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%3 Key Takeaways

Cores of collisionless systems reveal intriguing dynamics

e core stalling cessation of dynamical friction near outskirts of cores
e dynamical buoyancy inverse of dynamical friction in interior of cores

e dipole instability if transition to core is too rapid, core is unstable
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Cores of collisionless systems reveal intriguing dynamics

e core stalling cessation of dynamical friction near outskirts of cores
e dynamical buoyancy inverse of dynamical friction in interior of cores

e dipole instability If transition to core is too rapid, core is unstable

All these phenomena relate to features (bumps & shoulders) in the
distribution function f(E) of the cored system

In SIDM, self-interactions diffuse features and drive f(E) towards a
featureless isothermal

SIDM cores show NO core stalling, buoyancy or dipole instability

Cores are a potential proving ground for nature of dark matter
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Chandrasekhar Dynamical Friction

Dynamical Friction: friction due to gravity

Dynamical friction arises as back-reaction due to response (wake)
in the distribution of field (background) particles
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Dynamical friction arises as back-reaction due to response (wake)
in the distribution of field (background) particles
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—— Chandrasekhar
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Orbital decay consistent with predictions
based on Chandrasekhar dynamical friction
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Core Stalling

Galacto-centric radius of BH

—— Chandrasekhar

3.0 4.0 5.0

Time (Gyr)

see also Read+06; Goerdt+10; Inoue 2011; Petts+16; Dutta-Chowdhury+19, Banik & vdB 2021
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Dynamical Buoyancy

Galacto-centric radius of BH
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see also Cole+12; Banik & vdB 21
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Dynamical Buoyancy

Galacto-centric radius of BH

3.0 4.0 5.0

Time (Gyr)

Core stalling and Dynamical buoyancy
are inconsistent with
Chandrasekhar dynamical friction

NOTE: this is NOT due to Brownian motion,
but rather to collective effects see also Cole+12: Banik & vdB 21
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Double Power-Law Density Profiles

Consider the generic class of («,/3,y) density profiles, commonly used
to model/describe astrophysical systems

o C—Pla

a: Steepness of transition
[: Outer slope
¥ . Inner slope

Well known examples:
NFW (a,8,7) = (1,3,1)
~Hernquist  (a,8,y) = (1,4,1)

S e S B

-or what values of a,f,y does
core stalling/buoyancy occur?
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Core Instability

residual density
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Core Instability & Dynamical Buoyancy

-0.2 -=0.1 . . . ' 200 400 600 800
Dattathri, vdB, et al. 2025a) Time

® Motion of cusp’ (dislodged from center due to dipole mode) over time

® Similar to a beach ball sloshing in a swimming pool with a seiche

® BH at center of cusp would ride along’
Dattathri vdB et al, 2025a

Multi-Scale Physics 2025 Frank van den Bosch, Yale University



Core Instability & Dynamical Qs

Galacto-centric radius of BH
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Galacto-centric radius of BH

Core Instability & Dynamical Qs
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dynamical buoyancy is manifestation of dipole instability

Dattathri vdB et al, 2025a
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What is this all about?

For isotropic DF:

(Lynden-Bell & Kalnajs 1972, Tremaine & Weinberg 1984)
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What is this all about?

integral over
all orbits

(Lynden-Bell & Kalnajs 1972, Tremaine & Weinberg 1984)
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What is this all about?

Dirac delta function
picks out resonances

(Lynden-Bell & Kalnajs 1972, Tremaine & Weinberg 1984)
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What is this all about?

sum over
resonances

(Lynden-Bell & Kalnajs 1972, Tremaine & Weinberg 1984)

Multi-Scale Physics 2025 Frank van den Bosch, Yale University




What is this all about?

gradient
of df

(Lynden-Bell & Kalnajs 1972, Tremaine & Weinberg 1984)
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What is this all about?

perturber
potential

(Lynden-Bell & Kalnajs 1972, Tremaine & Weinberg 1984)
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What is this all about?
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In words:
Net torque arises from inbalance between gainers and losers,
dictated by gradient in distribution function across resonances
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What is this all about?

(Lynden-Bell & Kalnajs 1972, Tremaine & Weinberg 1984)

In words:
Net torque arises from inbalance between gainers and losers,
dictated by gradient in distribution function across resonances

Asimple Of/OE <0 torque retarding dynamical friction
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Analogy with Plasma Physics

Kinetic Theory
of Gravitational Systems

dynamical friction

dynamical buoyancy

dipole instability

Landau damping (V)

slower particles
faster particles

Multi-Scale Physics 2025

Kinetic Theory
I MERWER

> Landau damping

P nverse Landau damping

» bump-on-tail instability

f(v) s

inverse Landau damping

Frank van den Bosch, Yale University



Vf; the Linchpin of Core Dynamics

---- Chandrasekhar
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T

Dattathri, vdB et al, 2025b, in prep
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Vf; the Linchpin of Core Dynamics

---- Chandrasekhar

df/oE > 0
unstable
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Dattathri, vdB et al, 2025b, in prep
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Vf; the Linchpin of Core Dynamics

e T~

---- Chandrasekhar
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Perturber stalls where of/dE ~ 0, in agreement with conjecture

Dattathri, vdB et al, 2025b, in prep
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Vf; the Linchpin of Core Dynamics

e T~

---- Chandrasekhar
1.0

0.8 -

0.6 -

0.4

0.2 -

0.0

0 50 100 150 200 250 300 350 400

T

Perturber stalls where of/dE ~ 0, in agreement with conjecture

Weak evolution in f(E) due to dipole instability

Dattathri, vdB et al, 2025b, in prep
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Vf; the Linchpin of Core Dynamics

om=10 cm2/g
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[ir

Dattathri, vdB et al, 2025b, in prep
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Vf; the Linchpin of Core Dynamics
SIoM 1=0

om=10 cm2/g

Self-interactions erode bump in DF and drive
system towards isothermal with f(E)<exp[-E/o?]

100 150 200 250 300 350 400
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Dattathri, vdB et al, 2025b, in prep
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Vf; the Linchpin of Core Dynamics
S\D\ =0

om=10 cm2/g
1.0

0.8

0.6

0.4 Self-interactions erode bump in DF and drive

s system towards isothermal with f(E)<exp[-E/o?]

0.0
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No Core Stalling with SIDM

No dipole instability with SIDM

No buoyancy with SIDM

Dattathri, vdB et al, 2025b, in prep
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Dynamical Friction Catalyzes Core Collapse

mass enclosed by perturber
mass inside r= 5.0 rs
mass inside r= 0.5 rs

mass inside r= 0.1 rs

vdB & Dattathri, 2025, in prep
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Dynamical Friction Catalyzes Core Collapse

mass enclosed by perturber
mass inside r= 5.0 rs
mass inside r= 0.5 rs

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

mass inside r= 0.1 rs

d , : DF of massive perturber triggers
S e s s s s —————— S s i vastly accelerated core collapse

w/o perturber, tec ~ 30 (255) Gyr for om=25 (3) cm2/g
with perturber, tecc <1 (6) Gyr for ocm=25 (3) cm?2/g

77777777777777777777777777777777777777777777777777777777

t [Gyr]

vdB & Dattathri, 2025, in prep
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Dynamical Friction Catalyzes Core Collapse

mass enclosed by perturber
mass inside r= 5.0 rs
mass inside r= 0.5 rs
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d , : DF of massive perturber triggers
B - . s s —————— S s i vastly accelerated core collapse

w/o perturber, tec ~ 30 (255) Gyr for om=25 (3) cm2/g
with perturber, tecc <1 (6) Gyr for ocm=25 (3) cm?2/g
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o
@ F ]

3 with perturber
hd
1

Sinking of perturber towards
center causes adiabatic contraction’
that catalyzes core collapse

sE
0 5 10
t [Gyr]

vdB & Dattathri, 2025, in prep
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A Test-Bed for the Nature of Dark Matter
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® Cores are common in galaxies; SIDM or CDM+baryonic processes?

® (Cores reveal intriguing dynamics: core stalling & dynamical bouyancy

® These happen whenever 0f/0E ~ 0 (stalling) or 6f/0E > 0 (buoyancy)

e Cores with inflection in DF where 9f/0E > 0 are dipole unstable
® Saturation of dipole mode into long-lived soliton explains buoyancy

® (Core stalling is suppressed or absent in SIDM

e Dynamical friction inside core catalyzes core collapse

® Frequency of offset AGN/NSC can potentially inform nature of DM
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