
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Models with ULDM coupled to SM (& SIDM)
gµ⌫dx

µdx⌫ ⇡ �(1� 2�)dt2 + (1 + 2 )�ij dxi dxj ,

if all fields couple as

DB, Gasparotto, Vicente, 2410.07330
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2• Linear

• Quadratic

Effective amplitude of the fluctuations
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CASE OF GRAVITATIONAL WAVES
The same as for Pulsars will happen for any radiation at a fixed frequency 𝜔𝑒 ⇒ GW will 
experience frequency modulation.  First, let’s consider a monochromatic GW:

ℎ𝐺𝑊 = 𝐴𝑐𝑜𝑠 (𝜔𝑒𝑢 + 𝜑) +𝐴 𝜔𝑒
𝜔𝛿

Υȁ𝑒sin[(𝜔𝑒 ± 𝜔𝛿) 𝑢 + 𝜑)]

• GW emitters could come from inside the 
soliton (not contaminated by dust in the GC)

• Could be more abundant than Pulsars in PTA
• No limitation on observation time (higher 

frequency could be reached)
• Signal from other Galaxies

Signal-to-Noise-Ratio (SNR) of sidebands:

𝑆𝑁𝑅𝛿 =
1
2
𝜔𝑒

𝜔𝛿
Υ 𝜌0,𝑚, 𝑥𝑒 𝑆𝑁𝑅ℎ

Amplitude of 
the modulation

of the
carrier

carrier frequency modulation
frequency

Look at María José 
Bustamante-Rosell 2021

ULDM modulates signals
© S. Gasparotto
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ULDM modulation of gravitational waves
DB, Gasparotto, Vicente, 2410.07330
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Newtonian Potential

fluctuating gravitational potentials affect gravitationally bound systems

External Gravitational Potential 

possible resonances at  =n/Pf

h ⇠ cos(2⇡ft)
r ⇠ e cos(2⇡t/P )

New ULDM handle II: resonant absorption (binaries)
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New ULDM handles II: resonant absorption
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New ULDM handles II: resonant absorption
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Generates fluctuating fields and stationary galactic gravitational potentials

Generates coherent cores at high density (solitons)
3

FIG. 1: Density profiles of ψDM halos. Dashed lines with
various opened symbols show five examples at different red-
shifts between 12 ≥ z ≥ 0. The DM density is normalized to
the cosmic background density. A distinct core forms in ev-
ery halo as a gravitationally self-bound object, satisfying the
redshift-dependent soliton solution (solid lines) upon proper
λ scaling. As a convergence test, filled circles show the same
z = 0 halo (the most massive one) but with eight times higher
resolution. Filled diamonds show an example from the soliton
collision simulations arbitrarily renormalized to the comoving
coordinates at z = 0. The same z = 8 halo in a CDM simu-
lation (filled squares) fit by an NFW profile (dot-dashed line)
is also shown for comparison.

as a can be regarded as a constant, the SP equation
can be rewritten into a redshift-independent form by in-
troducing a set of rescaled variables: (τ ′,x′,ψ′, V ′) ≡
(a1/2τ, a1/4x,ψ, a1/2V ). It follows that the soliton ra-
dius in the comoving (unprimed) coordinates scales as
a−1/4 for a fixed peak core density. Figure 1 shows the
density profiles of typical halos in the simulations at five
different epochs, z = 12.0, 8.0, 2.2, 0.9 and 0.0, in the
unprimed coordinates. The agreements of the simulation
data to both the λ and a scalings are excellent.
A question naturally arises concerning the relation be-

tween solitonic cores and their host halos. Aided by our
structure formation simulations, we find all collapsed ob-
jects approximately follow a redshift-dependent core-halo
mass relation,

Mc ∝ a−1/2M1/3
h . (4)

The halo virial mass is defined as Mh ≡
(4πx3

vir/3)ζ(z)ρm0, where xvir is the comoving virial
radius and ζ(z) ≡ (18π2 + 82(Ωm(z)− 1)− 39(Ωm(z) −
1)2)/Ωm(z) ∼ 350 (180) at z = 0 (z ≥ 1) [64]. Note

FIG. 2: Core-halo mass relation. Different filled symbols show
halos at different epochs in the 2 and 40 Mpc simulations,
and open symbols represent the 20 Mpc simulation. Crosses
trace the evolution of a single halo. Dashed line shows the
analytical prediction given by Eq. (6) (see text for details).

that this definition of virial mass is the same as that for
CDM. This is because once an object exceeds the Jeans
mass on its way to collapse, the dynamics is almost
identical to the cold collapse, for which the Eikonal
approximation of wave dynamics to particle dynamics
holds until virialization takes place. Figure 2 shows this
scaling relation over three orders of magnitude in halo
mass from 108 to 5 × 1011 M⊙. We demonstrate the
redshift evolution by showing coalescence of the core-
halo mass relations of halos at different epochs between
10 > z > 0 as well as the evolutionary trajectory of a
single halo. Note that low-redshift, massive halos in the
2 Mpc runs show a relatively larger scatter, which could
be due to the small box effect, while massive halos in
the 20 Mpc run do converge to our analytical prediction.
In all cases the deviation of the core mass from Eq. (4)
is less than a factor of two. Also note that the halos in
the simulations with a mass several times 108 M⊙ are
found to be dominated by the central solitons, a key for
estimating the minimum halo mass as will be discussed
later.

To understand this core-halo mass relation, we further
conduct a set of controlled numerical experiments, where
multiple solitons are initially placed randomly with zero
velocity and start to merge until the systems relax. Soli-
tons are chosen as a convenient initial condition for their
stability. Here we assume a = const. and zero back-
ground density. We would like to know whether the core-
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Generates fluctuating fields and stationary galactic gravitational potentials

SIDM:  extended cores,  direct effect in the bodies
These fluctuations affect all motion (gravitational dynamics)

Outlook

Generates coherent cores at high density (solitons)

What do they do for very cold, dense, balanced, resonating…
configurations in your simulations?
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ULDM modifies time of arrival in pulsar signals

flow =
1

Tobs
, fhigh =

1

�tobs

GRAVITATIONAL REDSHIFT
Because of the inhomogeneities of the gravitational 

background along the line of sight a signal experiences 
gravitational redshift 

Δ𝜔𝑒
𝜔𝑒

≃ Φȁ𝑒𝑟 + 𝑛𝑖 𝑣𝑖ȁ𝑒𝑟 − 𝐼𝑖𝑆𝑊 where 

𝐼𝑖𝑆𝑊 = Φ +Ψ ȁ𝑒𝑟 + 𝑛𝑖 𝑒׬
𝑟 𝜕𝑖 Φ + Ψ 𝑑𝜆

The DM background oscillates, then the gravitational 
potentials also oscillate.

Decomposing Ψ = Ψ + 𝛿Ψcos 𝜔𝛿𝑡 as well as for Φ, 
from Einstein equations one finds 

𝛿Ψ = − 𝜋𝜌
𝑚2 and 𝜔𝛿 = 2𝑚

Periodic modulation in the time of arrival residuals of 
millisecond Pulsars

Δ𝑡 ≃ 0׬−
𝑡 Δ𝜔𝑒 𝑡′

𝜔𝑒
𝑑𝑡′ ≃ 0׬−

𝑡(Ψ𝑒−Ψ𝑟) 𝑑𝑡′

𝑓𝑙𝑜𝑤 =
1

𝑇𝑜𝑏𝑠
𝑓ℎ𝑖𝑔ℎ =

1
𝛿𝑡𝑜𝑏𝑠

𝑇𝑜𝑏𝑠 ∼ 25 𝑦𝑒𝑎𝑟𝑠 𝛿𝑡𝑜𝑏𝑠 ∼ 3 𝑤𝑒𝑒𝑘𝑠

Clemente et al. 2023, 2306.16228

Khmelnitsky & 
Rubakov 1309.5888



Properties of the soliton

spherically symmetric stationary, non-relativistic solution:

4

with kinetic (potential) energy Ek (Ep). For the ansatz
(5), integrating by parts and using Eqs. (3-5) we have

E =
1

3
M �. (20)

Note that spherical symmetry is not needed for Eq. (20)
to hold.

Considering the �� solitons, we find Ep,� = �2Ek,� =
2E� with

E� ⇡ �0.476 �
3
M

2
pl

m
, (21)

M� ⇡ 2.06 �
M

2
pl

m
. (22)

This leads to a relation for an isolated soliton [4, 5],

M�

(M2
pl

/m)
⇡ 2.64

�����
E�

(M2
pl

/m)

�����

1
3

. (23)

Another useful relation gives the energy per unit mass
from the scaling parameter �,

|E�|

M�

⇡ 0.23 �
2
, (24)

which can also be written as

M� ⇡ 4.3

✓
|E�|

M�

◆ 1
2 M

2
pl

m
. (25)

The circular velocity curve for a test particle in the
soliton gravitational potential is given by

V
2
circ,�(r) = r@r��(r). (26)

The circular velocity rises as Vcirc,� / r at small r and

decreases as Vcirc,� / r
� 1

2 at large r, see Fig. 1. The
peak of Vcirc is obtained at

xpeak,� ⇡ 0.16 �
�1

⇣
m

10�22 eV

⌘�1
pc (27)

⇡ 460
⇣

m

10�22 eV

⌘�2
✓

M�

109 M�

◆�1

pc,

and the peak velocity is

maxVcirc,� ⇡ 2.3 ⇥ 105
� km/s (28)

⇡ 83
⇣

m

10�22 eV

⌘✓
M�

109 M�

◆
km/s.

III. MAKING CONTACT WITH NUMERICAL
SIMULATIONS

We now discuss results from the numerical simula-
tions of three di↵erent groups, Refs. [6, 7], Ref. [13], and
Refs. [10, 11].

The first point to note is that soliton configurations,
in a form close to the idealised form discussed in Sec. II,
actually occur dynamically in the central region of the

halo in the numerical simulations4. In Fig. 2 we col-
lect representative density profiles from Ref. [6] (blue),
Ref. [13] (orange), and Ref. [10] (green). We refer to
those papers for more details on the specific set-ups in
each simulation. To make Fig. 2, in each case, we find
the � parameter that takes the numerical result into the
�1 soliton, rescale the numerical result accordingly and
present it in comparison with the analytic �

2
1(r) profile.

r

�
2(r)

Schive et al (2014) 
Mocz et al (2017) 
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FIG. 2. Review of results from numerical simulations by
di↵erent groups. Markers show density profiles of simulated
halos from Schive et al. [6] (blue circles), Mocz et al. [13]
(orange squares), and Schwabe et al. [10] (green triangles).
The central regions of the halos are described by the soliton
(solid line).

While di↵erent groups agree that solitons form in the
centers of halos, they do not appear to agree on the
matching between the inner soliton profile and the host
halo. Refs. [6, 7] and Ref. [13] reported scaling relations
between the central soliton and the host halo. As we show
below, the scaling relations found by both groups are con-
nected to properties of a single, isolated, self-gravitating
soliton (part of these observations were made in [10, 11]).

A. Soliton vs. host halo: the simulations of
Ref. [6, 7]

At cosmological redshift z = 0, the numerical simula-
tions of [6, 7] yield approximately NFW-like halos which
transit, in the central region, into a core with core radius
and mass density

xc ⇡ 160

✓
Mh

1012 M�

◆� 1
3 ⇣ m

10�22 eV

⌘�1
pc, (29)

⇢(x) ⇡

190
�

m

10�22 eV

��2
⇣

xc
100 pc

⌘�4

✓
1 + 0.091

⇣
x

xc

⌘2
◆8 M� pc�3

, (30)

4
The first simulations of cosmological ULDM galaxies [33] did not

have su�cient resolution to resolve the central core.

i@t = � 1

2m
� +m�N 

��N = 4⇡G| |2
�(x, t) =

1p
2m

e�imt (x, t) + c.c.

v ⌧ c, ! ⌧ m

e.g. Bar, DB, Blum, Sibiryakov 18

Properties of the soliton 

3

with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |. The field  

satisfies the Schroedinger-Poisson (SP) equations [32]

i@t = �
1

2m
r

2
 + m� , (3)

r
2� = 4⇡G| |

2
. (4)

We look for a quasi-stationary phase-coherent solution,
described by the ansatz3

 (x, t) =

✓
mMpl
p

4⇡

◆
e
�i�mt

�(x). (5)

The ULDM mass density is

⇢ =
(mMpl)

2

4⇡
�

2 (6)

⇡ 4.1 ⇥ 1014
⇣

m

10�22 eV

⌘2
�

2 M�/pc3
.

The parameter � is proportional to the ULDM energy
per unit mass Validity of the non-relativistic regime re-
quires |�| ⌧ 1, and since we are looking for gravitation-
ally bound configurations, � < 0.

Assuming spherical symmetry and defining r = mx,
the SP equations for � and � are given by

@
2
r

(r�) = 2r (� � �)�, (7)

@
2
r

(r�) = r�
2
. (8)

Finding the ground state solution amounts to solving
Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.

It is convenient to first solve Eqs. (7-8) with the initial
condition �(0) = 1. Let us call this auxiliary solution
�1(r), with �1. A numerical calculation gives [4, 5, 8]

�1 ⇡ �0.69, (9)

and the solution is plotted in Fig. 1. The mass of the �1

soliton is

M1 =
M

2
pl

m

Z 1

0
drr

2
�

2
1(r) (10)

⇡ 2.79 ⇥ 1012
⇣

m

10�22 eV

⌘�1
M�.

Its core radius, defined as the radius where the mass den-
sity drops by a factor of 2 from its value at the origin,
is

xc1 ⇡ 0.082
⇣

m

10�22 eV

⌘�1
pc. (11)
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FIG. 1. Profile of the “standard” �1 soliton with � = 1 (blue
solid). We also show the corresponding gravitational potential
(orange dashed) and circular velocity of a test particle (dotted
green).

Other solutions of Eqs. (7-8) can be obtained from
�1(r), �1(r) by a scale transformation. That is, the func-
tions ��(r), ��(r), together with the eigenvalue ��, given
by

��(r) = �
2
�1(�r), (12)

��(r) = �
2�1(�r), (13)

�� = �
2
�1, (14)

also satisfy Eqs. (7-8) with correct boundary conditions
for any � > 0. The soliton mass and core radius for ��

are

M� = �M1, (15)

xc� = �
�1

xc1. (16)

A mnemonic for the numerical value of � is given by

� = 3.6 ⇥ 10�4
⇣

m

10�22 eV

⌘✓
M�

109 M�

◆
. (17)

The product of the soliton mass and core radius is inde-
pendent of �,

M�xc� ⇡ 2.27 ⇥ 108
⇣

m

10�22 eV

⌘�2
kpc M�. (18)

Formally, solutions exist for any positive value of � and
hence for any soliton mass. However, if we select � & 1
we reach |��| > 1, outside of the regime of validity of
the non-relativistic approximation. Thus, self-consistent
solutions are limited to � ⌧ 1 and their eigenvalue
|��| = �

2
|�1| ⌧ 1, consistent with the non-relativistic

approximation.
The energy in an arbitrary non-relativistic ULDM con-

figuration is

E =

Z
d
3
x

 
|r |

2

2m2
+

� | |
2

2

!
= Ek + Ep, (19)
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with complex field  that varies slowly in space and time,
such that |r | ⌧ m| | and | ̇| ⌧ m| |. The field  

satisfies the Schroedinger-Poisson (SP) equations [32]
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The parameter � is proportional to the ULDM energy
per unit mass Validity of the non-relativistic regime re-
quires |�| ⌧ 1, and since we are looking for gravitation-
ally bound configurations, � < 0.
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the SP equations for � and � are given by

@
2
r

(r�) = 2r (� � �)�, (7)

@
2
r

(r�) = r�
2
. (8)
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Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.
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FIG. 1. Profile of the “standard” �1 soliton with � = 1 (blue
solid). We also show the corresponding gravitational potential
(orange dashed) and circular velocity of a test particle (dotted
green).

Other solutions of Eqs. (7-8) can be obtained from
�1(r), �1(r) by a scale transformation. That is, the func-
tions ��(r), ��(r), together with the eigenvalue ��, given
by
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also satisfy Eqs. (7-8) with correct boundary conditions
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with complex field  that varies slowly in space and time,
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The parameter � is proportional to the ULDM energy
per unit mass Validity of the non-relativistic regime re-
quires |�| ⌧ 1, and since we are looking for gravitation-
ally bound configurations, � < 0.
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Eqs. (7-8) subject to �(r ! 0) = const, �(r ! 1) = 0,
with no nodes. Given the initial value of � at r ! 0, the
solution is found for a unique value of �.
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condition �(0) = 1. Let us call this auxiliary solution
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Figure 5. Core–halo relation scaled to 𝐿𝑀2 = 8 × 10−23 eV via eq. (3). Green
dots are haloes simulated in this work with cores resolved by at least 3ω𝑁.
Purple and and faint purple dots are haloes from the large-box cosmological
simulation (May & Springel 2021) with cores resolved by at least 2ω𝑁 and
ω𝑁 respectively. The pink shaded region is enclosed by the empirical fits to
the purple and green dots, with the maximum and minimum values of the
parameters in eq. (11). The solid dotted line corresponds to the soliton-only
relation obtained from a pure core profile. The black and orange dashed lines
are fitting relations corresponding to the black and orange dots obtained from
Schive et al. (2014b) and Nori & Baldi (2021)4respectively.

et al. (2014b), indicates the diversity of the cored NFW structure in
the FDM simulations. For example, Figure 3 highlights two profiles
of haloes with similar core mass 𝐿c ∼ 5 × 107 M$ , but different halo
mass. The tight ‘one-to-one’ core–halo relations found by different
groups, with different slopes, therefore only describe a part, but not
all populations of haloes in the FDM model.

We suggest an empirical equation that has the following form:
𝐿c = 𝑀 + (𝐿𝑂/𝑁)𝑃. The parameter 𝑀 takes the limit of the relation
for small halo masses into account, although low-mass haloes are
rare in a FDM universe due to the suppression in the initial power
spectrum. 𝑂 is the slope that can be compared to previous works. After
including the scaling symmetry in eq. (3) and the redshift dependence
according to Schive et al. (2014b), we have

𝑃1/2𝐿c = 𝑀

(
𝑄𝑅2

8 × 10−23 eV

)−3/2

+
(√

𝑆 (𝑇)
𝑆 (0)

𝐿h
𝑁

)𝑃 (
𝑄𝑅2

8 × 10−23 eV

)3(𝑃−1)/2
M$ .

(15)

The best-fit parameters for the haloes from the large-box cosmo-
logical simulation give 𝑀 = 8.00+0.52

−6.00 × 106 M$ , log10 (𝑁/M$) =
−5.73+2.38

−8.38 and 𝑂 = 0.515+0.130
−0.189, which is shown as a pink shaded

region in Figure 5.
The effect of the large dispersion is encompassed in the uncertainty

4 We adopted parameters resulting from the varying exponents analysis
without sub-sampling restrictions.

of the model parameters. This uncertainty is not the statistical un-
certainty of the fit, but an ‘overestimation’ of the uncertainty in the
parameters that can reflect the large dispersion of the data. Indeed,
the statistical uncertainty would be the incorrect quantity to consider
in this case, since we do not assume that there is an underlying
‘true’ set of values for the parameters with statistical fluctuations, but
rather propose that different halo populations could systematically
follow different relations depending on their histories and properties
(see section 4.2.1). To obtain a more appropriate description of the
core–halo diversity, we employed kernel density estimation (KDE),
estimating the probability distribution function of the core masses
with respect to the central value of the corresponding binned halo
mass. Each of these distributions reveals the dispersion of core masses
for each halo mass.5 We then obtain the minimum and maximum
curves 𝐿c (𝐿h) that fit all of these distributions, and extract the
minimum and maximum vales for the parameters 𝑈, 𝑁 and 𝑂 from
these curves. The difference to the global fit is our uncertainty in the
parameters.

Nori & Baldi (2021); Mocz et al. (2017); Schive et al. (2014b)
determined slopes 𝑂 of 0.6, 0.556 and 0.333, respectively. Given the
large dispersion seen in our data, all of these slopes are compatible
when taking into account the uncertainty we assigned to the fitting
parameters. So when considering the fitting function we propose, all of
the other cases in the literature are covered as well. We emphasise that
our results show that a general halo population is not well-described by
any single one-to-one core–halo mass relation. Further investigation is
required to determine which halo populations follow which relations
(if any), and under what conditions – cf. section 4.2.1.

This large spread and uncertainty in the fitting function can affect
the constraints on the FDM mass obtained from these relations. Here,
we provide a rough estimate of the error. For the same halo mass
𝐿h = 109 M$ in Figure 5, we can have the least massive core mass as
𝐿c = 3 × 107 M$ and the most massive as 𝐿c = 108 M$ . Applying
these values to the core density in eq. (8) gives a 50 % difference
in particle mass 𝑄. Therefore, any observational constraints made
using the relation eq. (11) should include an additional uncertainty
on the order of 50 % in the results, unless the halo mass is smaller
than 109 (8 × 10−23 eV/(𝑄𝑅2))3/2 M$ . Therefore, when obtaining
the FDM mass using the core–halo relation, one needs to take into
account the dispersion of these values, shown in the uncertainty in
the fitting parameters, which will translate to a higher uncertainty in
the FDM mass.

We now scrutinize whether the scatter of the core–halo relation
has an influence on the FDM mass constraints through a dynamical
analysis for dwarf galaxies, as has been performed in the literature
when fitting the presence of a core in such galaxies. To this end, we
apply the spherical Jeans analysis to the kinematic data of the Fornax
dwarf spheroidal galaxy, which has the largest data set among the
Galactic dwarf satellites. We perform the Jeans analysis6 using two
different core–halo relations, which are suggested by Schive et al.
(2014b) and this work, and then we map the posterior probability
distributions of the FDM mass through the Markov Chain Monte
Carlo (MCMC) technique based on Bayesian statistics. Comparing
the posteriors, there is no clear difference in the shape of those
distributions, including that of FDM mass, but this is due to the
fact that there exists a degeneracy between halo mass and FDM

5 We can provide the distribution of core masses for each halo mass bin by
request for those interested.
6 For the dynamical analysis we adopt in this work, the interested reader may
find further details in Hayashi et al. (2021).
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