Shaping the Galactic potential:
Environment, Mergers & Stellar Tracers

Arpit Arora; Robyn Sanderson, and a
long-list of collaborators.

(Gaia mock for a MW-analog in FIRE-2 simulation, made by Prof. Robyn Sanderson)



Evidence for DM substructure at galactic scales:

Detecting low mass dark subhalos
Small scale dark matter clumps
devoid of stars called “DM subhalos”. - Potentially interact with

stellarstreams leading to

morphological changes.

" s00kpe - -

AT, 5l 53] o RN
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DM substructure interaction with Stellar streams.

Detecting low mass dark subhalos

- Potentially interact with

stellax streams leading to

morphological changes.

Promising tool to detect lowest mass (~ 10°
M_ ) subhalos.

Association of stars orbiting a galaxy that was once a
glog)ular cluster/dwarf galaxy.
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Backyard for testing dark matter! The Milky Way.

ESA+2018 ‘



The important step is potential modeling!

Traditional equilibrium c . 10 '
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Credits: Adrian Price-Whelan

Sun

Galactic center

Spherical for DM halo + hot gas,
bulge.

Axisymmetric for the disk + cold gas.



The important step is potential modeling!

Traditional equilibrium
models: Halo
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Bulge
disk
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Sun

Galactic center

Spherical for DM halo + hot gas,
bulge.

Axisymmetric for the disk + cold gas.
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-> time-evolving structure.
-> disequilibrium effects.
-> inherent shape of the halos.

-> among other properties.



MW disk/bar - stream interactions are well(?) studied!
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The MW is in disequilibrium...

Out of equilibrium due to past and ongoing mergers.

halo ~ LMC is 10-20% mass of the MW. disk~ Sag is 1-5% MW.

MW response to LMC in Nbody DMO sims. [Garavito+2021] '

See Gomez+2015, Laporte+2018,
Hunt+2018, and more

Enforces the asymmetry in the MW.

See Garavito+2021, Petersen & Pennarubia 2021, Vasiliev+2021 and more


https://docs.google.com/file/d/1uu3eBxZlI4rMP0xV0P-eQy3rEjGgPHxo/preview

Asymmetrical Boost in stream-subhalo encounters.
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The MW is asymmetric and in disequilibrium. ..

Tilted (w.r.t to disk) and “American” football like stellar/DM ___

: N

Han+2024 S Nibauer™Bagaca 2025 10kec o~

Halo has non-trivial shape in different regions in the galaxy.

(observed both in simulations and observations )



Before we move to Stellar tracers!

Please Wait... ‘



Before we move to Stellar tracers!

Please Wait... ‘

We must study the halo shapes
(and their couplings)



Shaped by filamentary accretion & environment

T = 0.28 Gyr

250I-ch

FIRE-2 example DM halo orientation
with filaments and mergers.
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https://docs.google.com/file/d/1UkszuAUb6aGCrXKe3xTxDdr6_AWEc57n/preview

MW-mass galaxies with realistic assembly histories!

z=17.8

FIRE-2 simulations with
realistic formation and
assembly history in a
cosmic environment.

Mhyaryon ~ 7100 M,
Mgaarx ~ 35,000 Mg

100 kpc

Wetzel (incl. Arora)+2023

. Feedback In Realistic Environments


https://docs.google.com/file/d/1e8L3v1m4Cw1RIJ97BBNrVFjjleGRLZFU/preview

Expanding the DM halo as spherical harmonics.

MW-LMC analog in FIRE-2 suite.



Expanding the DM halo as spherical harmonics.

FEﬁ,m Pim (T)Y’E,m (07 ¢)

Angular dependence

MW-LMC analog in FIRE-2 suite.



Expanding the DM halo as spherical harmonics.
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Angular dependence
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Reconstructed BFE fields capture complex shapes.

Edge-on view

Total mass and
radial profile
information.

200

Z |kpc]

-200

-200 0 200

X [kpc]

MW-LMC analog in FIRE-2 suite. Arora+2022



Reconstructed BFE fields capture complex shapes.

Edge-on view
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MW-LMC analog in FIRE-2 suite.

Total mass and
radial profile
information.

Bulk COM
motion.

Arora+2022



Reconstructed BFE fields capture complex shapes.

Edge-on view
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MW-LMC analog in FIRE-2 suite. Arora+2022



Reconstructed BFE fields capture complex shapes.
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MW-LMC analog in FIRE-2 suite. Arora+2022



BFE captures time-evolving halo deformations.

MW-LMC analog in FIRE-2 suite.



BFE captures time-evolving halo deformations.

MW-LMC analog in FIRE-2 suite.



BFE captures time-evolving halo deformations.

Edge-on view MW-LMC analog in FIRE-2 suite.
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MW-LMC analog in FIRE-2 suite.



BFE captures time-evolving halo deformations.
MW-LMC analog in FIRE-2 suite.
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Halos have most structure in low-order modes.

Time averaged Gravitational Power
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Harmonics describe observable halo properties.

monopole dipole quadrupole
total mass, bulk f T

radial profile ~ motion asymmetry



The quadrupole harmonic encodes shape!
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LMC analog in FIRE-2 suite- 1:8 merger ratio

FIRE-2 MW-LMC analog
orbit and mass ratio.

Arora+2023




The asymmetry decreases as the halos relax!

Gravitational Power in each harmonic.
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Dynamical data mining through spectrum analysis

Gravitational Power in each harmonic.
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%ere are multiple time series of coefficients required to compute the Gravitational Power.



Dynamical data mining through spectrum analysis

Gravitational Power in each harmonic.
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Dynamical data mining through spectrum analysis

Gravitational Power in each harmonic.
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Dynamical data mining through spectrum analysis

Gravitational Power in each harmonic.
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Finally we can move to Stellar tracers!

NOW LORDING ..

But remember to also model the time-evolving stellar component!!!

Also easily add subhalos!



Viaa [km/s]

Simulating satellite disruption with BFEs.
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Let’s look at a stream in a distorting halo.
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stellar component. _ _
Drouplic, Arora+in prep.



Let’s make a GC stream! Maybe with subahalos?

73

Poctdoe((arnesie)
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Ques. Raise your hands if you
believe this stream has been
perturbed by subhalos?

thanpaisal, Sanderson, (incl. Bonaca, Arora)+in prep
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TLDR:

e Filamentary environments and mergers contribute to the
present da_y shape/potentlgl ‘the halo

° ,Satelhte 1nduced response‘ln tr1ax1al halos is boost '(?‘)
‘Should be taken into consideration for stellar tracers!

e We can use BFEs to study shapes systematically! All of this
tech can and will be expanded to SIDM.



My wishlist for you:

e Please save of your simulations (~500).

e Statistical set zoom
alt-DM &

analogs? With

e I want vel-dep anisotropic cross-sec sims : resolution of
100 M particles!
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(Gaia mock for a MW-analog in FIRE-2 simulation, made by Prof. Robyn Sanderson)



‘ Supplementary slides
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(Gaia mock for a MW-analog in FIRE-2 simulation, made by Prof. Robyn Sanderson)



Potential/density as a basis function expansion!

Aq) — 47-‘-Gp Poisson’s eq.

Z [kpc] Z [kpc] Z [kpc]

Z [kpc]

(=0

We can do the azimuthal harmonic expansion
For stars and cold gas.

5100 (R, Z) exp(ilg)

(Let’s ignore today!)



¢ = 2 is set by major filaments (in all sims).

Quadrupole is majorly set by the filaments.
P 68GyrF 7.8Gyr

B oot i = 01000 550 [ =602 a0l <0002 a3 ,
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—10*Q
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Black arrow : major filament orientation

Arora+2025 (in prep)



Time [Gyr]

The evolution of
quadrupoles
amplitude for
FIRE-2
simulations.

Arora+2025



The orientation

of of
. . EI ] i I quadrupoles in
6 8 10 12 14 EIREZ-2 .
. stmulations.
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Filaments extend asymmetries up to 30 kpc in a halo.
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Filaments extend asymmetry up to 30 kpc in a halo.
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Tilted DM halos w.r.t to the galactic disk in FIRE.

12i .
A B Halo Vector
(R B Galaxy vector

.

30 ° misalignment b/w DM halo and the
™ baryonic disk.

(Similar-ish tilt in all halos.)

. : ‘)3‘ -
Baptista+2023



Most information is captured in low orders.

MW-=est DMO (Buch+2024) simulations.

Monopole — Halo Mass correlation  Dipole — COM displacement correlation Quadrupole shape correlation
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Inferring Subhalo Mass fx with streams.

Mock Data Wlth Subhalos
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Simulating SIDM at intermediate mass scales.

) ) ) ° L ~o 10
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https://docs.google.com/file/d/1-Kdu5jVJPTSehoV3h1UeRfwJqWG80ct-/preview

N

Assembly history/env of the Milky Way Enatters'

[Kruijssen+ 2018] [Myeong+ 2019]

(Slide adapted from Eugene Vasiliev)



