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CDM predictions I:I
at large scales

CDM predictions I:I
at small scales

(At least without considering baryon




There 1Is No Small Scale “Crisis” for CDM

CDM= cold dark matter, WDM= warm dark matter, SIDM= self-interacting dark matter

“challenge” CDM+ baryons WDM SIDM

Bulge-less disk galaxies Governato+ 2010; Brook+ 2011

Pontzen & Governato+ 2012;

The Cusp/Core Problem Chant. 20715

Zolotov+ 2012; Garrison-

Too Big to Fall Kimmel+ 2015
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Planes of Satellites SJ[IH to he eXp‘Ored/COﬂteﬂtiOUS Buck+ 2016; Ahmed+ 2017

Missing Satellites Brooks+ 2013; Buck+ 2019

Missing Dwarfs Maccio+ 2016; Brooks+ 2017

Santos-Santos+ 2018; Munshi+
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**Scorecard adapted from A. Brooks



There 1Is No Small Scale “Crisis” for CDM

CDM= cold dark matter, WDM= warm dark matter, SIDM= self-interacting dark matter

“challenge” CDM+Baryons WDM-+Baryons SIDM+Baryons
Bulge-less disk galaxies
The Cusp/Core Problem

Too Big to Fall

Missing Satellites

Missing Dwarfs

Diversity

NKSSESN

h NN QN

Planes of Satellites Still to be explored

**Scorecard adapted from A. Brooks



The Diversity of Rotations Curves “Problem”

/ACDM Prediction:
For systems with the same

V. . rotation curve shapes
in ACDM are expected to ;
be nearly identical Vi, 22 14E409 37,
: Nrot =V.
Observations:

F

For halos with a given V,

halos can have a wide range
of central densities/rotation i } ety
curve shapes | | e ogg e

Santos-Santos+ (2020)



Motivation for a Velocity Dependent cross section

Core collapsed SIDM halos
Could. potenthlly hglp ; % N 6 saE 0B
explain the “aiversity | eoge e
problem” of dwarf galaxies

F

But CDM+ baryons works
also (see work by A. Cruz!)

M, =1.67E+09 M,
Mbar :313E+09 M@
Nrot =(0.28

Santos-Santos+ (2020)



SIDM Core Formation Isothermal Core
( a=10
* |nner region of DM halo is
Initially colder than its
outskirts
» Self interactions allows energy
transfers throughout the halo
 Heat gets transferred inwards
 Halo forms an isothermal core
* |ncreasing central temperature

pushes central particles out
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Gravothermal Core
Collapse

Core slope becomes

steeper than predicted
NFW

 Heat gets transferred outwards
DM halos are gravitationally
bound systems that obey

E, = KE+ PE = — KE

(PE = — 2KE)
 SIDM core has a negative heat

capacity (negative total energy)
soO as heat flows out, KE 3
increases and PE decreases 10 T
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Storm (CDM)

One of the 4 MARVEL-ous simulation volumes (Munshi+ 2021)

Dark Matter Only (DMO) run Hydrodynamic run

* (ravitational Softening » Gravitational Softening Length =
Length = 65 pcC 60 pc

« DM particle mass * DM, Initial Star, and Gas particle
= 8070M,, mass

= 6650M,,,420M,1410M,

o Superbubble feedback (Keller et
al.2014)



(Magnificent) Ms. Marvel (SIDM;

» \elocity Dependent cross o
section of interaction

e V.= 35km/s

. o/m, = 50cm?/g
» Gravitational Softening

This Work

—_ Correa (2021)
Length B 65 pC Nadler et al.(2023)
» DM particle mass = 38070M vret = 35 [kmys]

Omax = 50[cm?/g]
Correa (2021)

104

Cruz+ (in prep)



Creating Cores with SIDM

Isolated SIDM dwarfs with a large
cross section of interaction

(1 — 50cm?g~1) can form cores
(Elbert+ 2015)

M, =9x10°M,

10
Radius [pc]




Core slopes of “classical” dwarf galaxy mass halos could be used to
discriminate between SIDM and CDM + Baryonic feedback
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Core slopes of “classical” dwarf galaxy mass halos could be used to
discriminate between SIDM and CDM + Baryonic feedback
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Core slopes of “classical” dwarf galaxy mass halos could be used to
discriminate between SIDM and CDM + Baryonic feedback
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Threshold for t.
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We define a

collapse time (¢ )

as the time when
the halo first
enters the core
collapse phase,
characterized by a
core slope more
negative than -2.0
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Analytic Calculation of Collapse Time

150 1 1
l— M

POyl egpegy - [47Gp, s

Constant Scalar tuned to simulations

Yang et al.(2024) set f = 0.75
Yang+ 2024



Analytic Calculation of Collapse Time

150 1 1
l— M

P gl egpegy - [47Gp, s

Effective Cross Section of Interaction
Yang+ 2024



Analytic Calculation of Collapse Time

150 1 1
l— M

Pyl egsegy - [47Gp, s

Effective Radius

Rmax Vmax — Vcirc(Rmax)
Teff =
2.1626 Yang+ 2024




Analytic Calculation of Collapse Time

o150 1 1
© O, el MY
Pyl egsegy - [47Gp, s
Effective Density | S~

| P —
921626

V 2
P = max N G_1 B
U ( 1.6438r eff> Vmax - Vcirc(Rmax) Yang+ 2024




Using core slope to determine when halos enter core-

formation & core-collapse agrees with the analytic
calculations Nadler+2024, Yang+2024
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Conclusions

* Predictions for the measured core slopes of DM halos from SIDM
(DMO) and CDM +baryons simulations diverge in the “classical
dwarf” mass range, indicating that it may be possible to
observationally distinguish
between DM models at this
mass scale
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Conclusions

* Core slopes of SIDM halos exhibit strong dependence on mass and
the effective cross section of interaction

a (0.33 kpc)
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Conclusions

* Central density also traces core-collapse, however this property
depends on the aperture of the measurement as well as the halo’s

merger history

1xh~ 0.1kpc
2Xh
3Xh
4xh
bXh
oxh
7Xh ~ 0.5kpc




Conclusions

* We find that core slope is the best determinant of when halos first
enter the core collapse phase
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Advertisement: galaxy shapes

* How well is DM shape

represented by stellar 1.0
_ _ ® Non-Disky
shape? (Keith, Munshi+ o Disky
2025) | o Dark Matter
: C ' »  Stellar Matter
 SIDM version is in prep! e KF Low Mass

- == KF Medium Mass
0.61 KF High Mass

0.2 0.6

Q =B/A (ZReff)







Tracing Central density through time reveals same trends as core
slope, but is less subject to temporary fluctuations
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CDM

average 101°M ;5 < My, 10°M o < Mypo <101°My | 5% 108My <My < 10°M
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Number of Particles

SIDM Halos
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103 1

102 -

— Resolution Limit

R = 0.30 kpc
R = 0.33 kpc
R = 0.39 kpc

Density Contrast
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Number of Particles

CDM Halos
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102 - R = 0.39 kpc
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Density Contrast

Resolution limit adopted from Power et al.(2003)




Nenclosed [ SIDM ]

Nenclosed [C DM ]
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