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Long-range force

Light mediator

a

- mediator lighter than the dark matter V=-— %e_mcb”

- electroweak-scale or lighter dark matter - (attractive) Yukawa potential

- new dark force (e.g., dark photon)

- TeV-scale dark matter (e.g., weak multiplet)

- weak force

Self-scattering

- velocity dependent and large

. . X X
scattering cross section %SSS
X X

- non-perturbative (infinite exchanges of a
mediator) when the distortion of wave function
IS significant



Sommerfeld enhancement

Enhanced annihilation

- enlarge probability of finding two X 5 ¢
particles at the same position m
X 1 ¢

- annihilation cross section Is

enhanced
(Gannvrel) — S(O-égglvrel)
: : 10% ¢
- without potential -
103; __________________
- Sommerfeld . : "~
enhancement factor £ q02L
% 1015—
- velocity dependent -+ ¢ Hulthén potential
. . 100;_ m = 20 GeV 5
- larger cross section in E:E *g EZZZ;’Z = 543589?118_3 ’QS‘G%G(YV)) _
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Indirect detection

Canonical cross section

- thermal freeze-out (annihilation
in the early Universe) v, ~ 1/2

3% 10720 cm?/s

< Gannv >

Qh?=0.1x

- requires a weak-scale
annihilation cross section

(0,,V) =~ lpbXc
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_ Vrel

Sommerfeld enhancement
and self-scattering

104

L | L |
Planck excluded

Tight correlation |
103k
- resonant enhancement occurs at 5 3 =
the same parameter point < ol " 3 :
o 2 3
Ex | g ; = exciuaec E
- zero-energy resonances (shallow 0 S e
bound states) i
100k
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Scattering in quantum mechanics

Schrodinger equation
k2
y(X) = Ey(X) E=—  k=pyy

o =m/2
- potential from long-range force ] reglucgd mass _(ﬂ = m
for identical particle)

[—LW + V()
2U '

- scattering state (energy eigenstate)

elki’
r = o0

W@ = et f(k, 0)

r
- (initial) plane wave

- scattering amplitude
- out-going spherical wave

Partial-wave decomposition

- motivated by e =) (2¢ + 1)e™"%j (kr)P,(cos 6)
=0

Yemes,0) 1

w) = Y Q2F + l)ei< R AP (cos 0)
=0

- phase shift



Sommerfeld enhancement

and self-scattering
Scattering phase shift

- radial wave function at infinity

sin(kr — £ + 5,(k))
ka(l’) > . r —- ©0

2i6,(0) _ 1

2ik

€

flk.0) = Y 26 + Df()Py(cos0)  f.(k) =
=0

5= i 6 o= %(2@” + Dsin? 6,0 - diagonalized S-matrileé
=0 S (k) = e*°k)
Sommerfeld enhancement
- radial wave function around the origin
- annihilation through the contact interaction (delta function potential)
R0 |
REH(r)

- without potential

r— 0

Sf(k) —




Jost function

How to find R, .(r) in practice?

- “Initial” condition given at the origin (regularity)
B ) ki) ~ k=
’ 27 + 1!
- radial Schrodinger equation

[1 d ,d ., CC+1)

+ k
r2 drr dr r2

—2uV(r)| B Ar) =0

- asymptotic behavior of solution

1
F—jfﬂ

R ) = o [ffuc)e‘i(k ) - ff<—k>ei<k’”‘%f”)] r— oo

- Jost function

- by comparing asymptotic behavior

Ry (1) = R A1)

10



Jost function

Sommerfeld enhancement and

self-scattering

- Jost function determines both

. S A=k I
S, (k) = e0k) = 4 S, (k) = >
S k) |7 AR
108:
— a=10"°
= a=10"2
10°.
n 10
102
T N T

b= am,/mg,

b= am,/m,
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Omnes solution

Inverse Jost function

. . . k(D)
- analytic continuation to complex momentum

= Q(K)F (k) -

bound states branch cut

S o(k?)

Q (k%) = explw (k*)]

1 J'Oo 0.(q)

- 1st Riemann sheet Im(k) > 0

w(k?) = — dg?
Ak?) 7], qqz—kz

- reproducing the brunch cut
k2

F (k*) =
lb:[ k* + K7,

- rational function reproducing bound-state poles
- numerator is chosen so that no singularity at £ — 0
- discussed next
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Omnes solution

Levinson theorem

- # of bound states is given by phase shift

O,k = 0) —6,(k = 0) = [#bf <+%>

T - excluding virtual levels

- Zero in our - only for s-wave zero-
normalization energy resonances

k — 0 behavior

- Omnes function is singular with the power of # of bound states

Re[w,(k* + i€)] = l][ dq’ AD [#bf <+%>
T

In(k?/A* k-0

0 q2 — k2
1 F (k%)
— 2 . 2 4
T+ o) = explw(k~ +ie)]F (k) D) k—0
k2
2\ — 2#b
Ff(k)—llkz_l_lcbzfock ¢ k— 0
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Omnes solution vs direct computation

1012%
S-wave
- Omnés solution agrees with direct 10°)
computation from scattering state S
104,
p-wave
- reproduce unstable (positive 100,
energy) resonance as well
A 2 :
.|/< (IT) 10
x anti-resonances
branch cut
X = 10'2;
virtual levels X
resonarnces ~ c
- unstable 7 108%

- 2nd Riemann sheet Im(k) < 0
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Zero-energy resonances

1072,
No cancellation \o= 1680
- s-wave 1st resonance #b, =0 10°, 1
| %b:1.68_2”‘°< 2
k— 0 Re[wyk?+ie)] = — > In(rZgk?) & b=16T8
10%.
- only zero energy “virtual” level Fy(k*) = 1 *
k—0 = explwy(k*)|Fy(k?) ! 10°
Jo(k?) k B e e
k/mg
- p-wave 1st resonance #b, = 1 1016} T khb=9.082
k— 0 Re[w(k?)] - — ln(l”ez,lkz) 101239: 9.083
k2 o5 b=9.08l
- zero energy bound state F,(k?) = = 1t
k-0 2)F () o — o
— = explw F X —
iy SPentInE
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Zero-energy resonances

Unitarity violation

- 0N s- and p-waves zero-energy resonances, partial-wave
Unitarity is violated at low velocity

Uni

. 0 0 20 — i
(64 annVee) = Sf(aé’;nnvrel) (";,znnvrel) x k (0 annVrel) = ﬁ

2 1 2 1

- because we ignored a contact interaction including Vv o us3()
annihilation when solving the Schrodinger equation

Self-consistent solution

- Incorporating contact interaction is
not as easy as one expects

- mathematical fact: there is no bounded wave function if a
potential is singular than the centrifugal one

17
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Full scattering state

S-matrix . .
pf(k) . k2f+1 l%f(k) _k2f+1 l%f(_k)

I A(—k) F (k) F /(—k)
F (k) pAk)

- K is determined by singular solution

¢ — 1!
(Sk,f(r) —> kyf(kl’) ~N — k (kr)f+1 r — O

Sf(k) —

C\S)k,f(l") o zi %{(k)e_i<kr_%fﬂ) n %bﬂ(—k)el(kr_%fﬂ) s o

r

- p(K) represents the contact interaction

- k-dependence is determined by

H k) d¥ | (k) " (k 2040 [ (kr)?
potlo - D O 0| ©) = poth — 22T ko
Fek) —drerh | @Ot T Foko) — drest | oy

(0)

- large-k value is determined by UV cross section

4 4
4]7’. GSC,O 472- O-ann’()

I
%

— Im —
Ip, (k) |> €+ Dk¥ p (k) 27 + Dk2/-1




Full scattering state

Unitarized Sommerfeld enhancement factor

SE

1o | non-Unitarized
108 L
: e Unitarity bound
| Unitarized
10° |
N L L | L L N | L L | L L N | L V
1076 107° 10~ 0.001 0.010

Bound state with decay width

- bound state is a pole of S-matrix

- one can find decay width as

1 ohmov | Q€+ D! ARG
mE, = — Z(0)
2(4r) (2€ + 1)p2? £l dr




Summary

Long-range force of dark matter

- Sommerfeld enhancement and self-scattering cross section
- indirect detection and structure formation

- correlated

This talk

- they are determined by Jost function

- Omnes solution reproduces (inverse) Jost function

- Zero-energy resonances lead to violation of partial-wave
Unitarity for s- and p-waves

- Unitarized S-matrix has a bound state pole with decay width

20



Thank you
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Self-scattering

The same light mediator
- non-perturbative (infinite exchanges) d d
when the distortion of wave function ¢
IS significant

- again described by the Schrodinger
equation (later)

Self-interacting dark matter

- Interactions among dark
matter particles

o/m ~ 1cm?/g ~ 1 barn/GeV

- dark matter density profile inside
a halo turns from cuspy to cored

1 1 [T TR T W B | 1 1 1 1111
10 10° 10*
Radius [pc]
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Velocity dependence

Self-interacting dark matter

- cored profile “appear to” provide better fit to astronomical data

- “data” points from astrophysical observations of various size halos

Light mediator

= 20GoV 5
— (%) (a,a/re) = (—292fm, —152) |

N -
N

- iIntroduce a velocity — :
N (k) (a,a/re) = (—292fm, —22.5)F

dependence, which is WL MW satelites™Ng -
compatible with “data” e 107
— 10° ;— : galaxy clusters —;

- : \ E
\q_‘ - .
5 107 - E
@ = >

dwarf spiral galaxies \

101 102 103
(Vye1) |km/s]
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Data points

Overview

- cores In various-size halos
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Data points

Galaxy clusters

- mass distribution in the outer region is
determined by strong/weak gravitational

lensing

- stellar kinematics in the central region
(brightest cluster galaxies) prefer cored

SIDM profile
109 0 Cluster A2537 NFW SIDM Pb.
— : —e—| :
m& 108 CDM self —interacting r;  collisionless ]
%@ 5
S 107
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Z 10°2 ]
S § 500 -
S 0l T |
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25



Data points

Dwarf spiral galaxies N T
105 O, |0 (o) — (292 0m, 22)
- mass distribution is broadly S 10'C A
determined by rotation curves s
_ o _ E 107 \‘
- rotation velocity in central region (of - N
some galaxies) prefer cored SIDM profile o3 \
(tra) ks
100 ' ' ' I ' ' ' I ' ' ' I ' ' ' I ' ' ! 1 ! ! ! 1 ! ! !
[ 1C 2574, Cco00:-2.50, Mayy:1.5x10"" M, ,
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x 07 e LT gas 1
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MW satellites

pout [Me kpe™]

Data points

- mass distribution is determined by
stellar kinematics

- stellar kinematics in the central region

(of some satellites) prefer cuspy CDM

profile
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MW satellites

- one possibility is to take as a tiny
cross section as o.;;/m ~ 0.01 cm?/g

(Vo) ~ 30km/s

- resonance”?

Data points
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T T T T T TT] T T T

m = 20 GeV 3
— (%) (a,a/r.) = (=292 fm, —152) |
(%) (a,a/re) = (=292 fm, —22.5)z

10-3L

- another possibility is to take as a

large cross section as o,.,;/m ~ 40cm?/g

- gravothermal collapse
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Data points

MW satellites

- gravothermal collapse

- core shrinks and central
density gets higher

- central density at present is very
sensitive to the cross section
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Correlation

Zero-energy resonances

- resonant enhancement occur

Effective range theory

1 1
_|_
a2+l 2r, 26~

k> *leots, » — k?

- scattering length
- effective range

-(on resonance ) a, —
-(shallow virtual level

- hon-normalizable

-(shallow bound state

- pole of scattering amplitude

30
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Analytic property

Complex momentum squared k()
C) = — N
f( ) B j f(kz) bound states branch cut
- “real” complex function

3% = Tk*)

_ - 1st Riemann sheet Im(k) > 0
- brach cut along real (physical) axis &)

[ (k* + ie) = e?o/PT (k* — i€) A can
- real k2 xantilaances
branch cut
- known as Watson theorem — -
(kind of optical theorem) virtual levels o
! - unstable
X
¥ EE - 2nd Riemann sheet Im(k) < 0
|

- bound states
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Omnes solution

Levinson theorem

- # of bound states is given by phase shift

1
O,k = 0) —6,(k = 0) = [#bf <+5> T - excluding virtual levels
- Zero in our - only for s-wave zero-
normalization energy resonances
- underlying idea kR
- consider the system confined $ —— —_—
in a large sphere sin(kr — %fﬂ +6,) H — —
1 ka(r) —> - H
kR ——Cn+96,=nr S S
2 r — 00 !
n=0,x1, £2...
- scattering states are k>0
discretized (countable infinity) %Zﬂ ——
- decrease in # of scattering 0 i
states = # of bound states
- w/o - w/

- total number does not change potential potential



Omnes solution

Yukawa potential

- S-wave
102-

10 11 111l 1111111l 1 LIl 111l L1111l 111

104 1072 10° 10°
k/m¢

- Omnes solution agrees with direct
computation from scattering state

- with proper Fy(k?%)

s
S

=
S

1000
500!
0:
-500
-1000

b= am./mu

104§

b=1.0

k/mgy
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Around zero-energy resonances

S-wave
1
5o(k —> O) — #bo +5 T . b— 1682
- on 1st resonance #b, =0 o | b=1680
2) . 1 ) 2 4 ()
k=0 Relogk +ie)] = = In(rgk”) 0=
,Lb=1678
- only zero energy “virtual” level Fy(k*) =1 " 10 104 102 10° 102

k—0 1—‘()(kz) = eXP[a)o(kz)]F o(kz) X ;

1012%

- slightly below the 1st resonance #b,=0 b= 1.680

1

- no bound state Fy(k*) = 1 e\ B

- slightly above the 1st resonance #b,=1 “ =1

104,
k— 0 Relwyk*+ie)] —» — 111(7’62, oK) :
k2 ,
- single bound state F,(k?) = of
J o(k%) k2 + k2, R .
k— 0 Tyk?) - saturates at low k A
k2 + K2, k/mg



Omnes solution

Yukawa potential

- p-wave

100k

10°¢

104

10°;

S¥
|

[

10.6997

102

107

1074

k/mg

1072

10°

10°

20
10

S [
S
- [
S 10

-20"

100,

50+

2
0m¢

100,

1074,

E ’
E v

1078 3/
4

b = 10.6997

]

109

k/m¢
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Around zero-energy resonances

P-wave
b= 9.082
o1k = 0) =#bn Ty =908 [
| #b =1
<
- on the 1st resonance #b, = 1 ?|
b= 9.081
k— 0 Relw(k?)] - — ln(i’ilkz) O Ho i B e
k2 k/m¢
- zero energy bound state F,(k?) = = 1
1
N 2 2 1
k—0 I'(k7) = explo(k)]F (k") 2 116, \ & 77 b= 9.082
- slightly below/above the 1st resonance 10
- similar to s-wave 7 oes
- unstabMs resonance
10‘% \

104 1072 100 102

k/m¢



Full scattering state

Linear combination of regular and singular solutions

R /1) = A JK) R /(1) + B oK)S; ,(r) - valid except for the origin

- regular solution we discussed before

- singular solution we introduce now

2 —1)!!
CS)k,f(]") —> kyf(kr) ~ —k (kr)f+1 r— 0

csjkf(}") —_ — % [%K(k)e_i<kr_%fﬂ> n %K(—k)€i<kr_%fﬂ>] S oo

- one combination of two unknown coefficients is fixed by
requirement of in-coming wave

r —- &0

R () — é [e—i<kr—%f7r) _s, (k)ei<kr—%fﬂ>]

jf(_k) l

4

A () F o) + 1B ) F f(k) =1 Sp(k) =

I — BT [(k)| — iB ) K o(—F)
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Full scattering state

The other combination is fixed by renormalization condition

k2f+1

- K (k)_ %kf(r)
= R =% s —— +
PO = T A A@<ﬁ%@ T | e Cﬁﬂ”)

- potential has delta-function (contact) term
V 2 ud’ %)

- kinetic term of singular solution has contact term at the origin

VN1 4z, |
- = —5°(¥)
2u | r 2u

- cancellation between them leads to renormalization condition

F (k d2f+1 [ k 4
pf(k)_szﬂl k) N (kr) 'S,
J (k) dr2¢+l | (26)!! ’
iH k) A | (k)
+ r& o
Fky) —dr¥Etl | 2ol
- renormalization scale ]

(0)

20+1
kO

= pky) — (0)




Full scattering state

Bound state with decay width

- bound state is a pole of S-matrix

- non-Unitarized S-matrix has a pole at pure imaginary momentum
Fk=ix)=0

- one can find the correction to the pole from Unitarized S-matrix by
using properties of Jost function

1 Lm0V 2¢ + D! d°R}
ImE,; = — — (0)
2(41) €+ 1)p A dr?

2
21 4ol < Ol ) ¢ + D! d°RY, o

+ —_
2% 20 '7\ Q7+ Dp*  \ @7 + 1)p-] 2 art




