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Dark Matter: where to look?
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ULDM and CDM similar at large-scales

m ~ 10722 eV Scale of ~30 Mpc, Schive et al. 1406.6586




ULDM differs from CDM at small-scales

L == _(8Mgb)2 — m?¢*| + gravity + other interactions \

Halo (free waves) When vorticity can be neglected

Virialized configuration: collection of waves with In terms of fluid variables (e.g. p o m2¢2);
distribution determined by virialization in the galaxy )

gravitational potential
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wy ~ m(1+v°/2) Non-relativistic

The DM potential has coherent oscillations at
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New handles to find the nature of DM

Halo (free waves)
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Gravitational field also oscillates
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These osclllations inject heat In
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New handles to find the nature of DM
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SIDM and solitons

DB, Gasparotto,Vicente, 2410.07330
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Where to look for these features?
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Models with ULDM coupled to SM (& SIDM)

DB, Gasparqtto,Vic;ente, 2410.07330
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ULDM modulation of gravitational waves

DB, Gasparotto,Vicente, 2410.07330
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New ULDM handle Il: resonant absorption (binaries)
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fluctuating gravitational potentials affect gravitationally bound systems
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possible resonances at f=n/P
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New ULDM handles |I: resonant absorption
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New ULDM handles |I: resonant absorption
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10-220V oV Conclusions

B Generates fluctuating fields and stationary galactic gravitational potentials -
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# These fluctuations affect all motion (gravitational dynamics)
# SIDM: extended cores, direct effect In the bodies
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0=22ey WV Outlook

B Generates fluctuating fields and stationary galactic gravitational potential

B Generates coherent cores at high density (solitons)

# These fluctuations affect all motion (gravitational dynamics)
# SIDM:. extended cores, direct effect in the bodies

What do they do for very cold, dense, balanced, resonating...
configurations in your simu

tions?
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ULDM modifies time of arrival in pulsar signals
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Properties of the soliton
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Galaxy
halo

DM: particles
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Scattering in halo-soliton relation
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DM: condensate
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Our estimates from 2025 for 2025
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