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.ubstructure observed in the MW
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H()W 100 m()del the MW System in CDM? The unabridged satellite luminosity function of Milky Way-like galaxies in

ACDM: the contribution of ‘“‘orphan” satellites

Isabel M.E. Santos-Santos,!* Carlos S. Frenk,! Julio F. Navarro,? Shaun Cole,! John Helly!
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M? The unabridged satellite luminosity function of Milky Way-like galaxies in
ACDM.: the contribution of ‘“orphan’ satellites

How to model the MW system in CD

Isabel M.E. Santos-Santos,!* Carlos S. Frenk,! Julio F. Navarro,? Shaun Cole,! John Helly!

Populate subhalos with galaxies

1.0  — BILF2|0 zon :16 ReSemem-EE -
, - — ' Fit (Eq.2) 20 km/s -
: j +Athreshold for galaxy formation reflecting the
_ 0.8 - minimum potential well depth needed for Hydrogen to

; § - - €00l Vpeak~15-20 km/s;
é = 0.6} _ [Okamoto&Frenk19, Benitez-Llambay&Frenk20]
> S :
”’i % 0.4 i 40nly halos that reach this potential depth can form
E s} - stars, rest remain dark.

= 0af : . . .

+ _ : +Implies number of MW satellites (of any luminosity)

I | cannot be too high (<~300)

— _
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How to model the MW system in CD

2 ITrack substructure in time
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[see e.g. Pefiarrubia+08, 10; van den Bosch & Ogiya18; HAn+18; Green&van den Bosch 19; Jiang+21; Stucker+23; He+25; Errani+20,21,22,24]
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M? The unabridged satellite luminosity function of Milky Way-like galaxies in
*  ACDM: the contribution of “orphan” satellites

Isabel M.E. Santos-Santos,'* Carlos S. Frenk,! Julio F. Navarro,?> Shaun Cole,! John Helly!

200 rapo(kpc)=43.3_
rperi(kpc)=1.6

Subhalo
Central
Most bound particle
Integrated orbit

6
Time (Gyr)

8 10

14

4+Many subhalos that should
nost satellites are lost due to
numerical issues (artificially
disrupt)

+In CDM, every subhalo
survives tides, as protected by
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4t is crucial to correct for
artificial disruption and track
"orphan” satellites
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M? The unabridged satellite luminosity function of Milky Way-like galaxies in
*  ACDM: the contribution of “orphan” satellites

How to model the MW system in CD

Isabel M.E. Santos-Santos,'* Carlos S. Frenk,! Julio F. Navarro,?> Shaun Cole,! John Helly!
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-Odel the MW System in CDM? The unabridged satellite luminosity function of Milky Way-like galaxies in

ACDM: the contribution of ‘“orphan’ satellites

Isabel M.E. Santos-Santos,!* Carlos S. Frenk,! Julio F. Navarro,? Shaun Cole,! John Helly!

4+"Orphans” dominate the
inner regions of the MW

40rphans make up half of
the total satellite
population, even in Ag-A-1

Santos-Santos et al 2025
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How to model the MW system in CD
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*  ACDM: the contribution of “orphan” satellites

Isabel M.E. Santos-Santos,!* Carlos S. Frenk,! Julio F. Navarro,? Shaun Cole,! John Helly!

7 The contribution of “orphan” satellites in MW halos
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o GALFORM semi-analytical model
- mOdel the MW SyStem m CDM? [White&Frenk91, Kauffmann+93, CZe+2000, Lacey+2016]

3 JModel observed satellite properties Initial stellar mass and stellar size

Santos-Santos et al 2025; +in prep

=
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-o model the MW system in CDM?

3 AModel observed satellite properties

Santos-Santos et al 2025; +in prep

M, (M) Stellar mass content
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== = Moster+13
=== Power-law Fit (Eq.3)
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GALFORM semi-analytical model
[White&Frenk91, Kauffmann+93, Cole+2000, Lacey+2016]
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-0 model the MW system in CDM?

3 JModel observed satellite properties Tidal stripping on Dark Matter and stars

/ | w / | circular orbit
< / N r = 40kpc
0 7 1 oy ] .
SN & [Errani+21,22]

tidal track
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§ % —0.4 _
N SN
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_|_ —
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S S
= —0.6 -
S
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S
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S
A —0.8 -

log1g 7/Tmx0

Subhalo tidal evolution in LCDM "Tidal Tracks"
Gives DM mass loss

—
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- to model the MW system in CDM?

3 AModel observed satellite properties Tidal stripping on Dark Matter and stars

' I' | o /' | circular orbit |
< / N r = 40kpc
0 < 1 g1 - -
\ SN & R, [Errani+21,22]
! e e T Central host disk
—0.2 — r=10kpc
3
S = —0.4 _
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k= =
A B
-
S ~ —0.6 -
>
S
S
e —0.8 -
model — —
- | | | I |
1 i 2 15 1 05 0
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Subhalo tidal evolution in LCDM “Tidal Tracks” Tidal evolution of the stellar component
Gives DM mass loss Gives change in galaxy luminosity and size
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-v to model the MW system in CDM?

3 AModel observed satellite properties Tidal stripping on Dark Matter and stars

Depends on DM
mass loss and
"segregation’, ic.
how embbeded stars
are relative to DM

|
©
o

| I' | ¥ /' I circular orbit | 0
f w ! Y r = 40kpc -
0 = <7/ oy n %
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- ol
7 3
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Santos-Santos +in prep
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Predictions: MW satellite luminosity function

AgA1l Initial
= AgAl z=0 MW prediction

~5 10
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Santos-Santos er al 2025; +in prep
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Predictions: MW satellite luminosity function

= AgAl z=0 MW prediction

~5 10
My [mag]

Newton-+18
MW satellites
+LMC+SMC

Santos-Santos er al 2025; +in prep

4+ Magnitudes have changed after stripping. Faint

galaxies become much fainter

4 The model predicts very well t

ne bright end of

the MW confirmed satellites L
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Santos-Santos er al 2025; +in prep

Predictions: MW satellite luminosity function

Newton+18 4+ Magnitudes have changed after stripping. Faint

MW satellites galaxies become much fainter
+LMC+SMC

4+ The model predicts very well the bright end of
the MW confirmed satellites Lum func

4 Predicts a fairly large amount of faint

satellites that are yet to be found
(MV>'3 or Mg’[ar < 1000 Mgun)

AgAl z=0 MW prediction

5 0 ~5 ~10 —15  —20
My |[mag]
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Santos-Santos er al 2025; +in prep

Predictions: MW satellite luminosity function

Newton+18 4+ Magnitudes have changed after stripping. Faint

O MW satellites galaxies become much fainter
+LMC+SMC

4+ The model predicts very well the bright end of
the MW confirmed satellites Lum func

4 Predicts a fairly large amount of faint
\. . satellites that are yet to be found
o (MV>'3 or Mstar < 1000 Msun)

100 F = AqAl z=0 MW prediction o \

5 0 ~5 ~10 —15  —20
My |[mag]
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Predictions: MW satellite luminosity function
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- discovered MW “faint ambiguous satellite candidates”

Koposov et al 2015 (DES)
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®Found inimaging surveys. Just a few stars
*No line of sight velocities, or large errors. Unclear what is their nature (GCs or dwarfs?)

Koposov 2
Koposov 1
SEGUE 3
Munoz 1
Balbinot 1
Kim1

Kim 2 (Indus1)
Draco 2

DES Jo111-1341
DES Jo225+0304
Eridanus 3
DES 1

DES 3

Pictor |

To1

Laevens 3

UMa3/Unions 1
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Koposov 2

Newly discovered MW “faint ambiguous satellite candidates”

Balbinot 1
Kim 1

Smith et al 2024 (CFHT Unions Survey) - Kim 2 (Indus 1)
See also Errani et al 2024 Draco 2

Proper motion members
Velocity members
X = Non-member

DES Jo111-1341
DES Jo225+0304

Eridanus 3
11 stars DES 1

~0.50-0.25 0.00 0.25 0.50 0.75 1.00
(r=i)o gIFE L TRl

o, (km s~ 1)

®Found in imaging surveys. Just a few stars
*No line of sight velocities, or large errors. Unclear what is their nature (GCs or dwarfs?)

UMa3/Unions 1
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Newly discovered MW “faint ambiguous satellite candidates”

Newton+18
o) MW satellites
o +LMC+SMC

5 0 ~5 ~10 . —15 —20
My [mag]

17
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Newly discovered MW “faint ambiguous satellite candidates”
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Santos-Santos +in prep

Predictions: MW satellite luminosities, sizes and distances

s = () Data:[Smith+24]

—15.0 —15.0

O MW satellites O MW satellites

195 X Classical GCs —12.5 X Classical GCs
—10.0 —10.0
. —T.5¢F =75
\E/ —95.0 \E/ —5.0

AN N

E —2.5 E —2.5
0.0 0.0
2.5 2.5
5.0 5.0
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Santos-Santos +in prep

Predictions: MW satellite luminosities, sizes and distances

» = () Data:[Smith+24]
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O MW satellites O MW satellites
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Predictions: MW satellite luminosities, sizes and distances

—15.0

O MW satellites
X Classical GCs
¢ Faint Ambiguous Satellites
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Santos-Santos +in prep

Data:[Smith+24]
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' Predictions: MW satellite luminosities, sizes and distances

—15.0

O MW satellites
X Classical GCs
¢ Faint Ambiguous Satellites

—12.5
—10.0
—7.0f

—5.0

My (mag)

—2.5

0.0

z=0 Luminosities and sizes are consistent with data

Santos-Santos +in prep

s Data:[Smith+24]
—15.0
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=17
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N
=

No satellite with MV <5 within 10 kpc of the MW centre

19
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Predictions: MW satellite orbits & accretion times

—15

O MW satellites

I'peri / kpC

[see e.q. Battaglia+22, Pace,Erakal&Li22]
20

Santos-Santos +in prep
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Santos-Santos +in prep

Predictions: MW satellite orbits & accretion times

10° 15
O MW satellited
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., 10°
2. "0
iv <
~— \8/
o
3 S
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Faint
Ambiguous
Regime
10! 1
5)

[see e.q. Battaglia+22, Pace,Erakal&Li22]
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Santos-Santos +in prep

Predictions: MW satellite orbits & accretion times

[Santos-Santos+2025]
107
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[see e.q. Battaglia+22, Pace,Erakal&Li22]
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Santos-Santos +in prep

Predictions: MW satellite orbits & accretion times

[Santos-Santos+2025]
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[see e.q. Battaglia+22, Pace,Erakal&Li22]
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Santos-Santos +in prep

Predictions: MW satellite orbits & accretion times
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Peak time
O MW satellite® 12
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[see e.q. Battaglia+22, Pace,Erakal&Li22]
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Santos-Santos +in prep

Predictions: MW satellite velocity dispersion

[see also Errani+24]

[Errani+21 (Eq.8 & 9)]
Truncated NFW profile.
Depends on mass loss
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Santos-Santos +in prep

Predictions: MW satellite velocity dispersion

[see also Errani+24]

[Errani+21 (Eq.8 & 9)]
Truncated NFW profile.
Depends on mass loss
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Predictions: MW satellite velocity dispersion o

[see also Errani+24]

[Errani+21 (Eq.8 & 9)]
Truncated NFW profile.
Depends on mass loss
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Santos-Santos +in prep

Predictions: MW satellite velocity dispersion

[see also Errani+24]

[Errani+21 (Eq.8 & 9)]
Truncated NFW profile.
Depends on mass loss
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' CDM VS SlDM? [see e.g. Tulin&Yu18; Zavala+19; Turner+21; Correa+22; Nadler+23; Yang+23a; Essig+19, Zeng+23;Hayashi+21; Errani+23; Zhang+24]

[Yang+2023]

CDM subhalos SIDM subhalos

A) At first order:
® Heating from self-interactions leads
to core formation.
® Subhalos affected by tides, prone to
genuine disruption
® Host density profile also changes(!)

B) With small fixed cross-sections (<0.1 cm2/q)
® Very small cores, improving survival of halos —> predictions similar to CDM

C) With velocity-dependent large cross-sections (>10 cm2/g) and “core-collapse”:
® C1)If te < Tinfan —> subhalo will resist tides —> prediction similar to CDM
® C2)If t > Tinran —> prediction depends on interplay between CC formation and tides

[.Santos-Santos (ICC, Durham)]



Summary

* In CDM, subhalos always survive. Stars may be lost.
® Cosmological simulations sutfer subhalo artificial disruption. It is crucial to correct for “orphans”

® LCDM models of the MW system match well the properties of satellite galaxies known so far. They
also predict the existence of numerous faint satellite galaxies at close distances, with
properties
®* 0=1-3km/s
r |VIV> ) (Mstar<1 e3 |V‘sun)
® rpei>10 kpc. (rapo<~100 kpc)
® These properties seem to match those of “ambiguous” satellites identified recently with
photometric surveys/Gaia
® Some of these predictions are unique to CDM, and may help to discriminate between dark matter
models

Gracias!
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