

Production of velocity-dependent pion SIMPs

Óscar Zapata

Universidad de Antioquia, Medellín, Colombia.

June 19, 2025

Valencia Workshop on the Small-Scale Structure of the
Universe and Self-Interacting Dark Matter

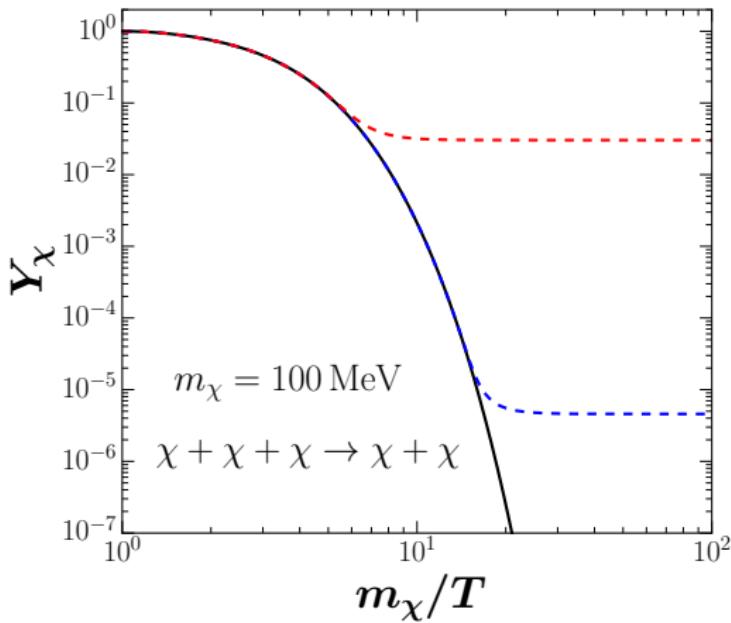
PRD24 Garcia-Cely/Landini/OZ,

2506.xxxxx García-Cely/Landini/Marsili/OZ

✓ χ is the lightest particle in a nearly secluded dark sector.

$$\frac{dn_\chi}{dt} + 3Hn_\chi = -\langle\sigma_\chi v^2\rangle_{3\rightarrow2} [n_\chi^3 - n_\chi^2 n_{\chi,\text{eq}}].$$

✓ Ω_χ is set by number changing processes in the dark sector:


$$3 \rightarrow 2, \quad 4 \rightarrow 2.$$

[negligible $\sigma(\chi\chi \rightarrow e^-e^+, \dots)$]

✓ $m_\chi \sim \alpha_{\text{eff}} (T_{\text{eq}}^2 M_{\text{Pl}})^{1/3}$
 $\sim 10 \text{ MeV} - 1 \text{ GeV}.$

☞ $\chi + \chi \rightarrow \chi + \chi$ scatterings allows for realizing SIDM.

☞ Thermal equilibrium with Standard Model particles: e.g.
 $\chi + e^- \rightarrow \chi + e^-.$

QCD-like theories

- ✓ Based on a dark $SU(N_c)$ gauge group ($SO(N_c)$ or $Sp(N_c)$ also applies).
- ✓ N_f flavors of Dirac quarks in $d = N_c$ fund. rep. of $SU(N_C)$.

$$\mathcal{L} = -\frac{1}{4}F^2 + \bar{q}i\cancel{D}q - (\bar{q}_L M q_R + \text{h.c.}), \quad M = \text{diag}(m_1, \dots, m_{N_f}).$$

- ☞ Massless quarks implies the global flavor sym:

$$G_F = SU(N_f)_L \times SU(N_f)_R; \quad q_{L(R)} \rightarrow \exp^{i\alpha_{L(R)}^a \lambda^a} q_{L(R)}.$$

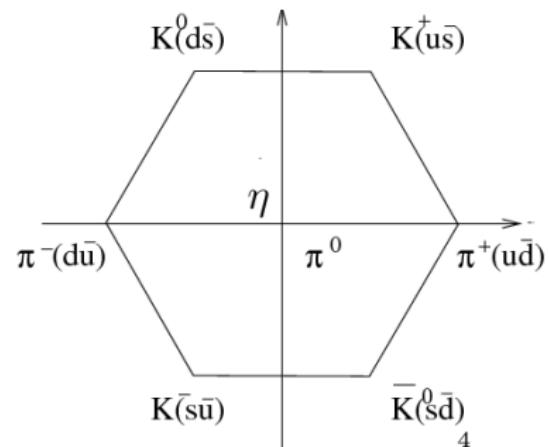
- ✓ In analogy with ordinary QCD, strong interactions confine at some energy scale Λ .

- Giving rise to a fermion condensate $\langle \bar{q}q \rangle \sim \Lambda^3$
- For $m_q \ll \Lambda$, the condensate spontaneously breaks G_F , inducing a chiral phase transition:

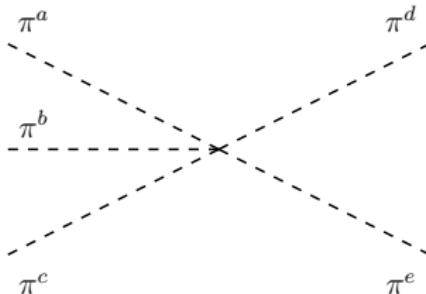
$$SU(N_f)_L \times SU(N_f)_R \rightarrow SU(N_f)_V.$$

- ☞ The unbroken vectorial subgroup is defined via $\alpha_L^a = \alpha_R^a$.

Dark pions

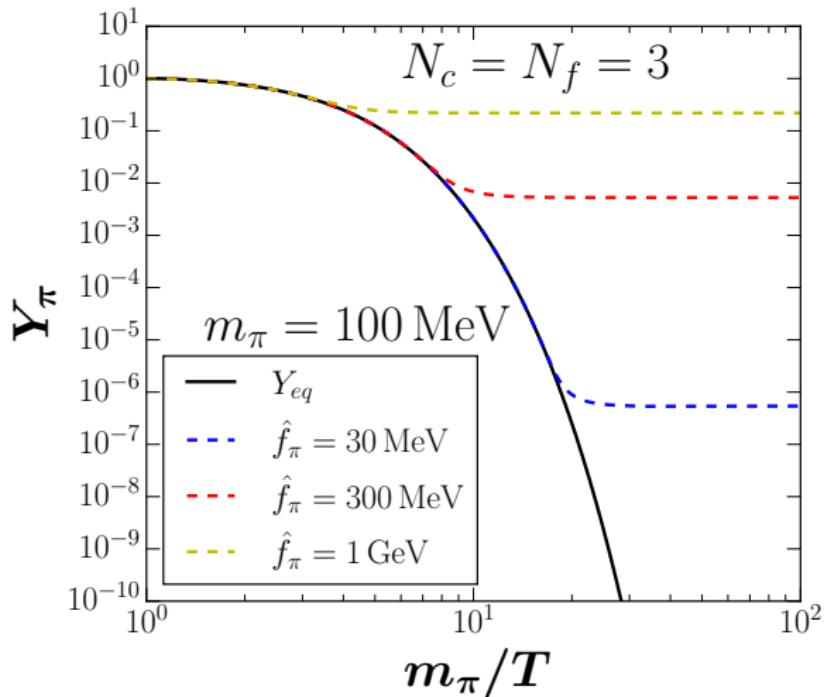

This leads to $N_f^2 - 1$ pseudo-Goldstone bosons, π^a , described by chiral perturbation theory: $U = e^{i\Pi/f_\pi}$, $\Pi = \pi^a \lambda^a$.

$$\mathcal{L}_{\text{eff}} = \frac{f_\pi^2}{4} \text{Tr}[|\partial_\mu U|^2] + \frac{f_\pi^2 B_0}{2} \text{Tr}[MU + \text{h.c.}] - \mathcal{L}_{\text{WZW}}(U^5),$$


- f_π : dark meson constant such that $\Lambda \sim 4\pi f_\pi / \sqrt{N_c}$.
- For $m_q \ll \Lambda$, M softly breaks G_F (still a good symmetry).
- Degenerate quark masses $\rightarrow m_\pi^2 = 2B_0 m_q$, $\langle \bar{q}q \rangle \equiv -B_0 f_\pi^2$.

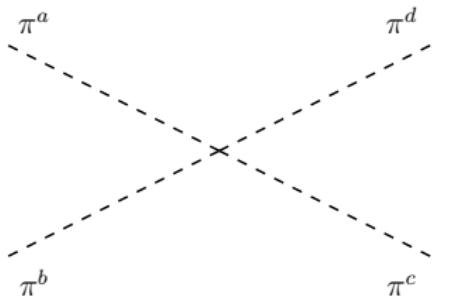
For $N_c = N_f = 3$:

$$\frac{\Pi}{\sqrt{2}} = \begin{pmatrix} \frac{1}{\sqrt{2}}\pi_3 + \frac{1}{\sqrt{6}}\pi_8 & \pi^+ & K^+ \\ \pi^- & -\frac{1}{\sqrt{2}}\pi_3 + \frac{1}{\sqrt{6}}\pi_8 & K^0 \\ K^- & \bar{K}^0 & -\sqrt{\frac{2}{3}}\pi_8 \end{pmatrix}.$$

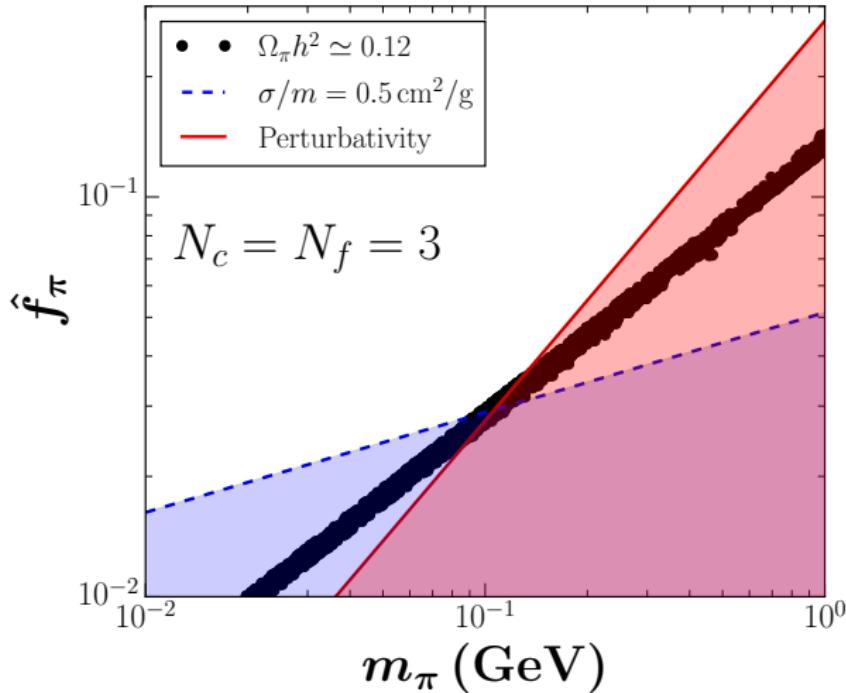

- ✓ DM is a thermal relic in the form of dark π .
- ✓ Ω_π is set $3 \rightarrow 2$ proc.:

$$\langle \sigma v^2 \rangle = \frac{5\sqrt{5}m_\pi^5 N_c 3t^2}{2\pi^5 f_\pi^{10} x^2 N_\pi^3},$$

$$\lambda = \frac{4\sqrt{10}\pi^3 M_P m_\pi^4 g_s^2}{675 g_\rho^{1/2}}.$$


$$\frac{dY_\pi}{dx} = -\frac{\lambda \langle \sigma v^2 \rangle}{x^5} Y_\pi^2 (Y_\pi - Y_\pi^{\text{eq}}).$$

Dark pions as SIMPs (Hochberg+14)


- ✓ π 's can also scatter through a 4-point contact interaction:

$$\mathcal{L}_{2 \rightarrow 2} = \frac{m_\pi^2}{48f_\pi^2} \text{Tr} [\Pi^4].$$

$$\sigma_{2 \rightarrow 2} \propto m_\pi^2/f_\pi^4.$$

- ☒ v -indep: no SIDM.

Ω_π in tension with the bound from clusters of galaxies:
 $\sigma_0/m_{\text{DM}} \gtrsim 1 \text{ cm}^2/\text{g}$ in the perturbativity region.

- ✓ $N_c \geq 3$, N_f flavors of light Dirac quarks in the fund. rep.:

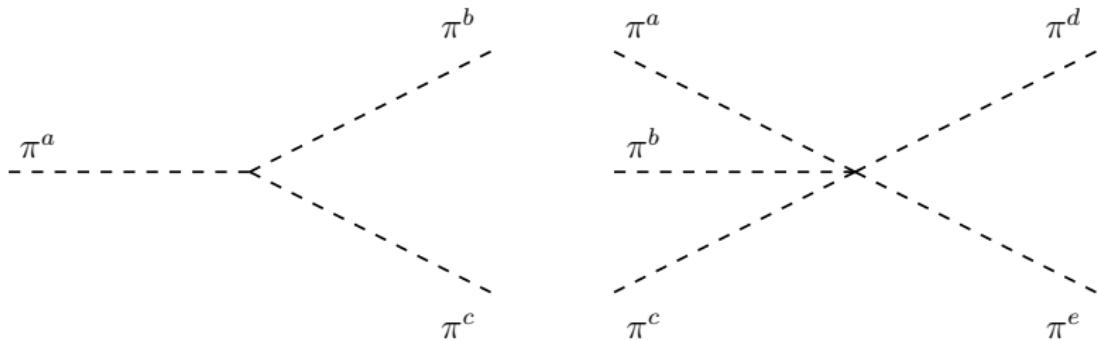
$$\mathcal{L} = -\frac{1}{4}F^2 + \frac{g^2\theta}{32\pi^2}F\tilde{F} + \bar{q}i\cancel{D}q - (\bar{q}_L M q_R + \text{h.c.}), \quad \theta \ll 1.$$

$M = \text{diag}(m_1, \dots, m_{N_f})$, with $m_i \neq 0$ for all flavors.

- ✓ Due to the chiral anomaly, under $q_{L,R} \rightarrow e^{\mp i\theta Q/2}q_{L,R}$:

$$\theta \rightarrow \theta(1 - \text{Tr } Q),$$

$$M \rightarrow M_\theta = e^{i\theta Q/2} M e^{i\theta Q/2}.$$


- ✓ Taking a transformation with $\text{Tr } Q = 1$, we move the θ parameter from the $F\tilde{F}$ term to the quark mass matrix .

The Pion interactions get modified to (Kamada+17)

$$\mathcal{L}_{\text{eff}} = \frac{f_\pi^2}{4} \text{Tr}[\partial_\mu U^\dagger \partial^\mu U] + \frac{f_\pi^2}{2} B_0 \text{Tr}[M_\theta U + U^\dagger M_\theta^\dagger] + \mathcal{L}_{\text{WZW}}.$$

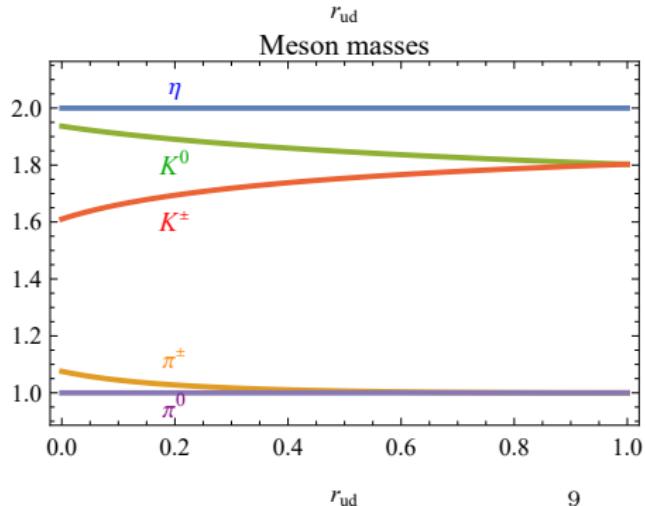
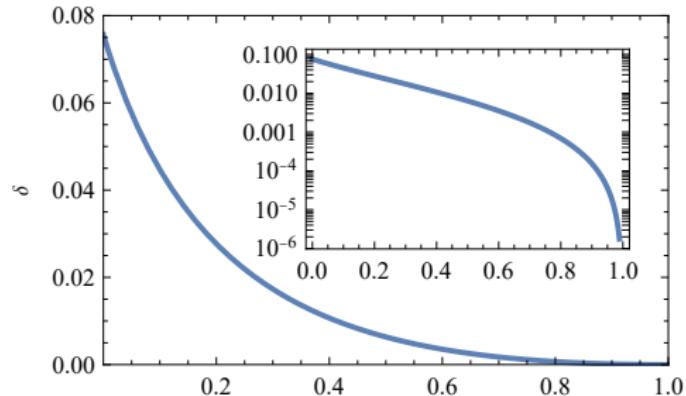
New interactions with an odd number of mesons:

$$\mathcal{L}_\theta = \frac{B_0 \theta}{3f_\pi \text{Tr} M^{-1}} \left(d_{abc} \pi_a \pi_b \pi_c - \frac{c_{abcde}}{10f_\pi^2} \pi_a \pi_b \pi_c \pi_d \pi_e \right),$$

Benchmark Model: $SU(3)_c$ and $m_u \leq m_d \leq m_s$

Pion splitting

✓ Non-relativistic resonant scattering: $v_R \lesssim 0.1$.



☒ m_u/m_s is a function of v_R and $r_{ud} = m_u/m_d$.

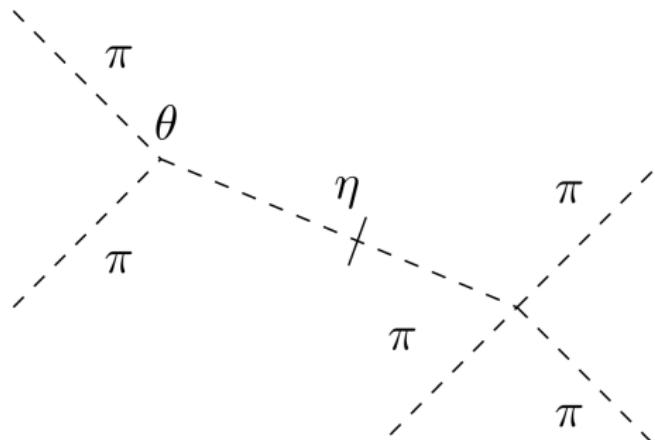
☒ Ratios of meson masses are fixed in terms of r_{ud} .

✓ η acts as unstable resonance:

$$\mathcal{L}_{\eta\pi\pi} = \frac{B_0 \theta \cos(3\theta_{\eta\pi})}{\sqrt{3} f_\pi \text{Tr} M^{-1}} \eta \pi^0 \pi^0.$$

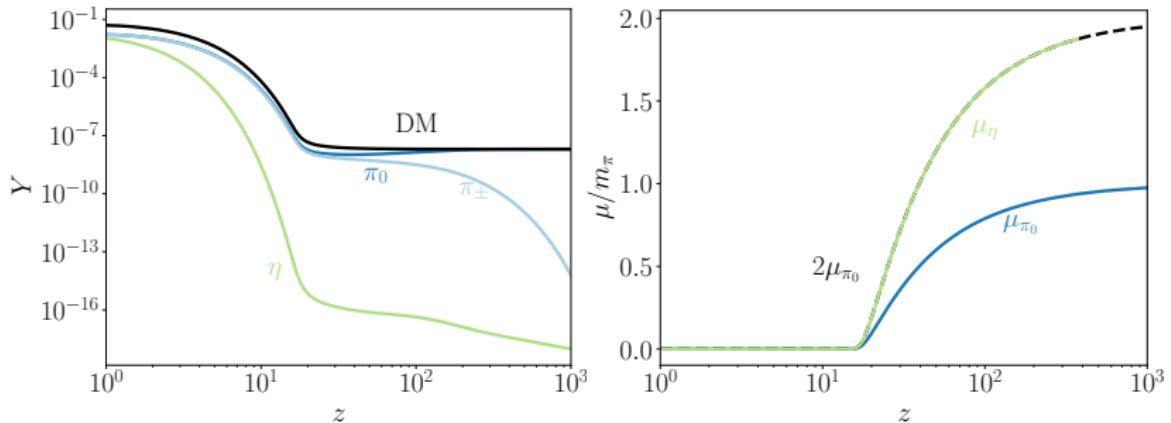
$$\begin{cases} m_{\eta^0} = \sqrt{(2 + v_R^2/4)} m_{\pi^0} \\ m_K \\ m_{\pi^\pm} = (1 + \delta) m_{\pi^0} \\ m_{\pi^0} \end{cases}.$$

Cosmological implications


- ✓ The θ angle impacts DM production due to the NCP: 3-to-2 annihilations and inverse decays $\text{DM DM} \rightarrow \eta$.
- ✓ All the stable mesons eventually convert to DM with a contribution to the DM relic density that depends on their mass (as usual in co-annihilating DM).
- ✓ DM and its coannihilating partners are referred to as π_{DM} .
 - ☞ Kaons are sufficiently heavy so that $Y_K \sim e^{-m_K/T} \ll Y_\pi$.
 - since $\delta \lesssim 0.075$ then $n_{\pi_{\text{DM}}} = n_{\pi^0} + 2n_{\pi^\pm}$.
- ☞ Assumption: the dark sector remains in kinetic equilibrium with the SM, thereby sharing the same temperature T .
 - See Luca Marsili's talk.

Resonant $3 \rightarrow 2$ processes

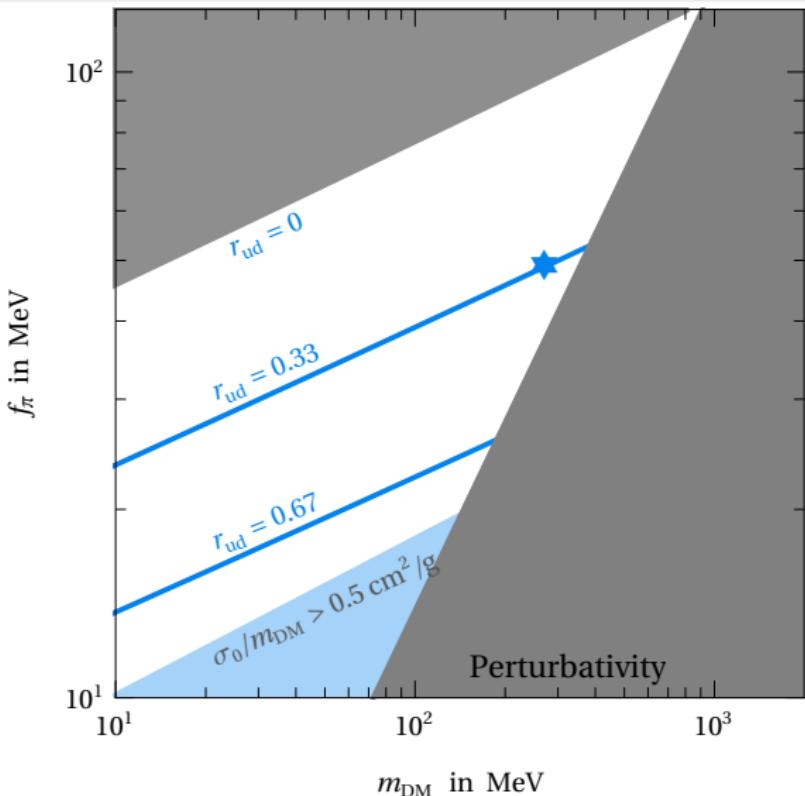
- ✓ η behaves as a catalyst, inducing NCP such as


$$\eta \pi_{\text{DM}} \rightarrow \pi_{\text{DM}} \pi_{\text{DM}}, \quad \eta \rightarrow \pi_{\text{DM}} \pi_{\text{DM}}, \quad \pi_{\text{DM}} \pi_{\text{DM}} \rightarrow \eta.$$

- ✓ For $v_R \lesssim 0.1$ and $\theta \gg 10^{-4}$: $\eta \leftrightarrow \pi_{\text{DM}} \pi_{\text{DM}}$ are both active even after all other NCP have frozen-out.
- ✓ $\pi_{\text{DM}} \pi_{\text{DM}} \pi_{\text{DM}} \rightarrow \pi_{\text{DM}} \pi_{\text{DM}}$ is dominated by the exchange of an on-shell η resonance.

Resonant $3 \rightarrow 2$ processes

m_{π_0}	f_π	m_{π^\pm}	θ	r_{ud}	v_R
20.0 MeV	27.3 MeV	20.3 MeV	2.5×10^{-4}	0.33	6.7×10^{-4}


☞ As $Y_\eta \ll Y_{\pi_{\text{DM}}} \Rightarrow Y_{\pi_{\text{DM}}} + 2Y_\eta \simeq Y_{\pi_{\text{DM}}}.$

☞ $\eta \leftrightarrow \pi_{\text{DM}}\pi_{\text{DM}}$ establish chemical equil.: $n_\eta/n_{\pi_{\text{DM}}}^2 = (n_\eta/n_{\pi_{\text{DM}}}^2)_{\text{eq.}}$

✓ Ω_{DM} is determined by s -wave 2-to-2.

Parameter space

- ✓ $\Omega_{\text{Planck}} h^2$ is reproduced along the plane for different values of r_{ud} .
- ☒ Upper gray region DM is overabundant for any physical value of r_{ud} .
- ☒ Blue region is excluded by obs. of galaxy clusters: $\sigma_0/m_{\text{DM}} > 0.5 \text{ cm}^2/\text{g}$.
- ☒ In the dark-gray region ChPT breaks down: $m_{\text{DM}}/f_\pi > 4\pi/\sqrt{N_c}$.
- ✓ Results are independent of v_R (if $v_R \lesssim 0.1$) but depend on δ (or r_{ud}), as long as the small dependence of the masses on v_R and θ is neglected.

- ☒ The viable parameter regions can be compatible with cluster observations on DM self-scattering (Giacomo's talk).

- ✓ We presented a production mechanism of DM in QCD-like theories where $\theta \neq 0$.
 - ☞ This requires a resonance mediating $\pi_{\text{DM}}\pi_{\text{DM}} \rightarrow \eta$ followed by $\eta\pi_{\text{DM}} \rightarrow \pi_{\text{DM}}\pi_{\text{DM}}$.
 - ☞ The θ -vacuum leads to velocity-dependent SIDM without a light mediator (Giacamo's talk)
- ✓ The θ -dependent effects discussed here are generic features of QCD-like theories.

- Portal to SM: hidden dark photons (see [Luca Marsili's talk](#)); axion-like particles.
- Emission of GWs if the ChPT is first order.
- Additional source of CP violation in QCD-like sectors. Implications for the matter-antimatter asymmetry?.