

New ideas to find ultralight dark matter in astrophysical data

Diego Blas

w/ Gasparotto & Vicente
e-Print: 2410.07330 [hep-ph]

w/ Bourguin, Foster, Hees, Herrero, Jenkins, Xue
e-Print: arXiv: 2504.15334 [astro-ph.CO],
arXiv:2504.16988 [gr-qc], 2506.11802 [gr-qc]

TACOMA BRIDGE COLLAPSE

PATHE GAZETTE

TACOMA BRIDGE COLLAPSE

PATHE GAZETTE

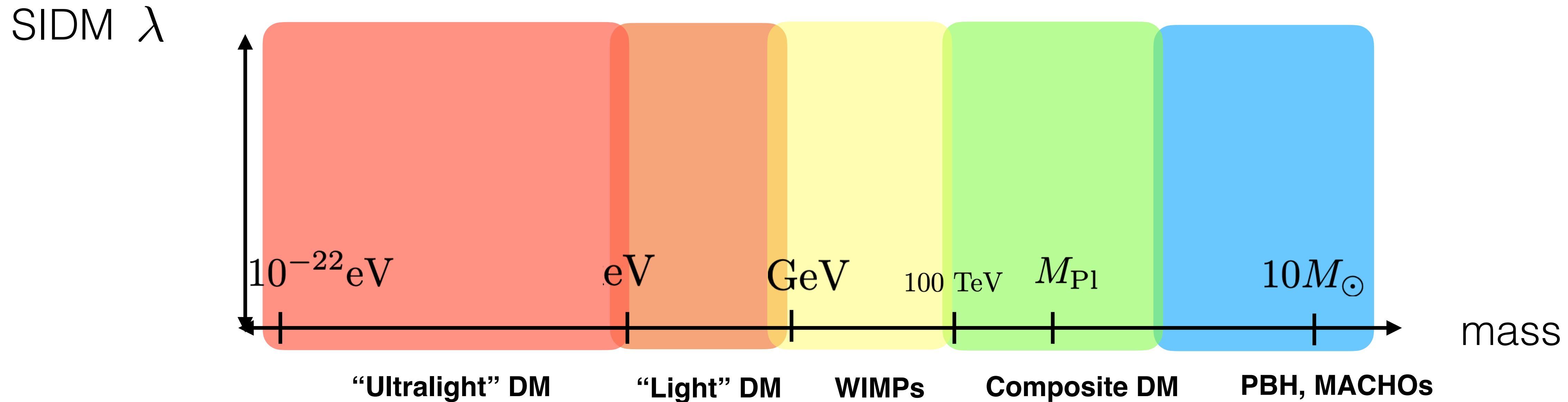
TACOMA BRIDGE COLLAPSE

Small fluctuations may generate large effects

TACOMA BRIDGE COLLAPSE

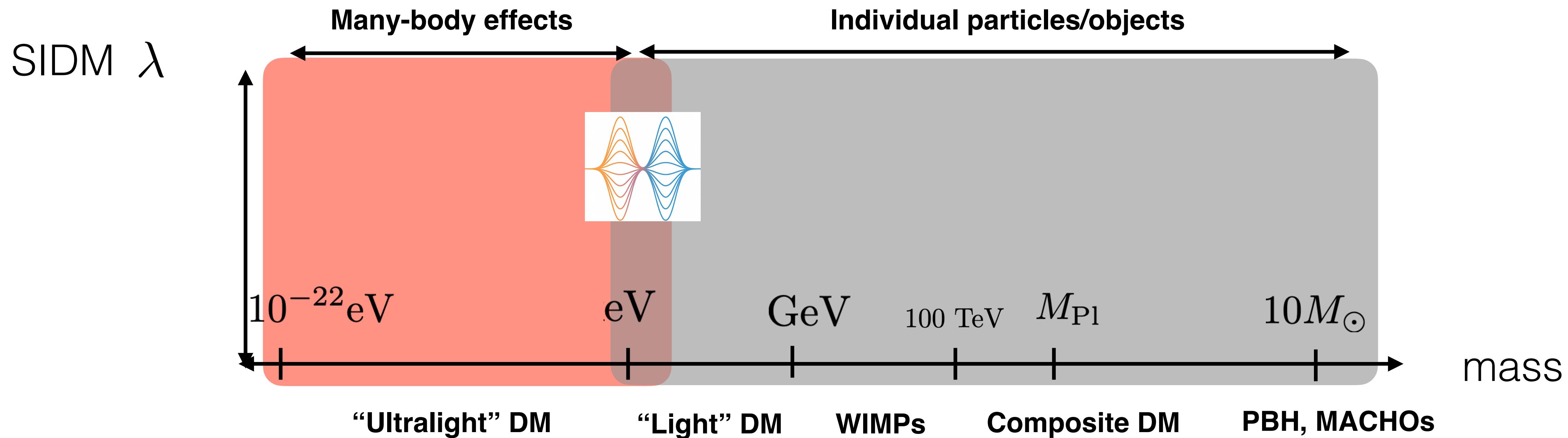
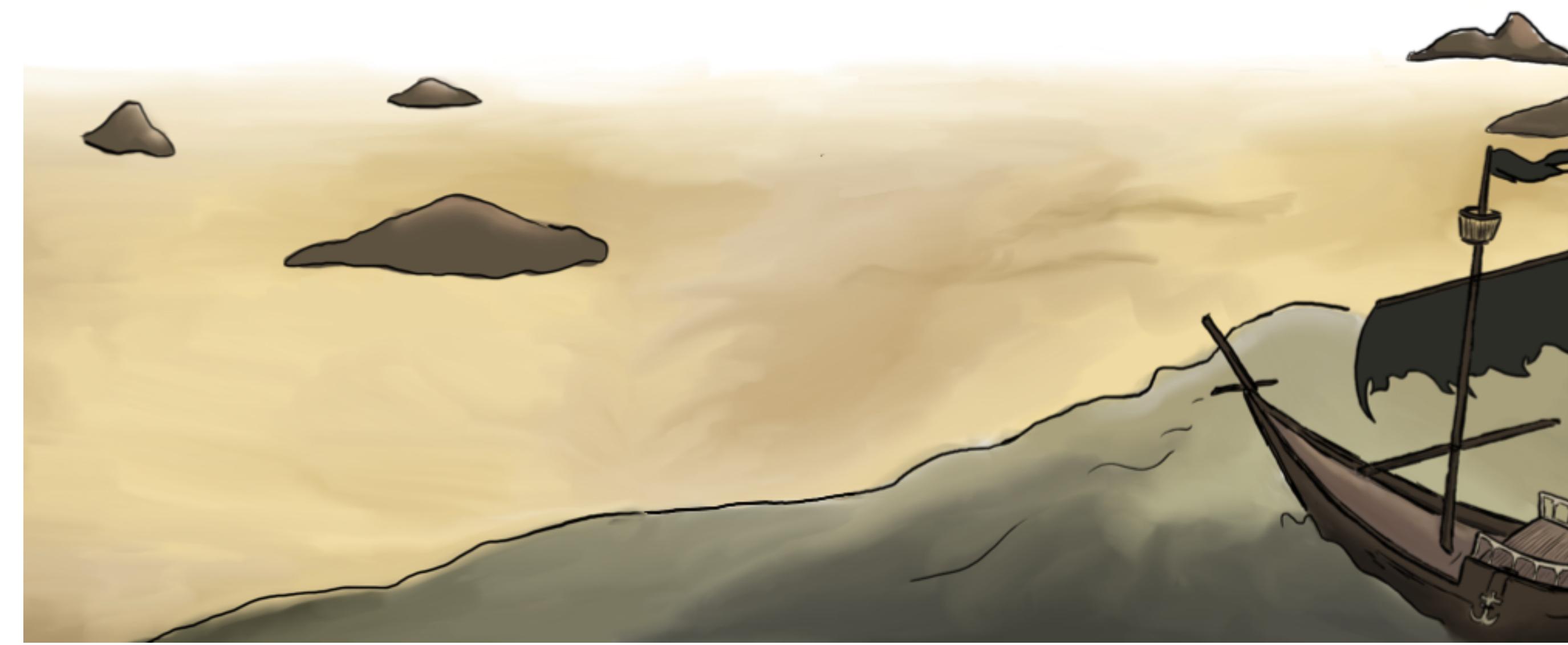
Small fluctuations may generate large effects

Dark Matter: where to look?

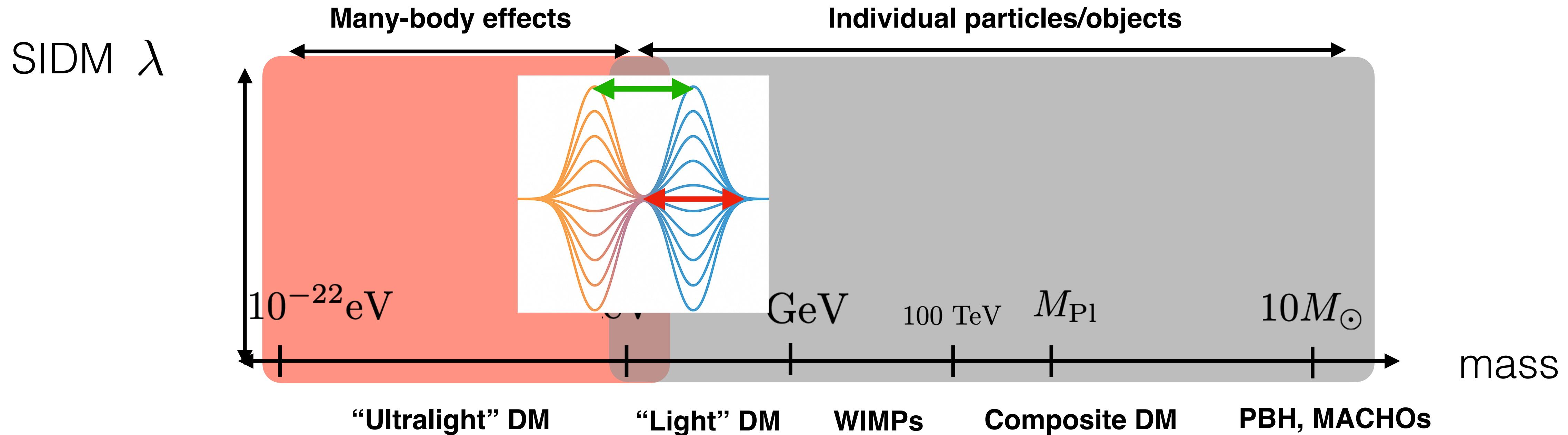


© Clara Murgui

Dark Matter: where to look?



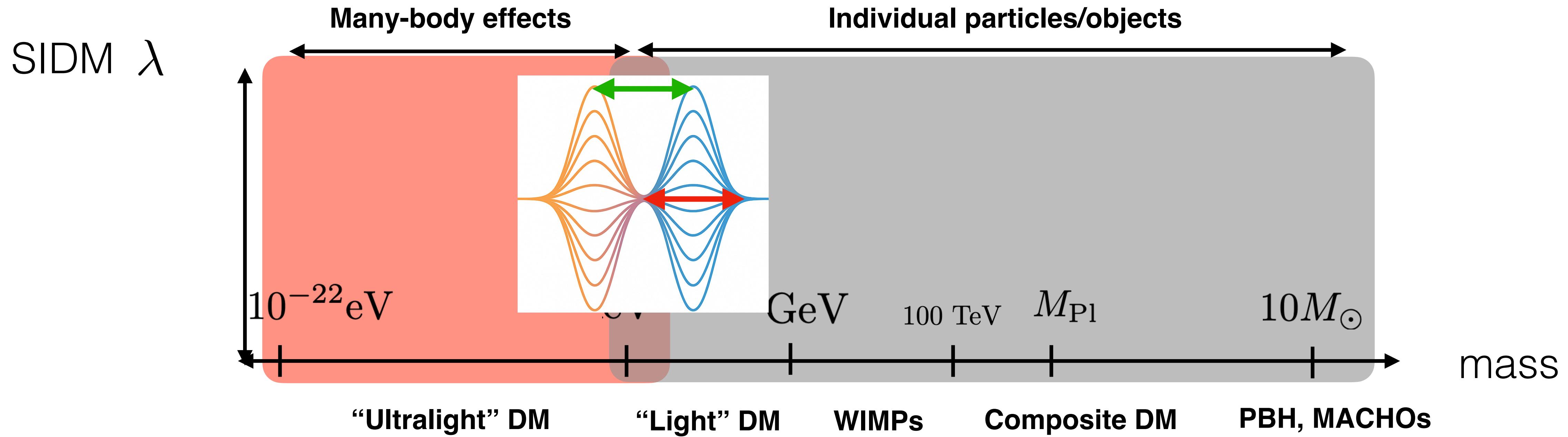
Dark Matter: where to look?



- ↔ o typical **distance** between particles $d \sim n^{-1/3} \sim (M/(mV))^{-1/3} \sim 20 \text{ kpc}/(10^9 M_{\odot})^{1/3} m^{1/3}$
- ↔ o typical **size** of particle wavepacket in the halo $L \gtrsim 1/(mv_{\text{esc}}) \approx 190 \left(\frac{m}{10^{-22} \text{ eV}}\right)^{-1} \text{ pc}$

particles overlap for $d \lesssim L$

Dark Matter: where to look?



↔ o typical **distance** between particles $d \sim n^{-1/3} \sim (M/(mV))^{-1/3} \sim 20 \text{ kpc}/(10^9 M_{\odot})^{1/3} m^{1/3}$

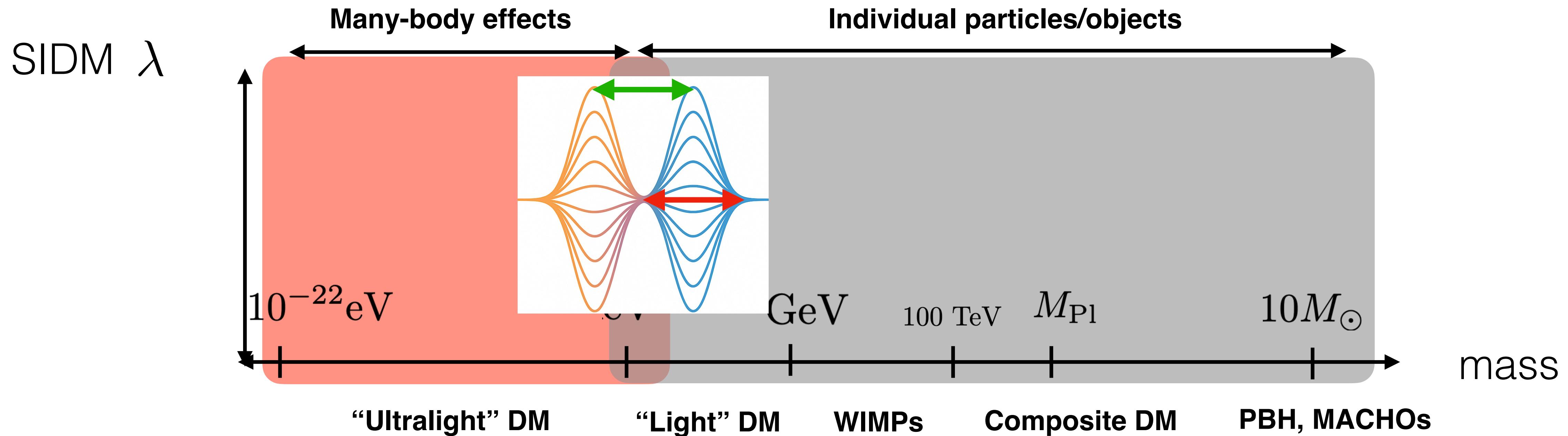
↔ o typical **size** of particle wavepacket in the halo $L \gtrsim 1/(mv_{\text{esc}}) \approx 190 \left(\frac{m}{10^{-22} \text{ eV}} \right)^{-1} \text{ pc}$

bosons

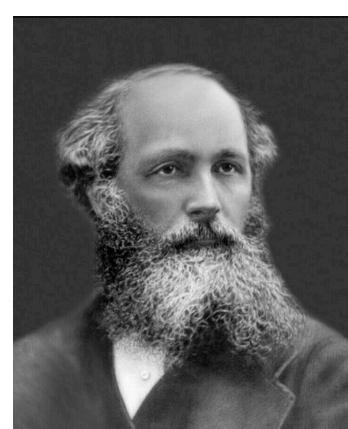
particles overlap for $d \lesssim L$

fermions

Dark Matter: where to look?



- ↔ o typical **distance** between particles $d \sim n^{-1/3} \sim (M/(mV))^{-1/3} \sim 20 \text{ kpc}/(10^9 M_{\odot})^{1/3} m^{1/3}$
- ↔ o typical **size** of particle wavepacket in the halo $L \gtrsim 1/(mv_{\text{esc}}) \approx 190 \left(\frac{m}{10^{-22} \text{ eV}} \right)^{-1} \text{ pc}$



field theory description

$$* \quad \mathcal{L} = \frac{1}{2} \left[(\partial_{\mu} \phi)^2 - m^2 \phi^2 \right] + \text{gravity}$$

particles overlap for $d \lesssim L$

bosons

fermions

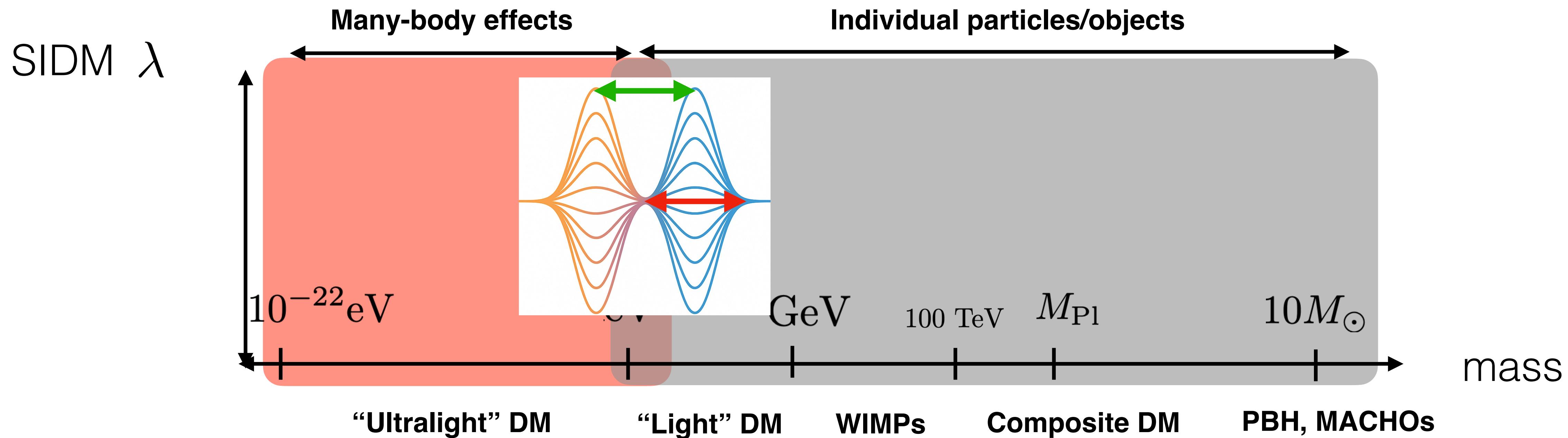
become degenerate

- * $m_f \gtrsim \text{keV}$ Tremaine-Gunn bound
- * ‘condensed dark matter’

Bar et al 2102.11522

Garani et al 2207.06928

Dark Matter: where to look?

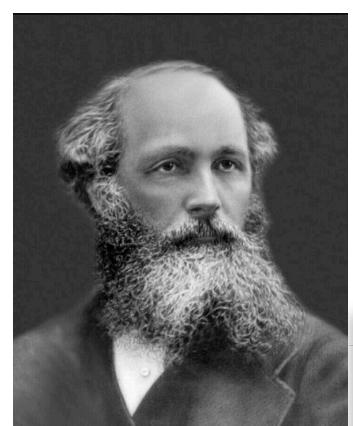


- ↔ o typical **distance** between particles $d \sim n^{-1/3} \sim (M/(mV))^{-1/3} \sim 20 \text{ kpc}/(10^9 M_{\odot})^{1/3} m^{1/3}$
- ↔ o typical **size** of particle wavepacket in the halo $L \gtrsim 1/(mv_{\text{esc}}) \approx 190 \left(\frac{m}{10^{-22} \text{ eV}} \right)^{-1} \text{ pc}$

bosons

particles overlap for $d \lesssim L$

fermions

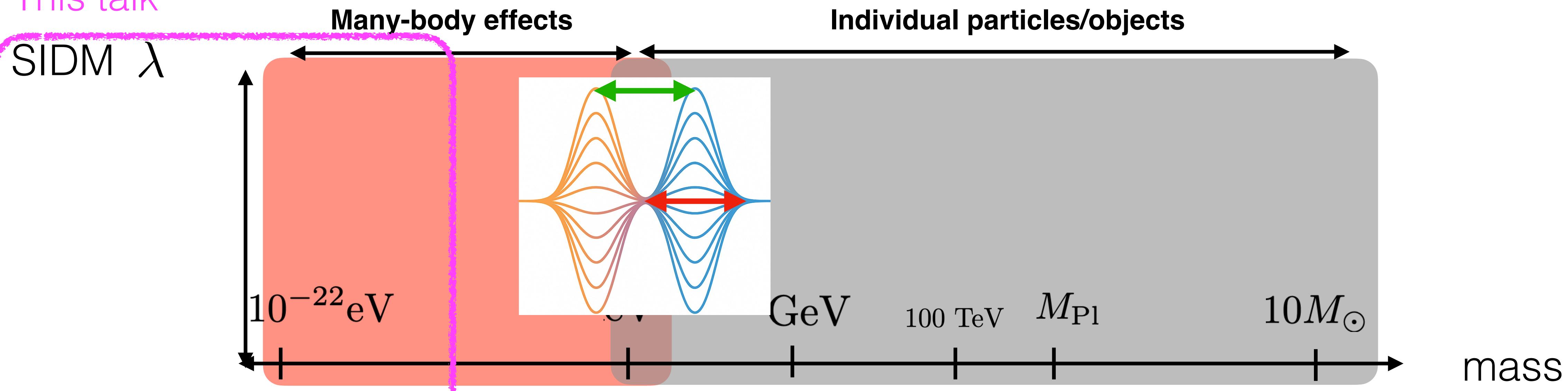


IN BOTH CASES:

* \mathcal{L} “**SMALL SCALE**” (cold and/or dense) DYNAMICS MODIFIED

Dark Matter: where to look?

This talk



“Ultralight” DM “Light” DM WIMPs Composite DM PBH, MACHOs

- o typical **distance** between particles $d \sim n^{-1/3} \sim (M/(mV))^{-1/3} \sim 20 \text{ kpc}/(10^9 M_\odot)^{1/3} m^{1/3}$
- o typical **size** of particle wavepacket in the halo $L \gtrsim 1/(mv_{\text{esc}}) \approx 190 \left(\frac{m}{10^{-22} \text{ eV}} \right)^{-1} \text{ pc}$

bosons

particles overlap for $d \lesssim L$

fermions

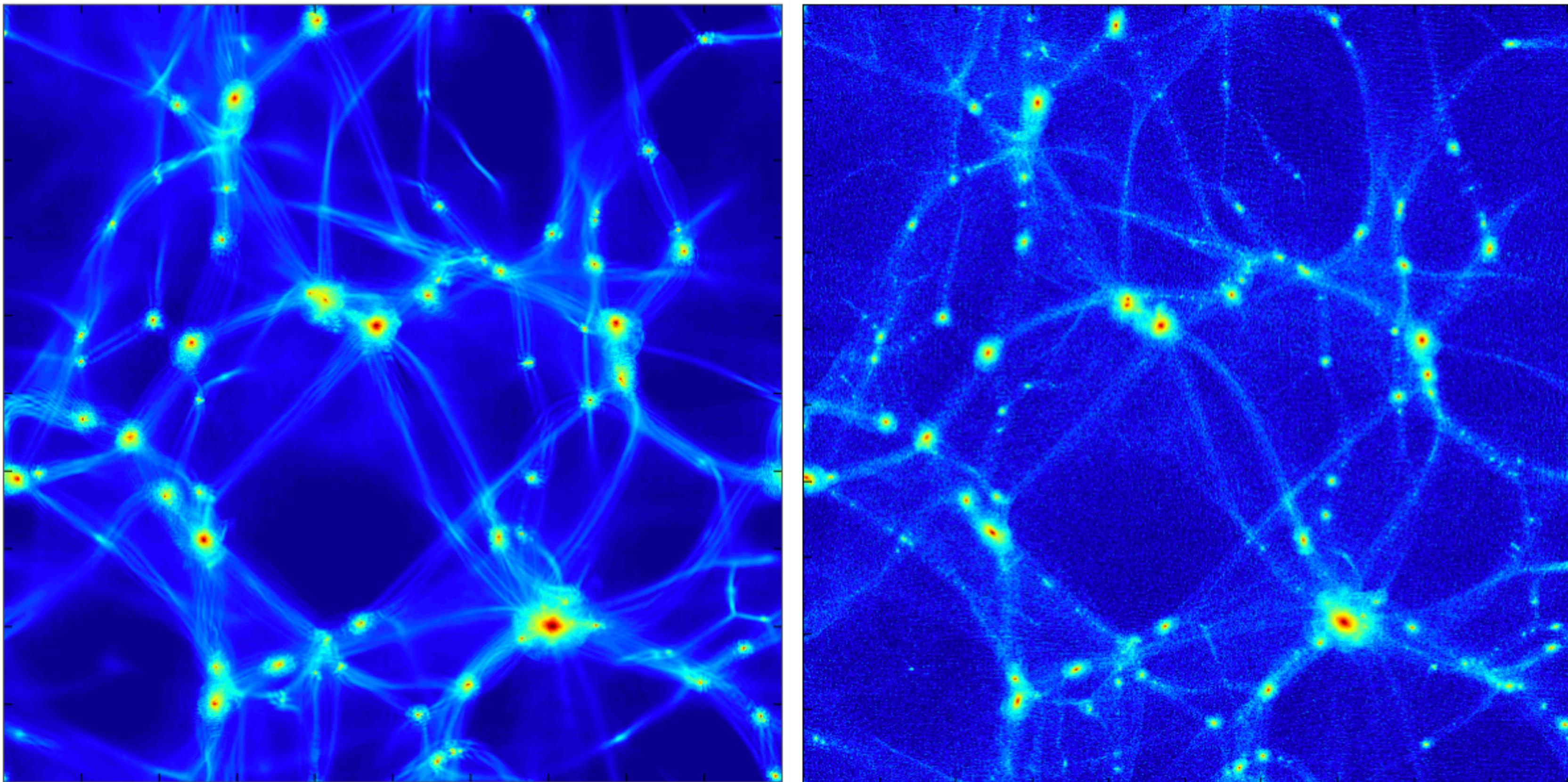
IN BOTH CASES:

\mathcal{L} “**SMALL SCALE**” (cold and/or dense) DYNAMICS MODIFIED

ULDM and CDM similar at large-scales

$m \sim 10^{-22}$ eV

Scale of ~ 30 Mpc, Schive et al. 1406.6586



ULDM differs from CDM at small-scales

$$\mathcal{L} = \frac{1}{2} \left[(\partial_\mu \phi)^2 - m^2 \phi^2 \right] + \text{gravity} + \text{other interactions } \lambda$$

Halo (free waves)

Virialized configuration: collection of waves with distribution determined by **virialization** in the galaxy

$$\phi \propto \int_0^{v_{max}} d^3v e^{-v^2/\sigma_0^2} e^{i\omega_v t} e^{-im\vec{v}\cdot\vec{x}} e^{if_{\vec{v}}} + c.c.$$

$\omega_v \approx m(1 + v^2/2)$ Non-relativistic

$$\phi_k \sim e^{i(\omega t - kx)}$$

The DM potential has coherent oscillations at

$$\omega \approx \frac{1}{76 \text{ d}} \left(\frac{m}{10^{-22} \text{ eV}} \right)$$

coherent over regions of size $\lambda_{dB} \sim \frac{10^{-22} \text{ eV}}{m} \frac{10^{-3}}{v} \text{ kpc}$

for $t \sim \frac{10^6}{m} \left(\frac{10^{-6}}{\sigma_0^2} \right)$

+ other interactions λ

When vorticity can be neglected

: In terms of **fluid variables** (e.g. $\rho \propto m^2 \phi^2$):
gravitational potential

$$\begin{aligned} \dot{\rho} + 3H\rho + \frac{\nabla}{a} (\rho \vec{v}) &= 0 \\ \dot{\vec{v}} + H\vec{v} + \left(\vec{v} \cdot \frac{\nabla}{a} \right) \vec{v} &= -\frac{\nabla}{a} \left(V - \frac{1}{2m^2 a^2} \frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}} \right) \end{aligned}$$

↑

pure CDM part

new phenomena at small scales!
(repulsive effect: “quantum pressure”)

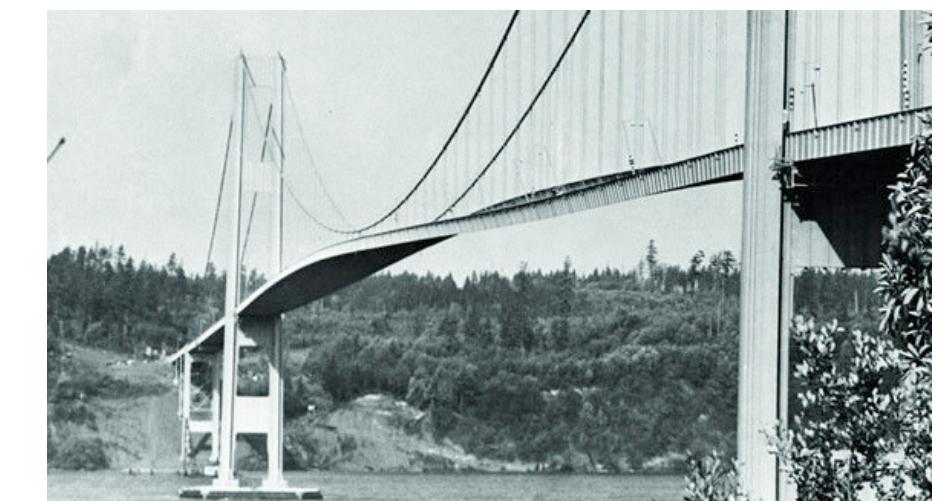
Relevant if $d \lesssim \lambda_{dB}$

Changes in DF, relaxation, etc.

New handles to find the nature of DM

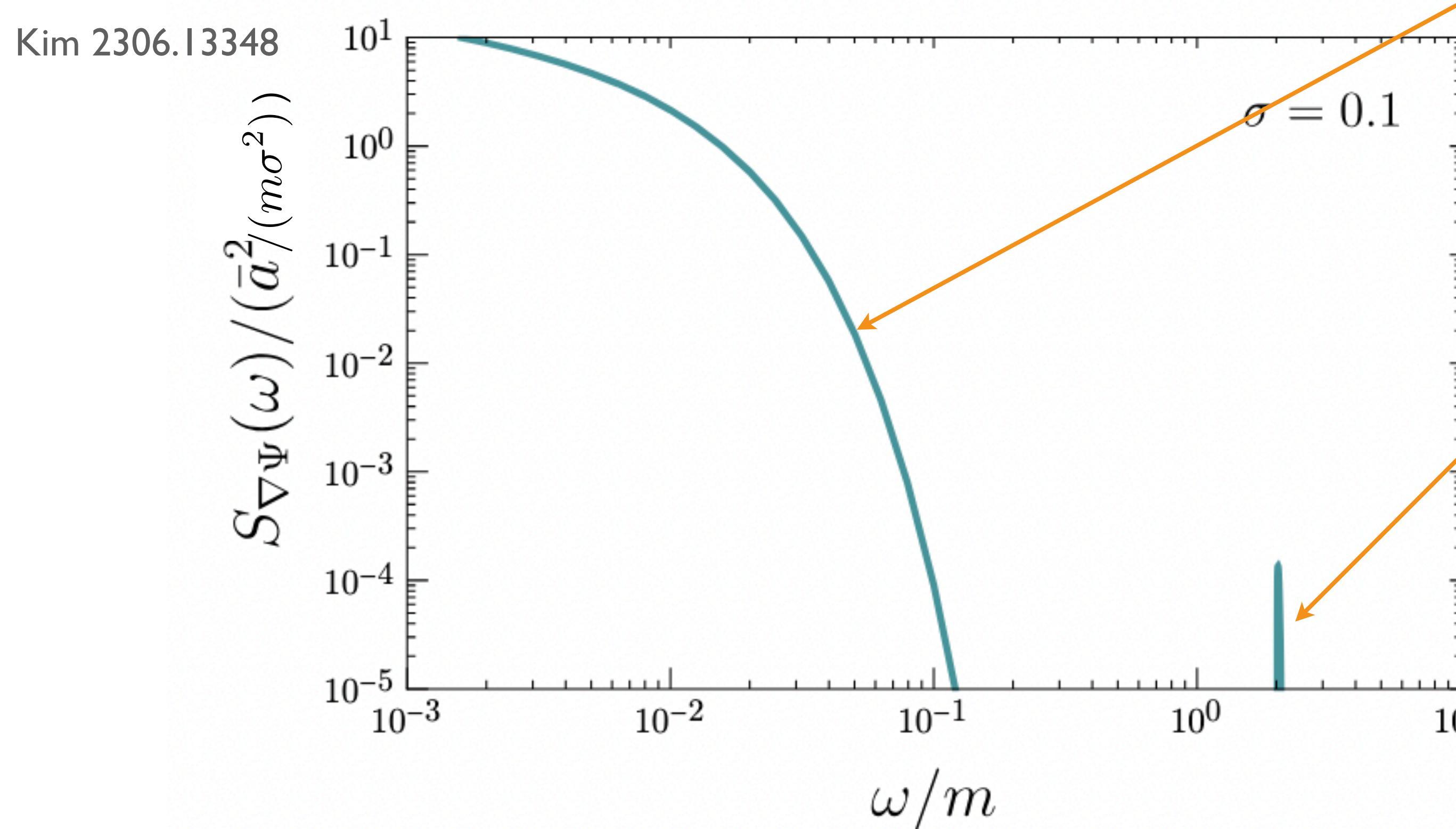
Halo (free waves)

$$\phi \propto \int_0^{v_{max}} d^3v e^{-v^2/\sigma_0^2} e^{i\omega_v t} e^{-im\vec{v}\cdot\vec{x}} e^{if_{\vec{v}}} + c.c.$$



$$\Delta\Psi \propto \rho \propto \phi^2 \propto \cos(m(1+v_1)t) \cos(m(1+v_2)t) \propto (\cos(m(v_1-v_2)t) + \cos(2mt))$$

Gravitational field also oscillates



These oscillations **inject heat** in any dynamical situation (may be resonantly absorbed)

Affect streams, binaries, halo more prone to collapse, splashback radius ...

SIDM may add extra phenomena

$$\lambda_{\text{dm-sm}} \phi^n \bar{\psi} \psi \rightarrow f(t, k) \bar{\psi}(p) \psi(p - k)$$

Mass fluctuates!

New handles to find the nature of DM

$$\dot{\rho} + 3H\rho + \frac{\nabla}{a}(\rho \vec{v}) = 0$$

$$\dot{\vec{v}} + H\vec{v} + \left(\vec{v} \cdot \frac{\nabla}{a}\right) \vec{v} = -\frac{\nabla}{a} \left(V - \frac{1}{2m^2a^2} \frac{\nabla^2 \sqrt{\rho}}{\sqrt{\rho}} \right)$$

gravitational potential

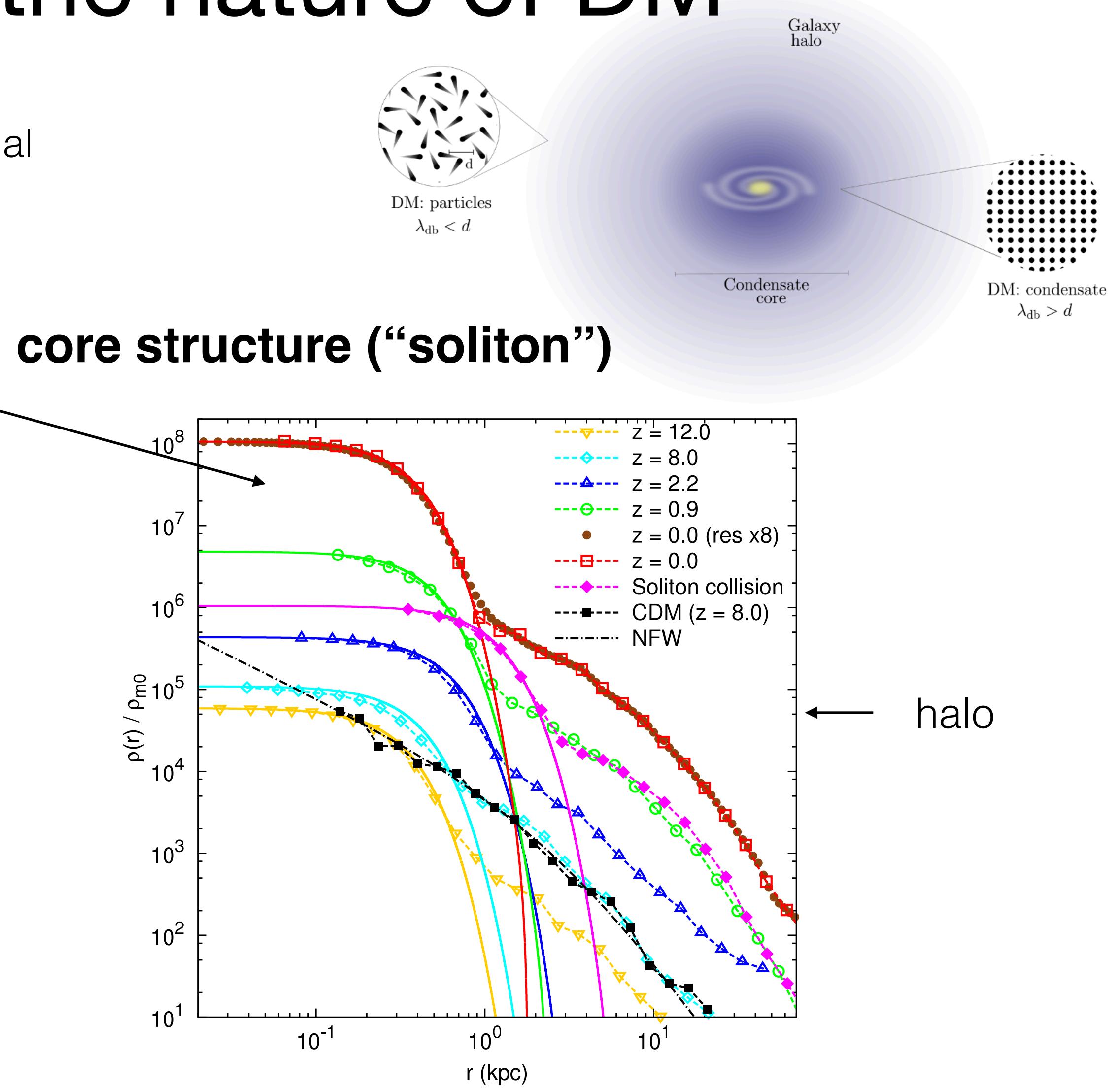
↑
pure CDM part

↑
repulsive term

$$\rho_{\text{sol}} = \frac{\rho_0}{\left(1 + 0.091 \left(\frac{r}{r_c}\right)^2\right)^8}$$

$$r_c \sim 0.2 \text{kpc} \left(\frac{10^{-22} \text{eV}}{m}\right)^2 \left(\frac{10^9 M_\odot}{M_{\text{sol}}}\right) \sim 0.4 \lambda_{db}$$

$$M_{\text{sol}} \approx 1.4 \times 10^9 \left(\frac{10^{-22} \text{eV}}{m_{DM}}\right) \left(\frac{M_{\text{halo}}}{10^{12} M_\odot}\right)^{\frac{1}{3}}$$

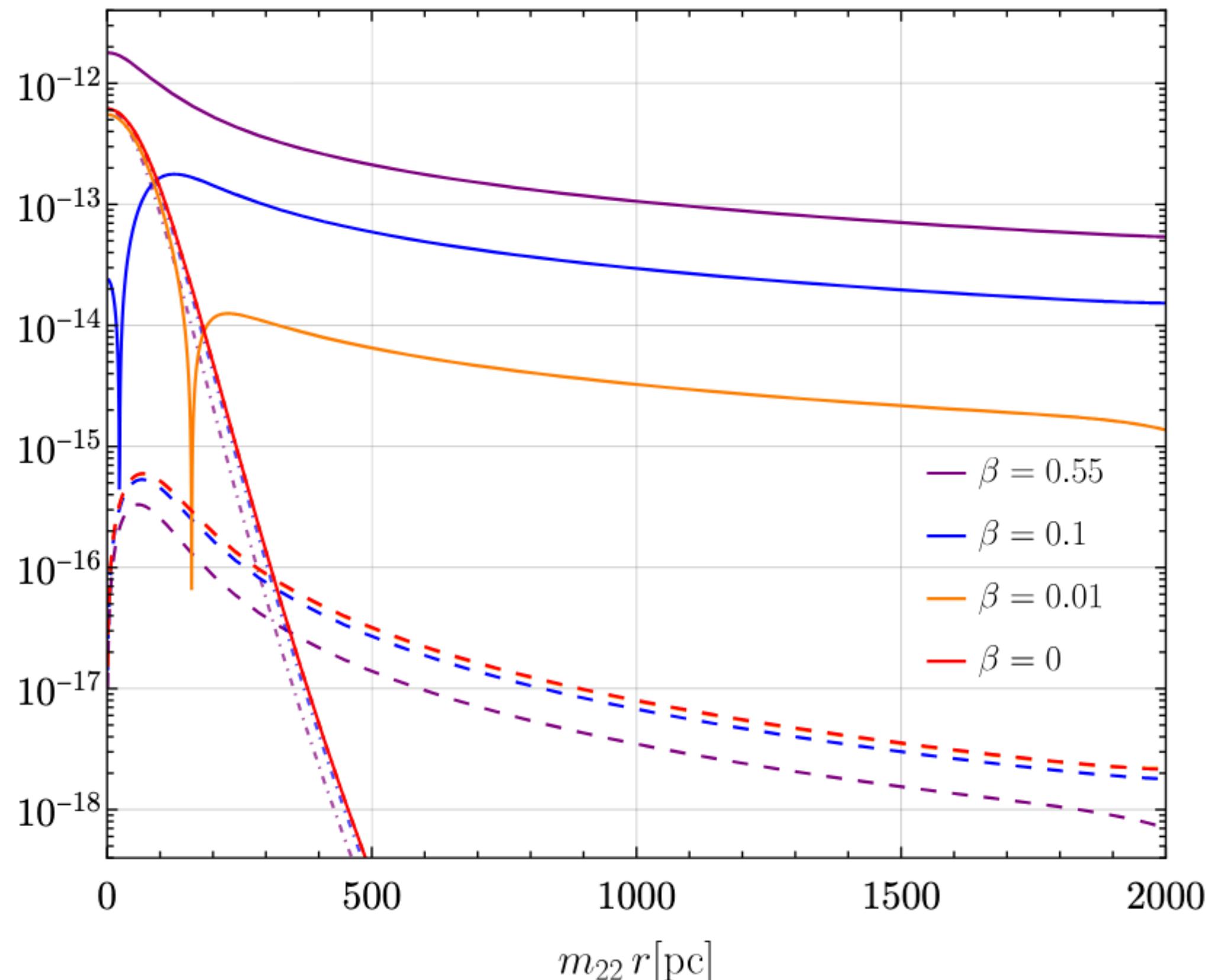


there is some scattering
 Hui et al 2101.11735
 Chan et al 2110.11882

SIDM and solitons

DB, Gasparotto, Vicente, 2410.07330

$$\mathcal{V}[\phi] = \frac{1}{2}(m\phi)^2 \left[1 - \frac{1}{12}(\phi/F)^2 \right], \quad \beta \equiv \frac{\sqrt{\bar{\rho}_0/\pi}}{16(F^2 m)}$$

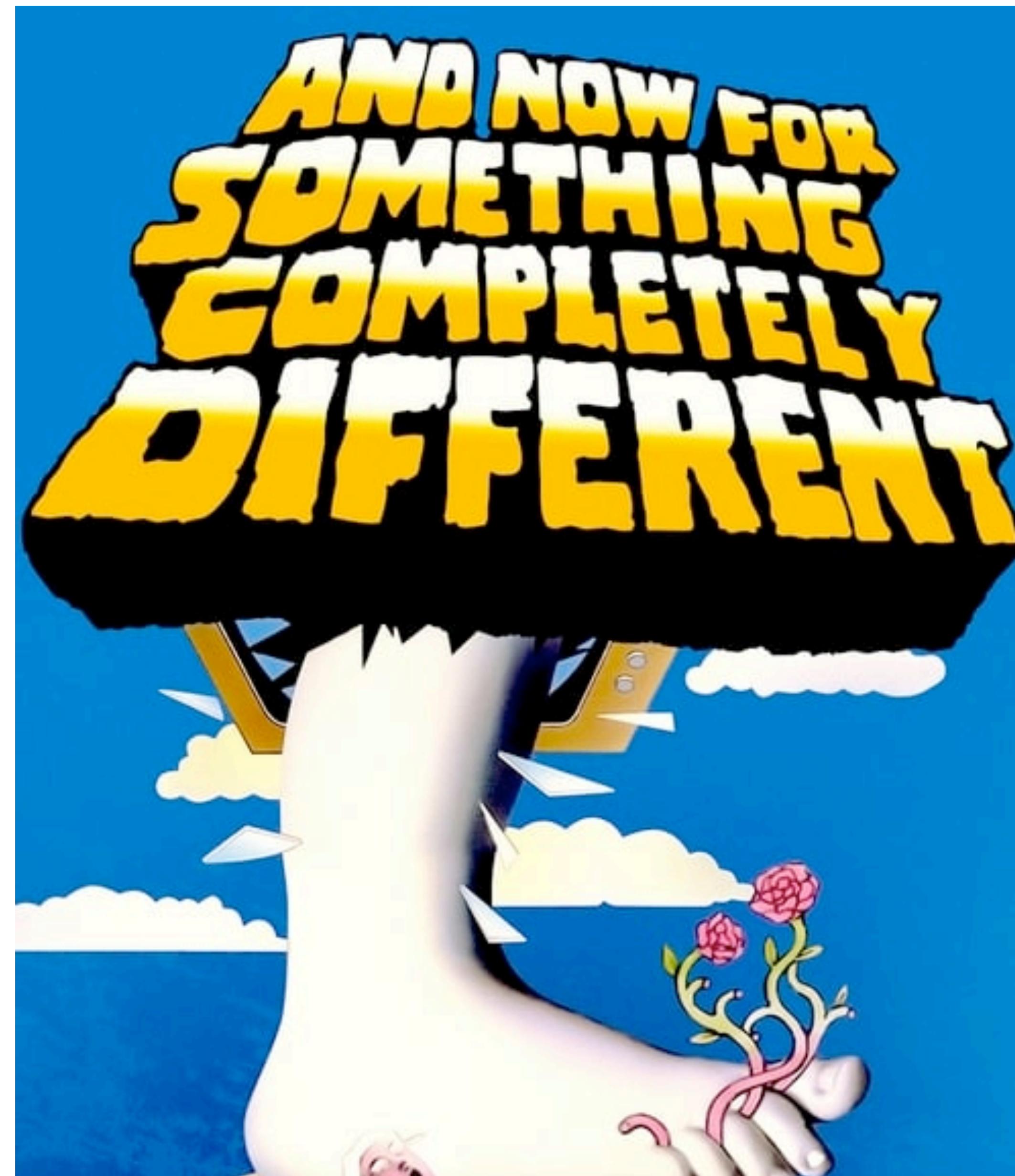


Ψ_2

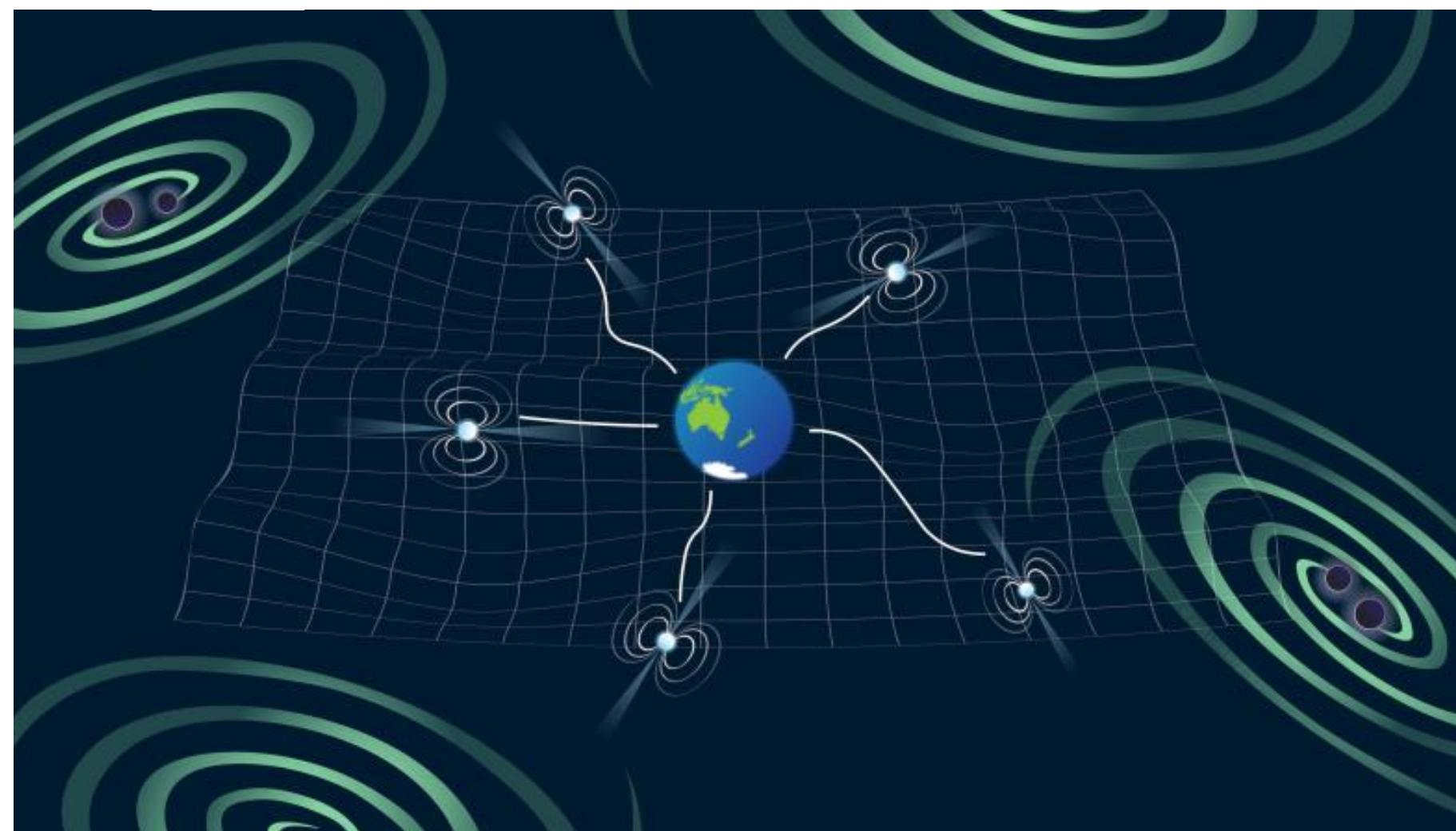
$m^{-1} \partial_r \Phi_2$

$$g_{\mu\nu} dx^\mu dx^\nu \approx -(1 - 2\Phi)dt^2 + (1 + 2\Psi)\delta_{ij} dx^i dx^j$$

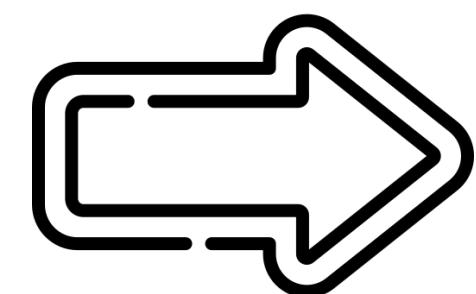
Where to look for these features?



New ULDM handle I: propagation of signals



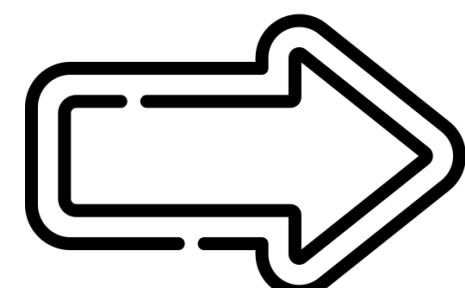
$$\phi_k \sim e^{i(\omega t - kx)}$$



$$\Phi = \bar{\Phi} + \delta\Phi$$

$$\Psi = \bar{\Psi} + \delta\Psi$$

stationary



oscillating

leading term

$$\delta\Psi \equiv \frac{\pi}{m^2} \bar{\rho}_\phi \cos(2mt)$$

Changes in time
of arrival

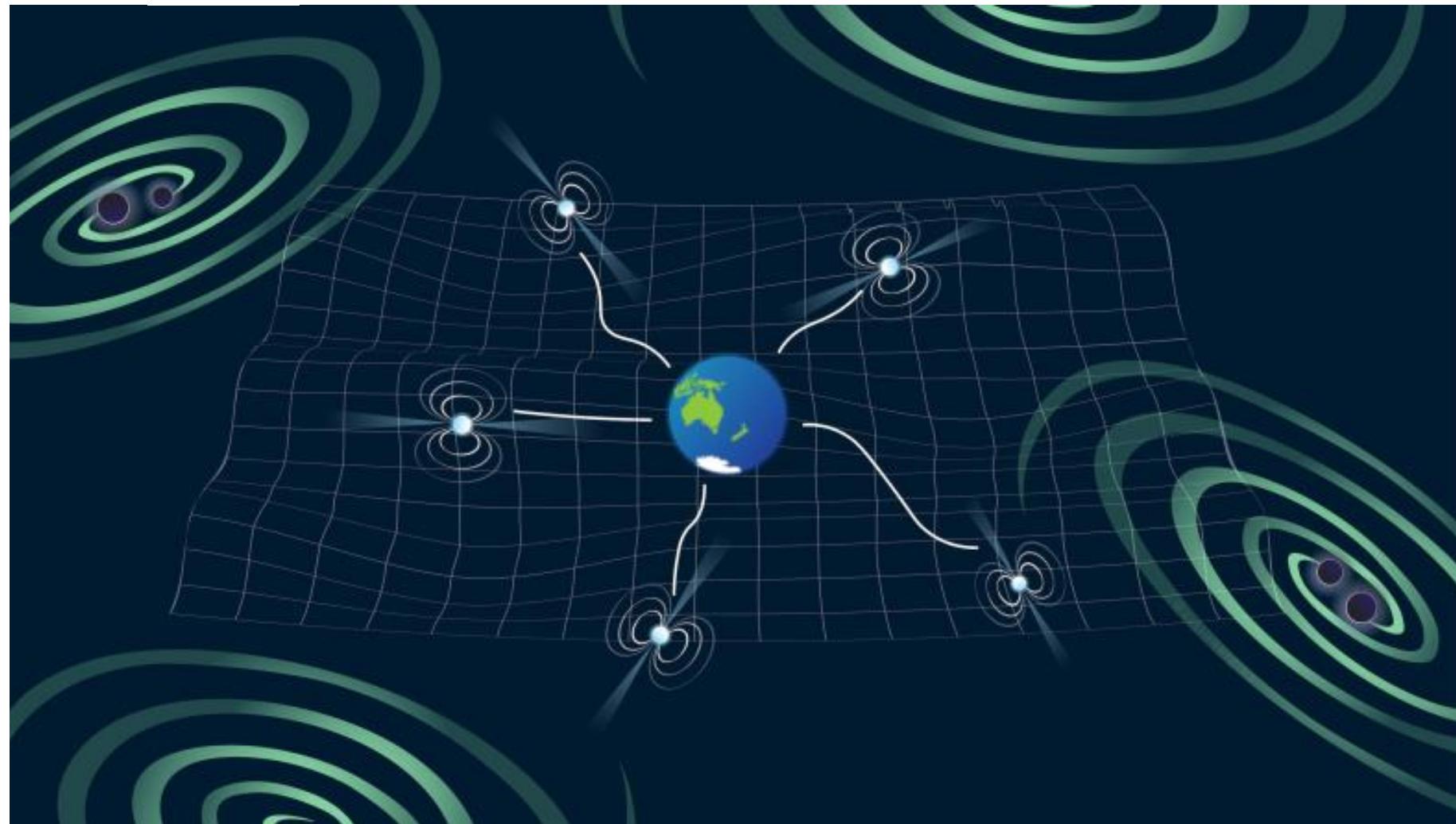
$$\Delta t \simeq - \int_0^t \frac{\Delta\omega_e(t')}{\omega_e} dt' \simeq - \int_0^t (\Psi_e - \Psi_r) dt'$$

$$\frac{\Delta\omega_e}{\omega_e} \simeq \Phi \Big|_e^r + n^i v_i \Big|_e^r - I_{iSW}$$

$$I_{iSW} = (\Phi + \Psi) \Big|_e^r + n^i \int_e^r \partial_i (\Phi + \Psi) d\lambda$$

Models with ULDM coupled to SM (& SIDM)

DB, Gasparotto, Vicente, 2410.07330



Effective amplitude of the fluctuations

$$g_{\mu\nu} dx^\mu dx^\nu \approx -(1 - 2\Phi)dt^2 + (1 + 2\Psi)\delta_{ij} dx^i dx^j,$$

if all fields couple as

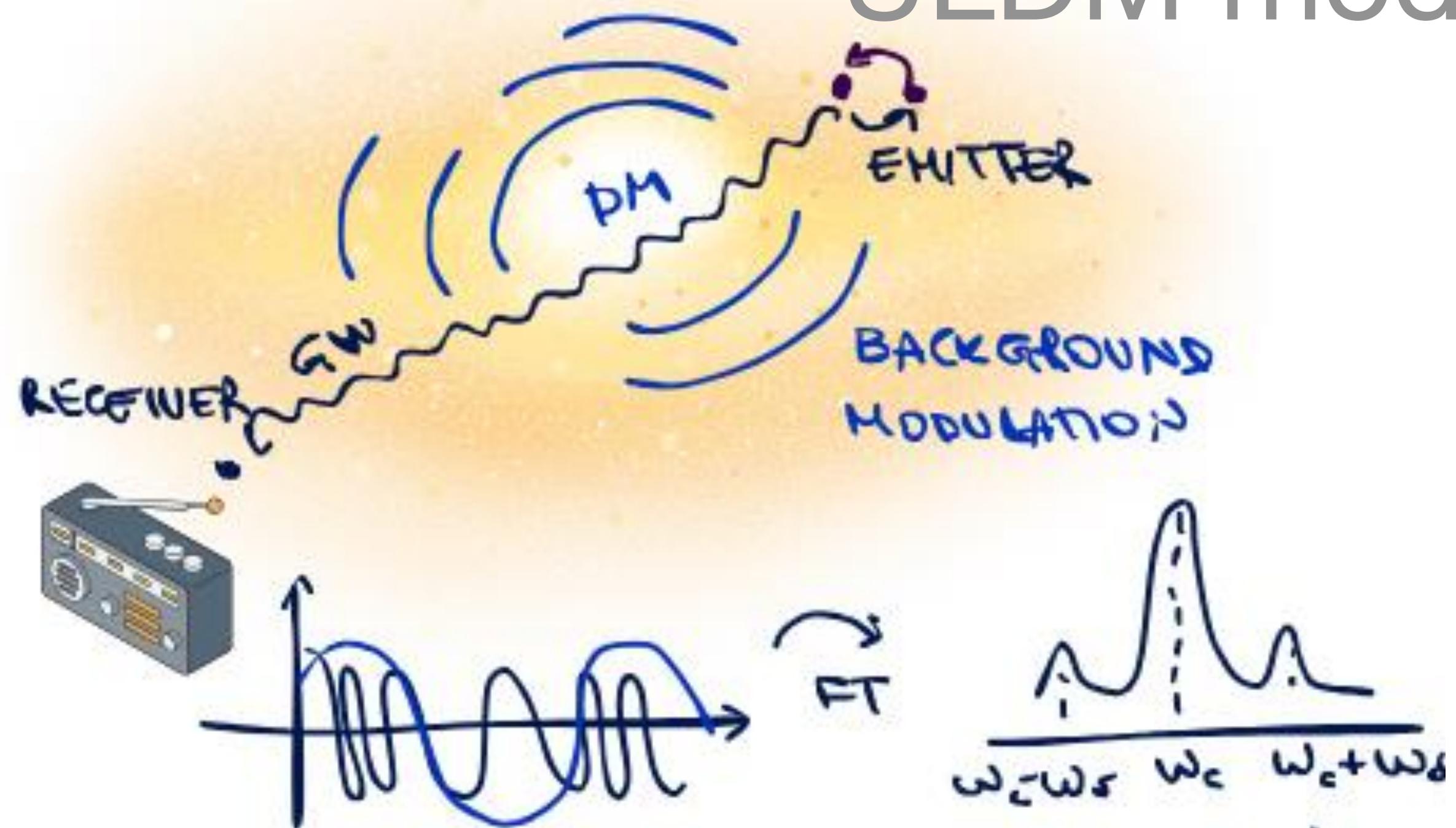
$$\lambda_{\text{dm-sm}} \phi^n \bar{\psi} \psi$$

- Linear $\phi/\Lambda_1 \bar{\psi} \psi + (\phi/\Lambda_1) F^2$
- Quadratic $\phi^2/\Lambda_2^2 \bar{\psi} \psi + (\phi/\Lambda_2)^2 F^2$

$$\Upsilon \equiv \begin{cases} \left[\Psi_2 - \frac{2}{\omega_\delta} n^i \partial_i \Phi_2 \right]_{x_e^i}, & (\text{minimal}) \left(\frac{\pi}{m^2} \bar{\rho}_\phi \right) \\ \frac{\sqrt{2}}{\Lambda_1} \left(\frac{\bar{\rho}_\phi(x_e^i)}{m^2} \right)^{1/2}, & (\text{direct linear}) \\ \frac{1}{\Lambda_2^2} \frac{\bar{\rho}_\phi(x_e^i)}{m^2}, & (\text{direct quadratic}) \end{cases}$$

ULDM modulates signals

DB, Gasparotto, Vicente, 2410.07330



primary wave

$$h \approx \mathcal{A} [\cos(\omega_e u + \alpha'_0) + \pm \frac{\omega_e}{2\omega_\delta} \Upsilon \bigg|_{r_e} \cos [(\omega_e \pm \omega_\delta) u + \alpha'_0 \pm \varphi_\delta]]$$

Effective amplitude of the fluctuations

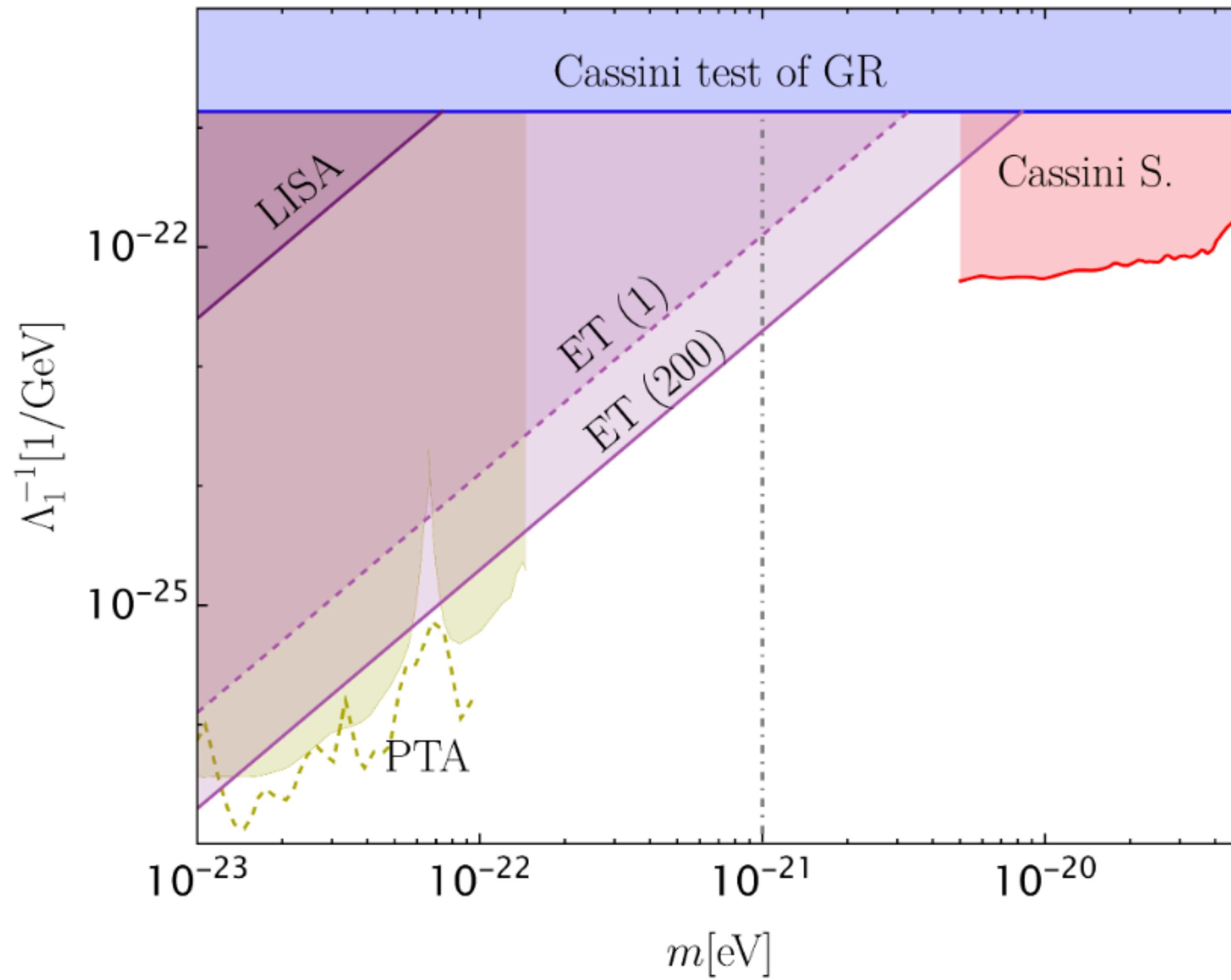
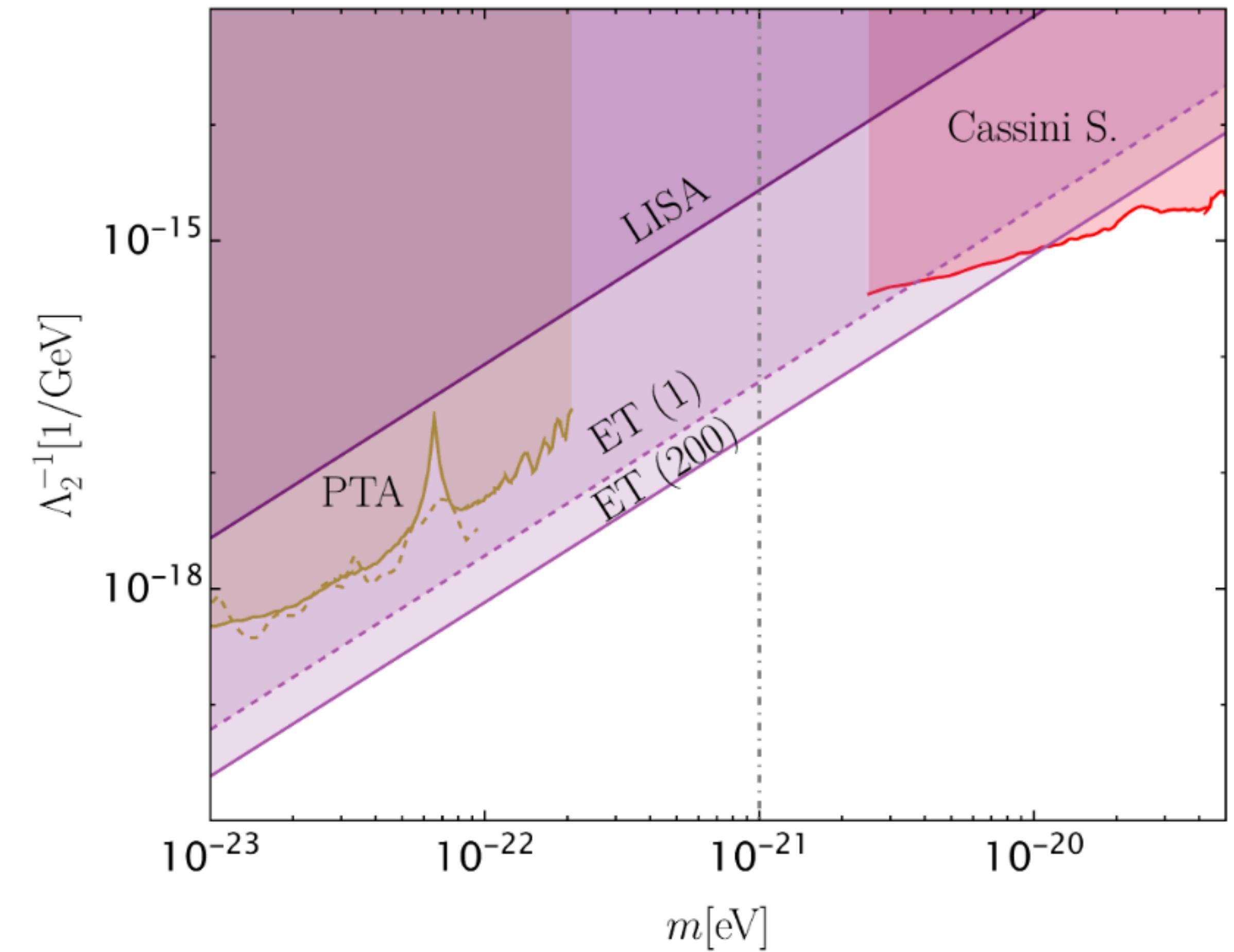
$$\Upsilon = \Psi_2 - \frac{2}{\omega_\delta} n^i \partial_i \Phi_2 \bigg|_e$$

$$\omega_\delta = 2m$$

$$SNR_\delta = \frac{1}{\sqrt{2}} \frac{\omega_e}{\omega_\delta} \Upsilon \sqrt{N} SNR_h$$

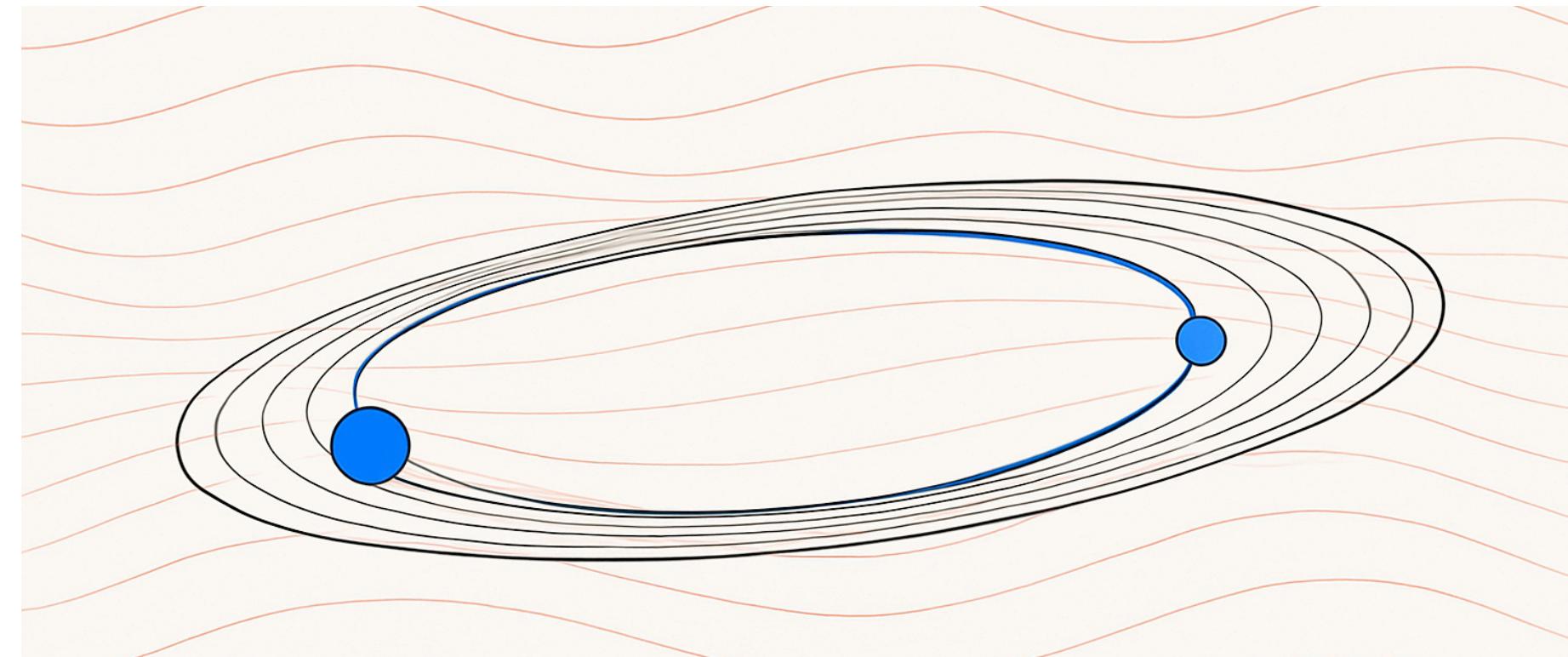
ULDM modulation of gravitational waves

DB, Gasparotto, Vicente, 2410.07330



New ULDM handle II: resonant absorption (binaries)

fluctuating gravitational potentials affect gravitationally bound systems



$$\ddot{r}_i + \frac{GM}{r_i^3} r_i = -\ddot{\psi} r_i$$

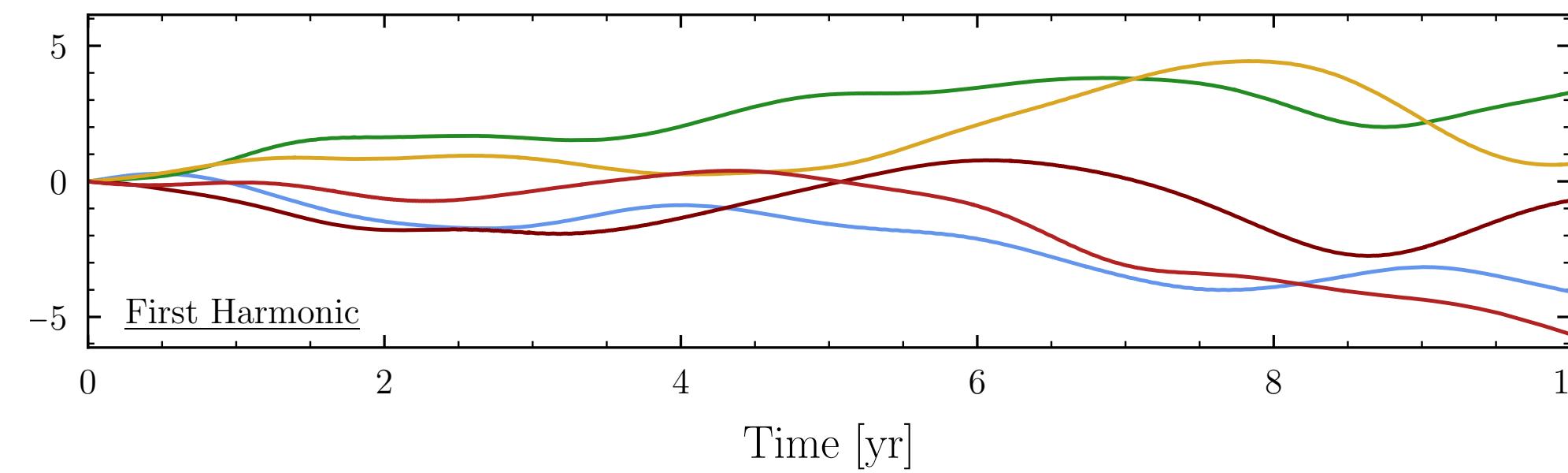
External Gravitational Potential

Newtonian Potential

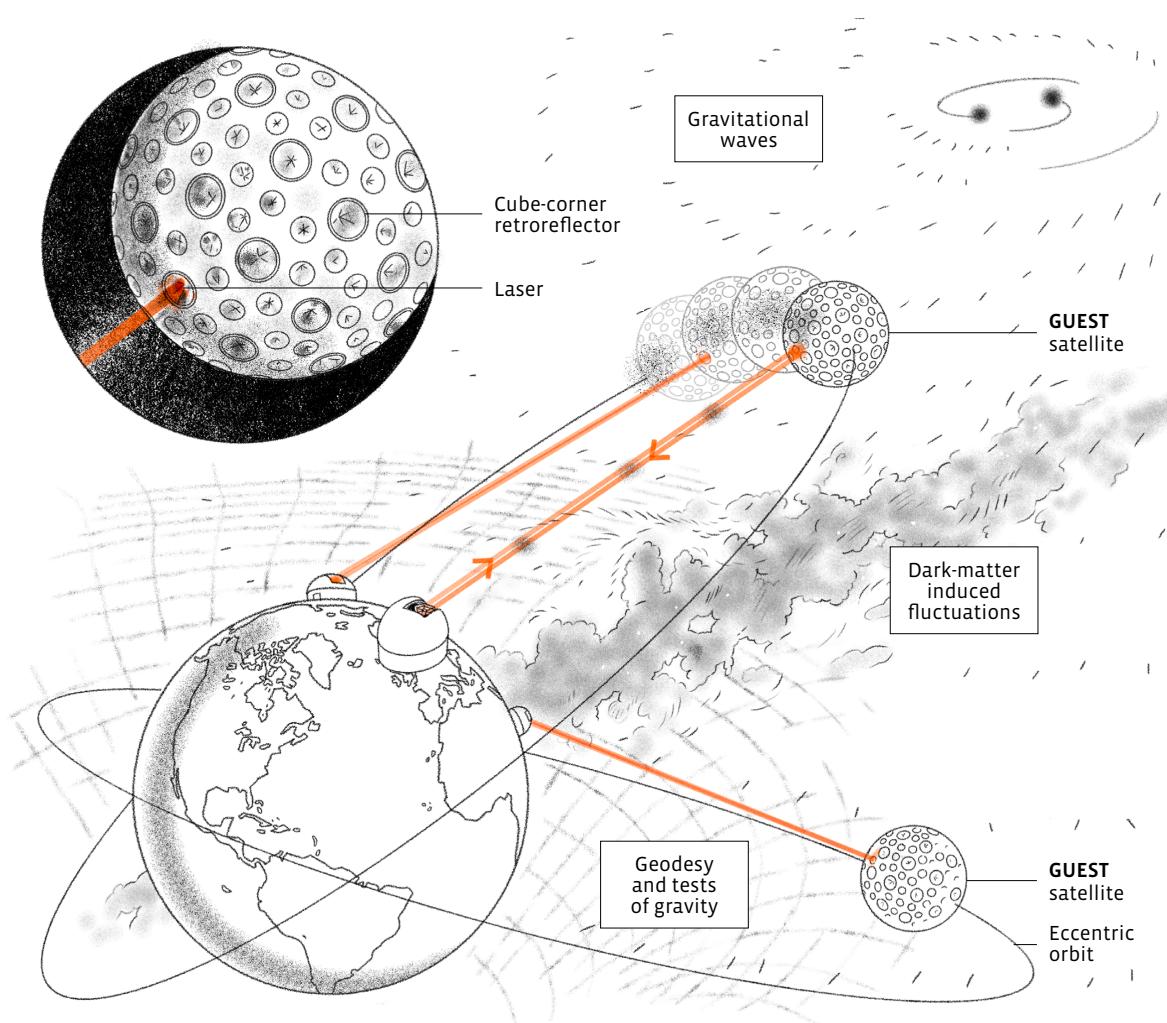
$h \sim \cos(2\pi ft)$
 $r \sim e \cos(2\pi t/P)$
possible resonances at $f=n/P$

New ULDM handles II: resonant absorption

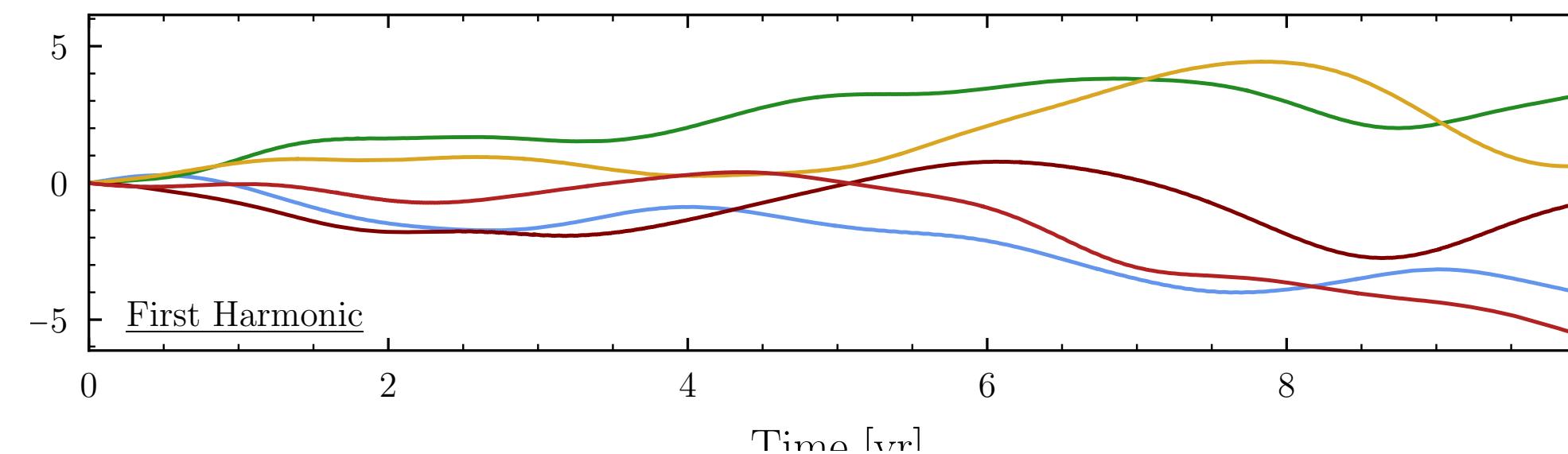
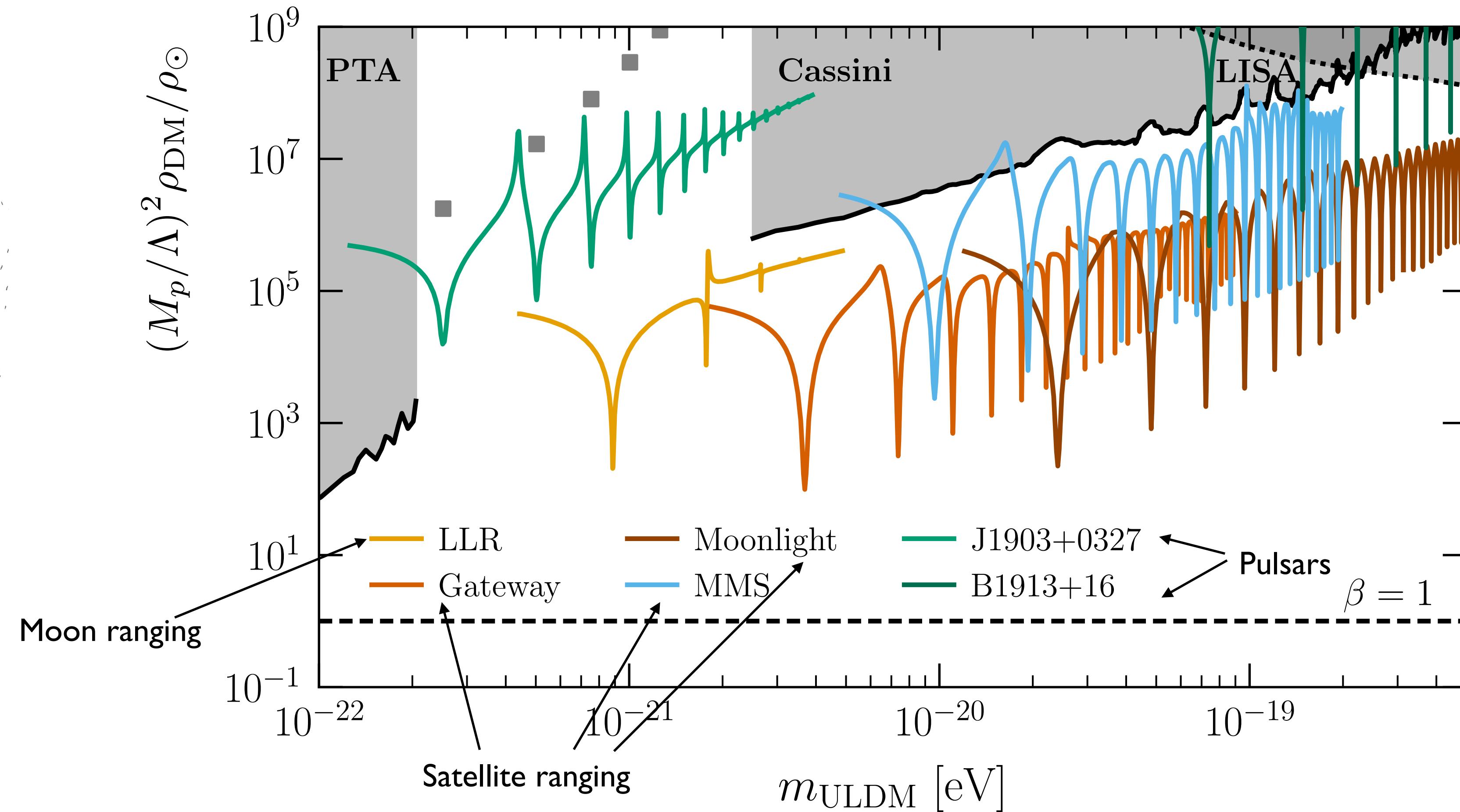
Moon's orbit
 Δr (cm)



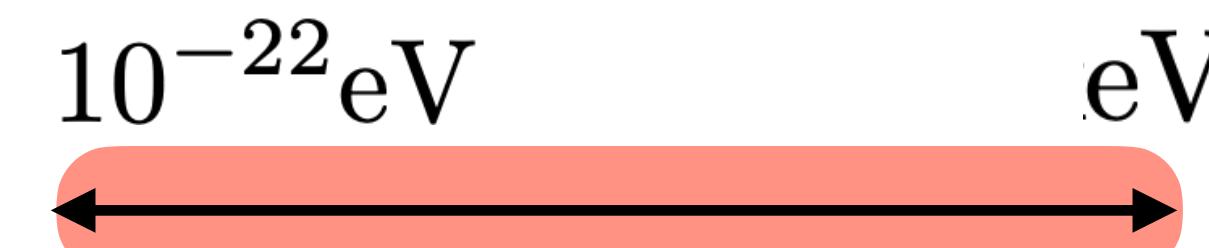
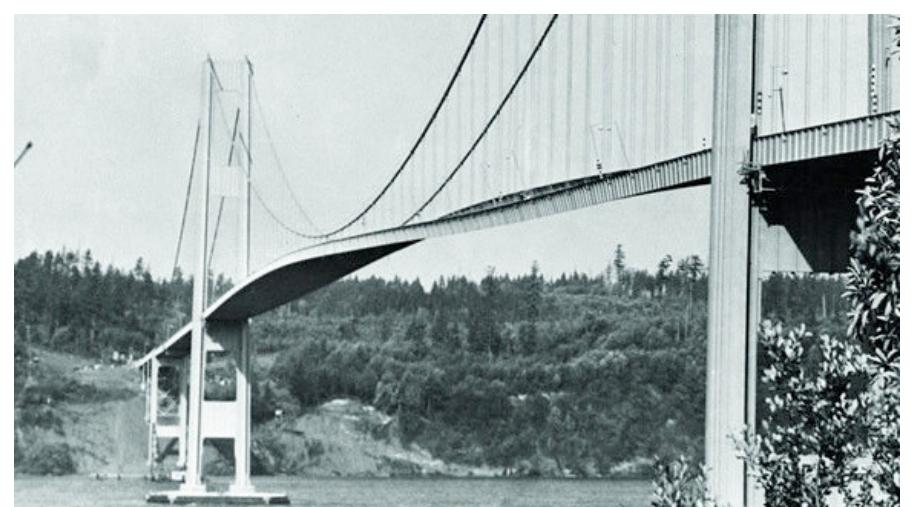
New ULDM handles II: resonant absorption



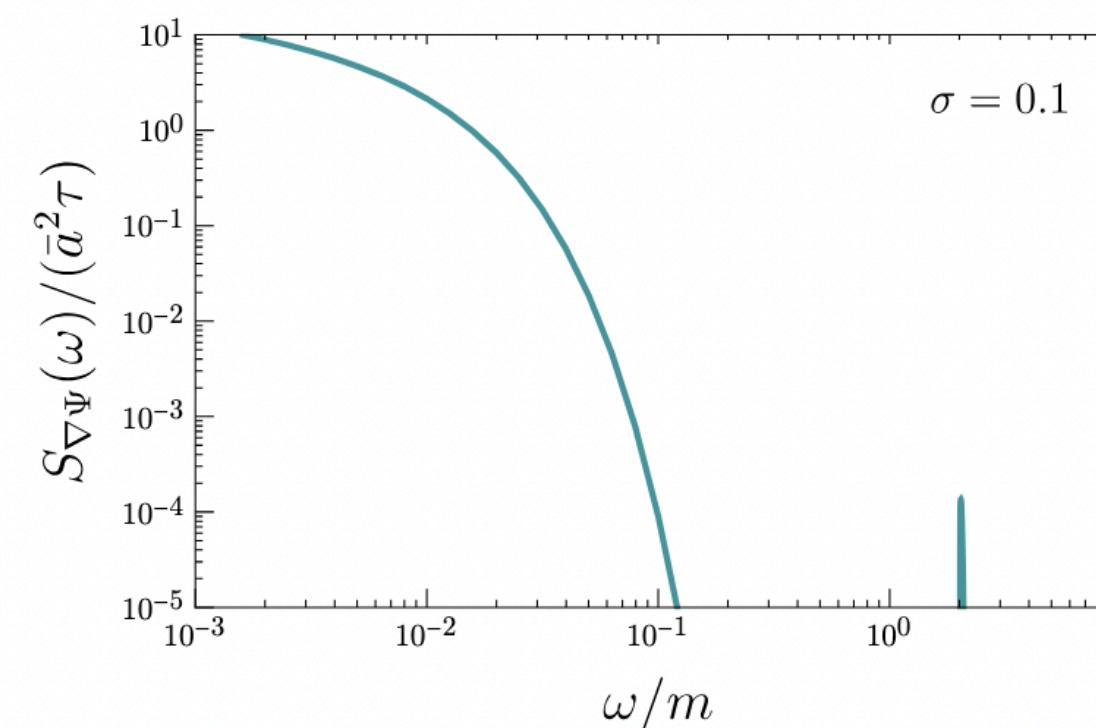
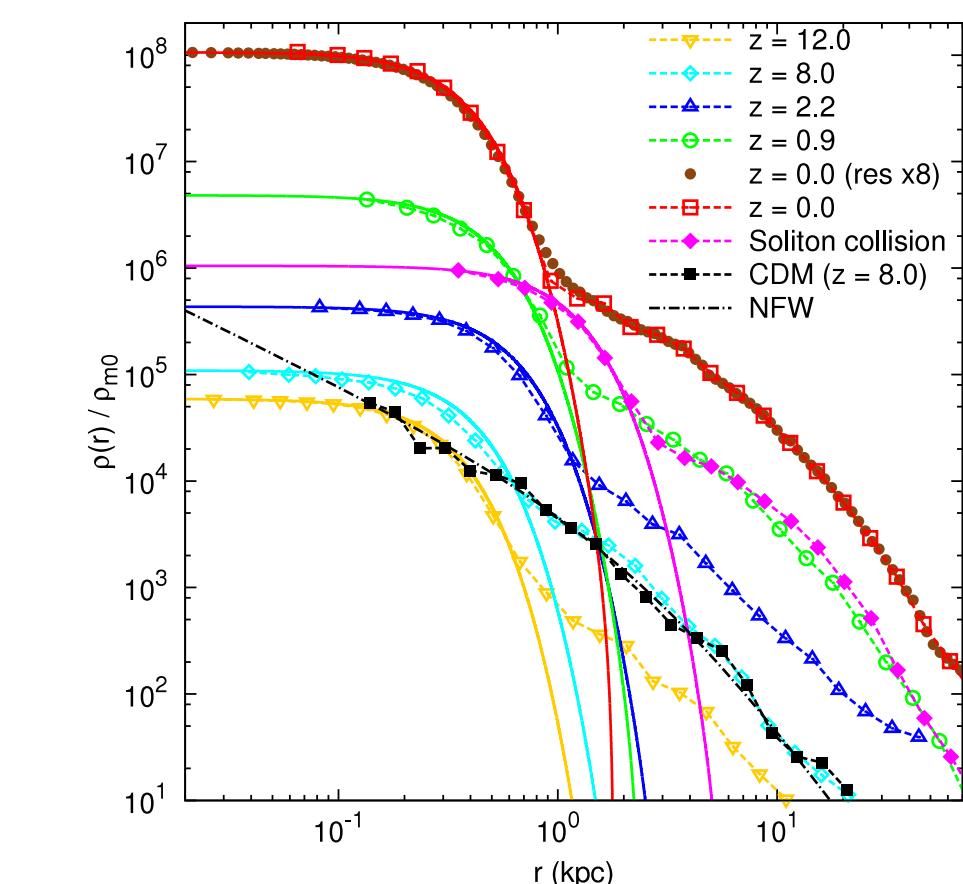
Moon's orbit
 Δr (cm)



Conclusions



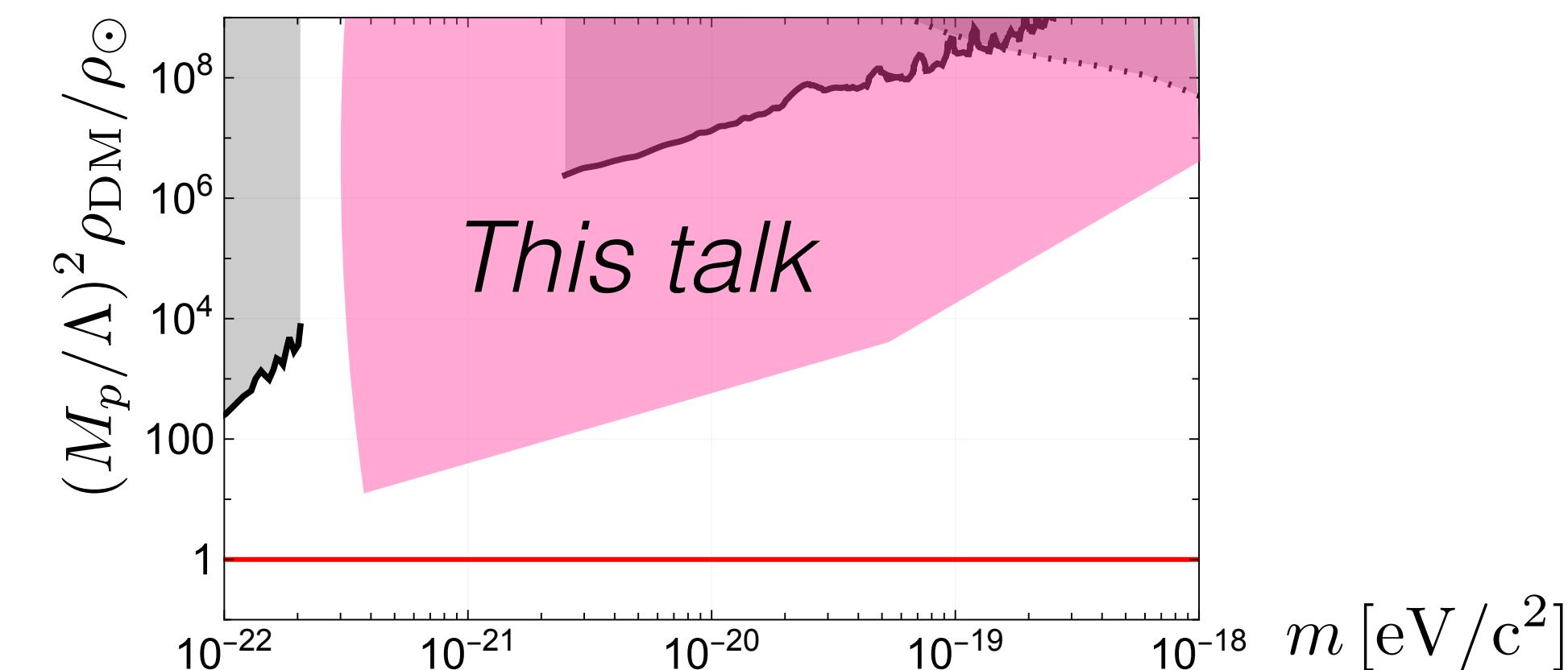
- Generates fluctuating **fields** and stationary **galactic gravitational potentials**
- Generates coherent **cores** at high density (solitons)

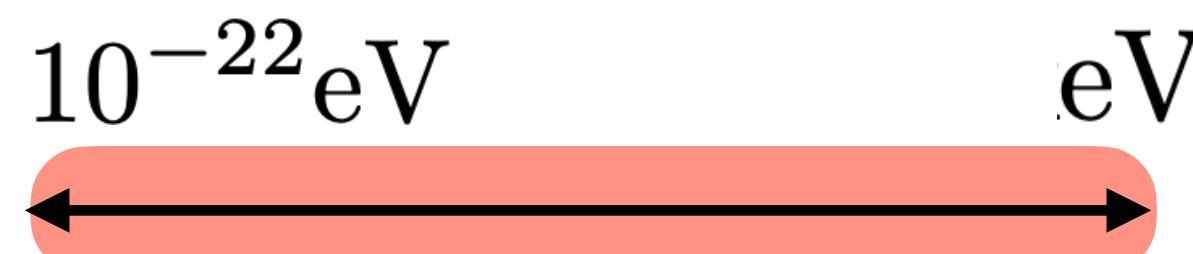


- ◆ These fluctuations affect all motion (gravitational dynamics)
- ◆ SIDM: extended cores, direct effect in the bodies

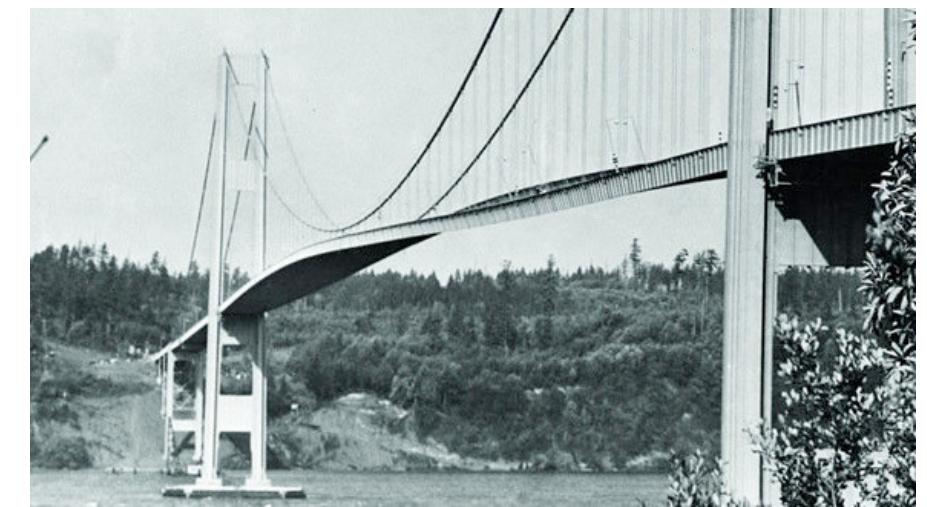
ULDM

- ◆ Modulates the phase of GWs
- ◆ Gets absorbed in binary systems





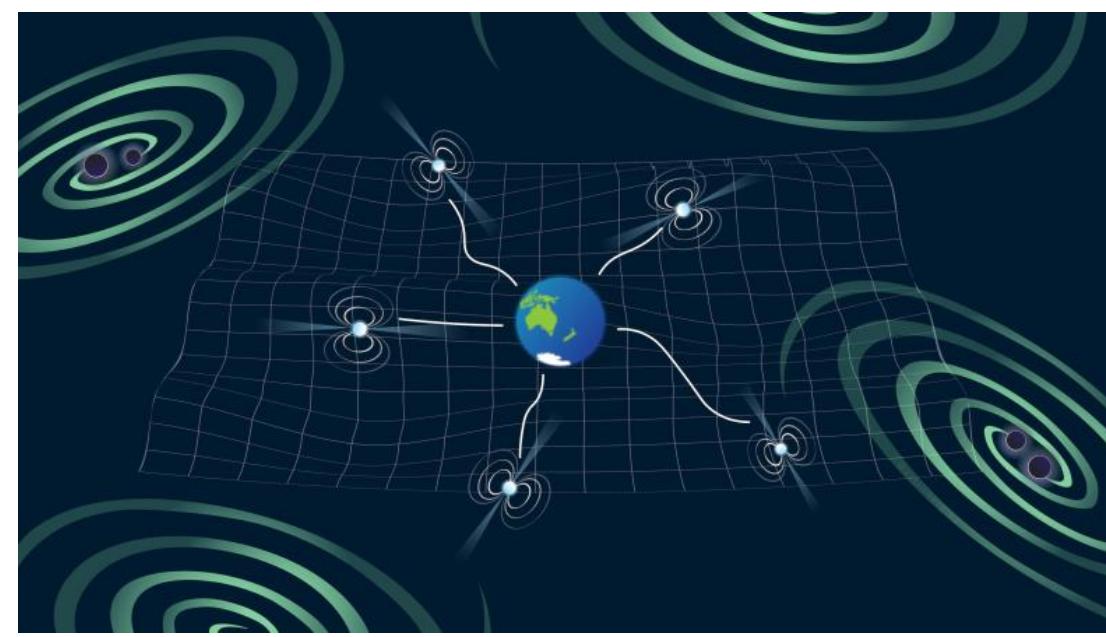
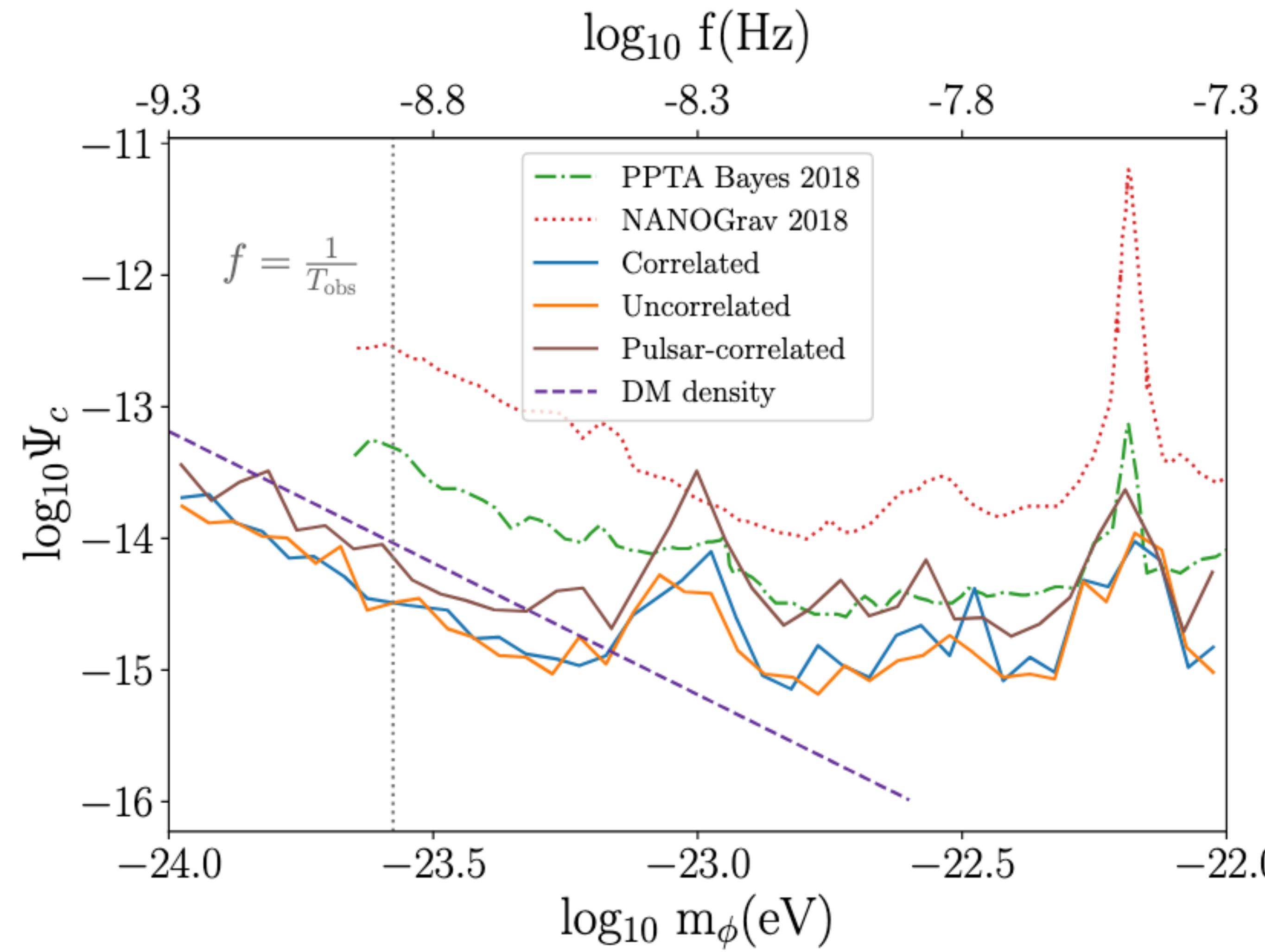
Outlook



- Generates fluctuating **fields** and stationary **galactic gravitational potentials**
- Generates coherent **cores** at high density (solitons)
 - ◆ These fluctuations affect all motion (gravitational dynamics)
 - ◆ SIDM: extended cores, direct effect in the bodies

What do they do for very cold, dense, balanced, resonating...
configurations in **your** simulations?

ULDM modifies time of arrival in **pulsar** signals



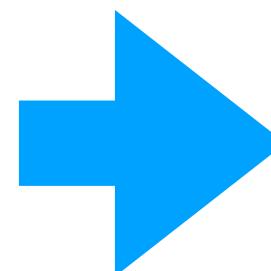
Smarra et al
2306.16228 [astro-ph.HE]

$$f_{\text{low}} = \frac{1}{T_{\text{obs}}}, \quad f_{\text{high}} = \frac{1}{\delta t_{\text{obs}}}$$

Properties of the soliton

$$\phi(x, t) = \frac{1}{\sqrt{2m}} e^{-imt} \psi(x, t) + c.c.$$

$v \ll c, \omega \ll m$



$$i\partial_t \psi = -\frac{1}{2m} \Delta \psi + m\Phi_N \psi$$

$$\Delta \Phi_N = 4\pi G |\psi|^2$$

spherically symmetric stationary, non-relativistic solution:

e.g. Bar, DB, Blum, Sibiryakov 18

$$\phi(x, t) = \frac{M_{pl}}{2\sqrt{2\pi}} e^{-imt} e^{-i\gamma t} \chi(x) + h.c.$$

scaling solution

$$\chi_\lambda(r) = \lambda^2 \chi_1(\lambda r)$$

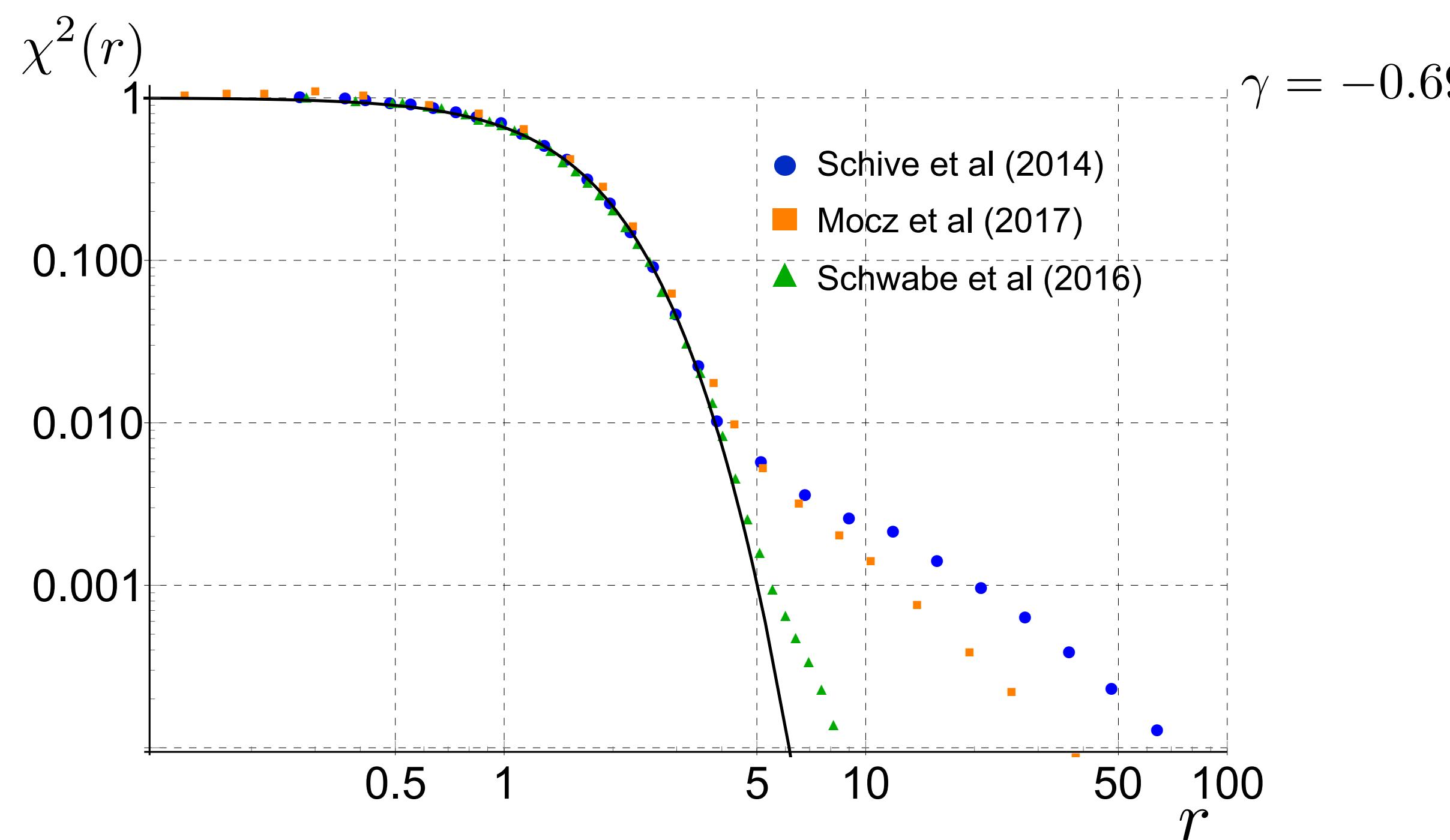
$$x_{c\lambda} = \lambda^{-1} x_{c1}$$

$$M_\lambda = \lambda M_1$$

$$\gamma_\lambda = \lambda^2 \gamma$$

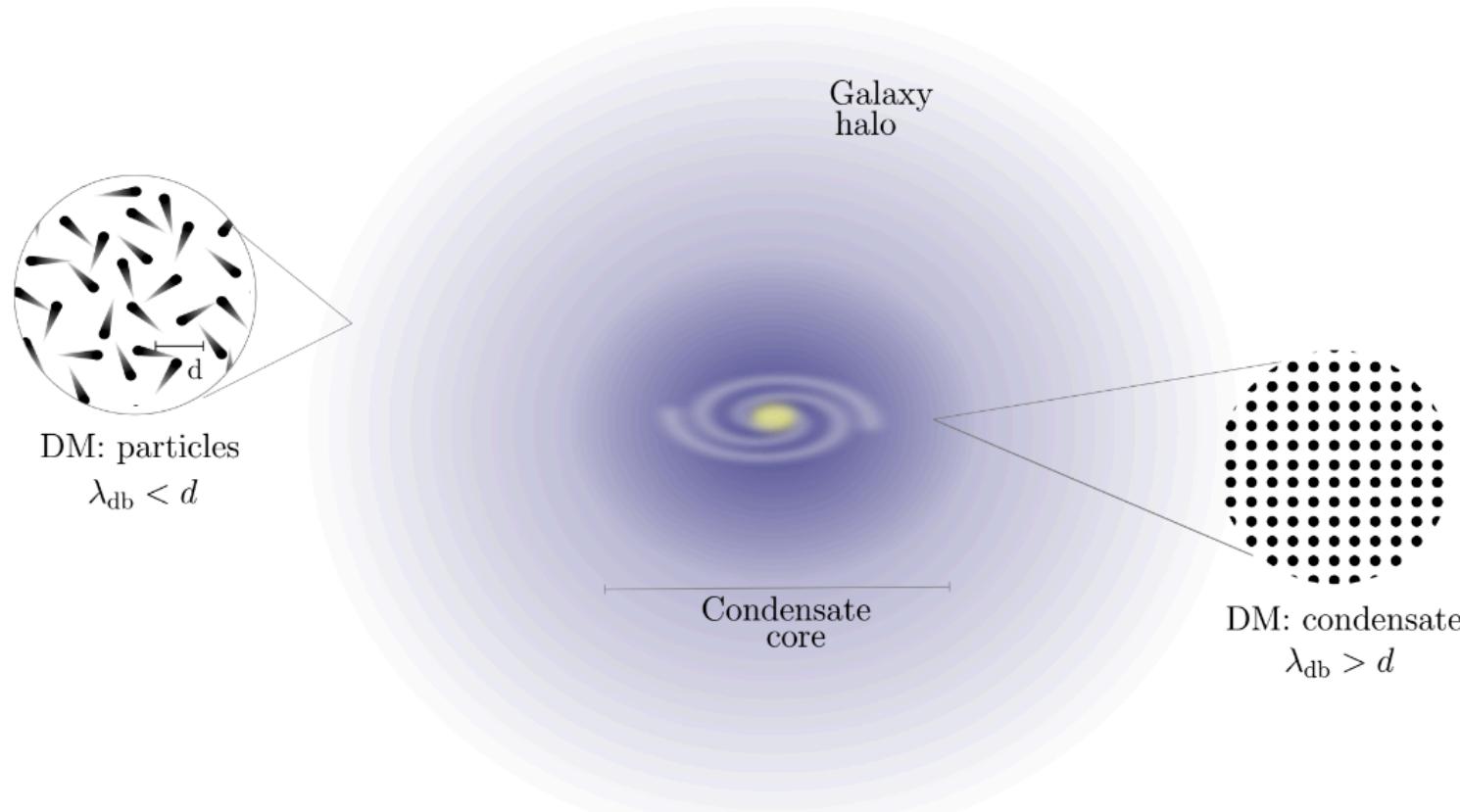
$$\rho_{c\lambda} = \lambda^4 \rho_{c1}$$

What fixes γ ?

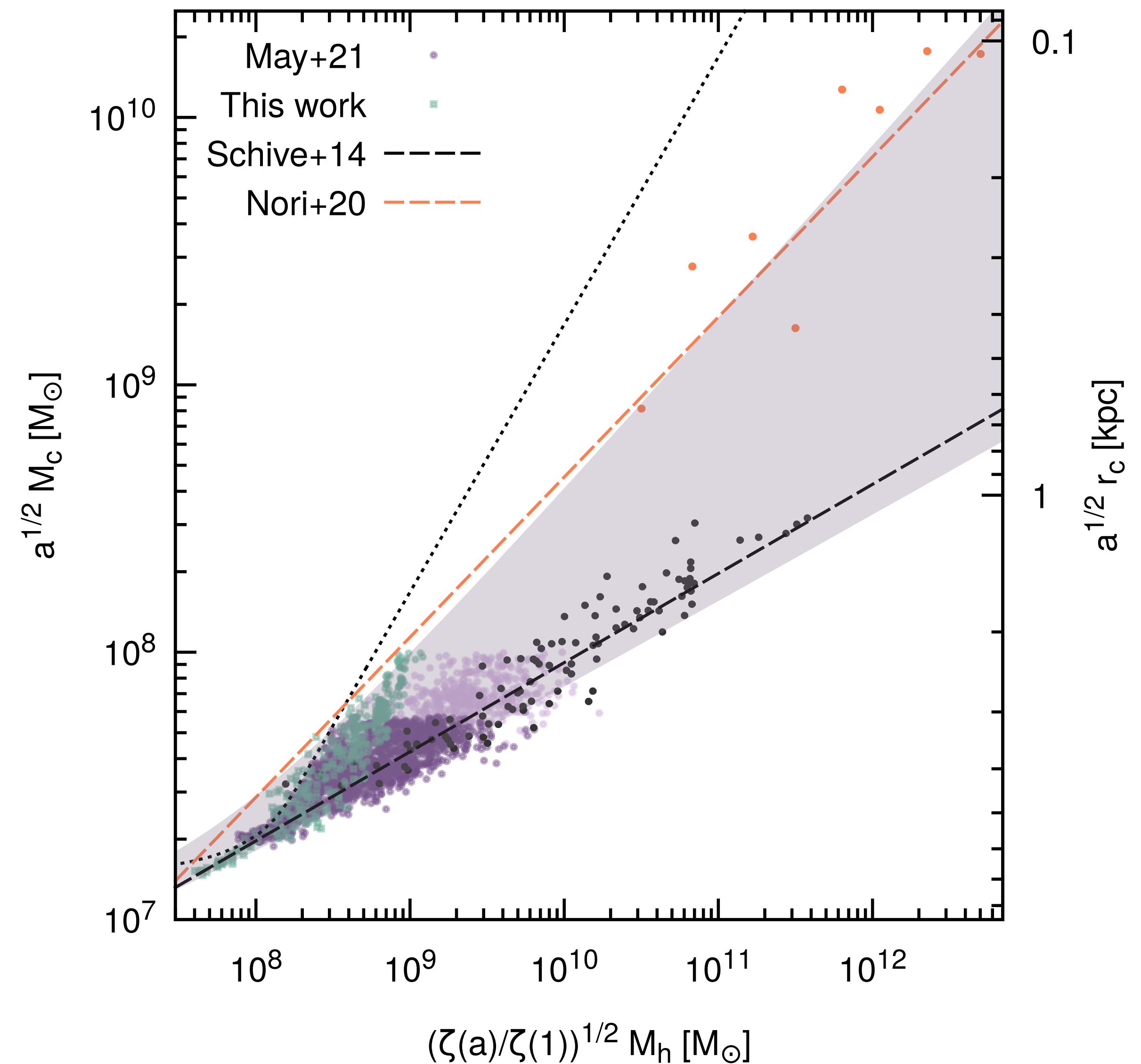


Scattering in halo-soliton relation

Ferreira et al 2005.03254
Chan et al 2110.11882



$$M_{\text{sol}} \approx 1.4 \times 10^9 \left(\frac{10^{-22} \text{eV}}{m_{DM}} \right) \left(\frac{M_{\text{halo}}}{10^{12} M_{\odot}} \right)^{\frac{1}{3}}$$



Our estimates from 2025 for 2025

Foster, DB et al., arXiv: 2504.15334 [astro-ph.CO]
Foster, DB et al., arXiv: 2504.16988 [gr-qc]

