

Large Neutrino Masses in Cosmology: **DARK SECTOR TO THE RESCUE**

Drona Vatsyayan

11th June 2025, SIDM Workshop 2025, Valencia

Based on:

JCAP 04 (2025) 054 [Cristina Benso, Thomas Schwetz, **DV**]

arXiv: 2410.23926

CSIC

UNIVERSITAT
DE VALÈNCIA

IFIC
INSTITUT DE FÍSICA
CORPUSCULAR

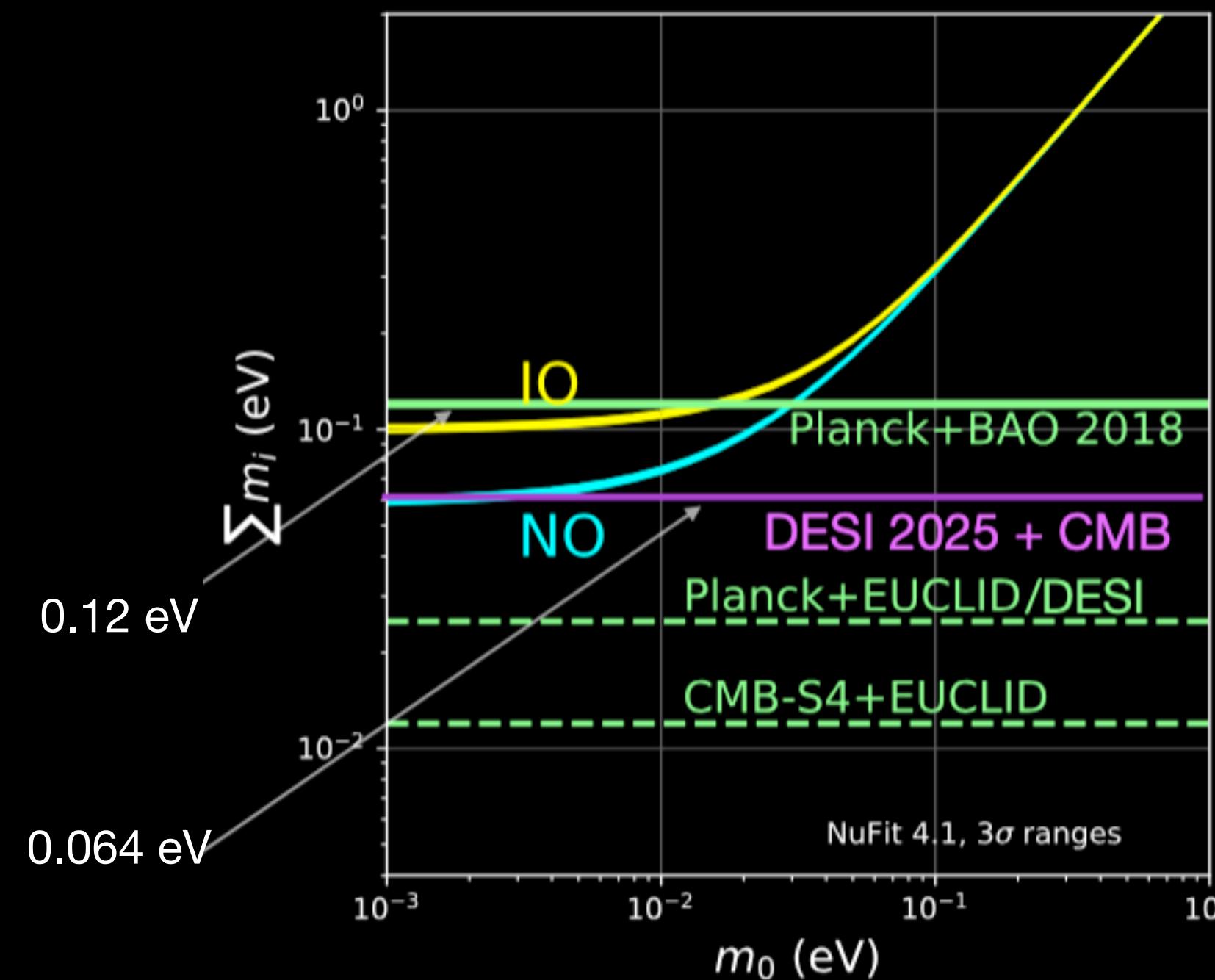
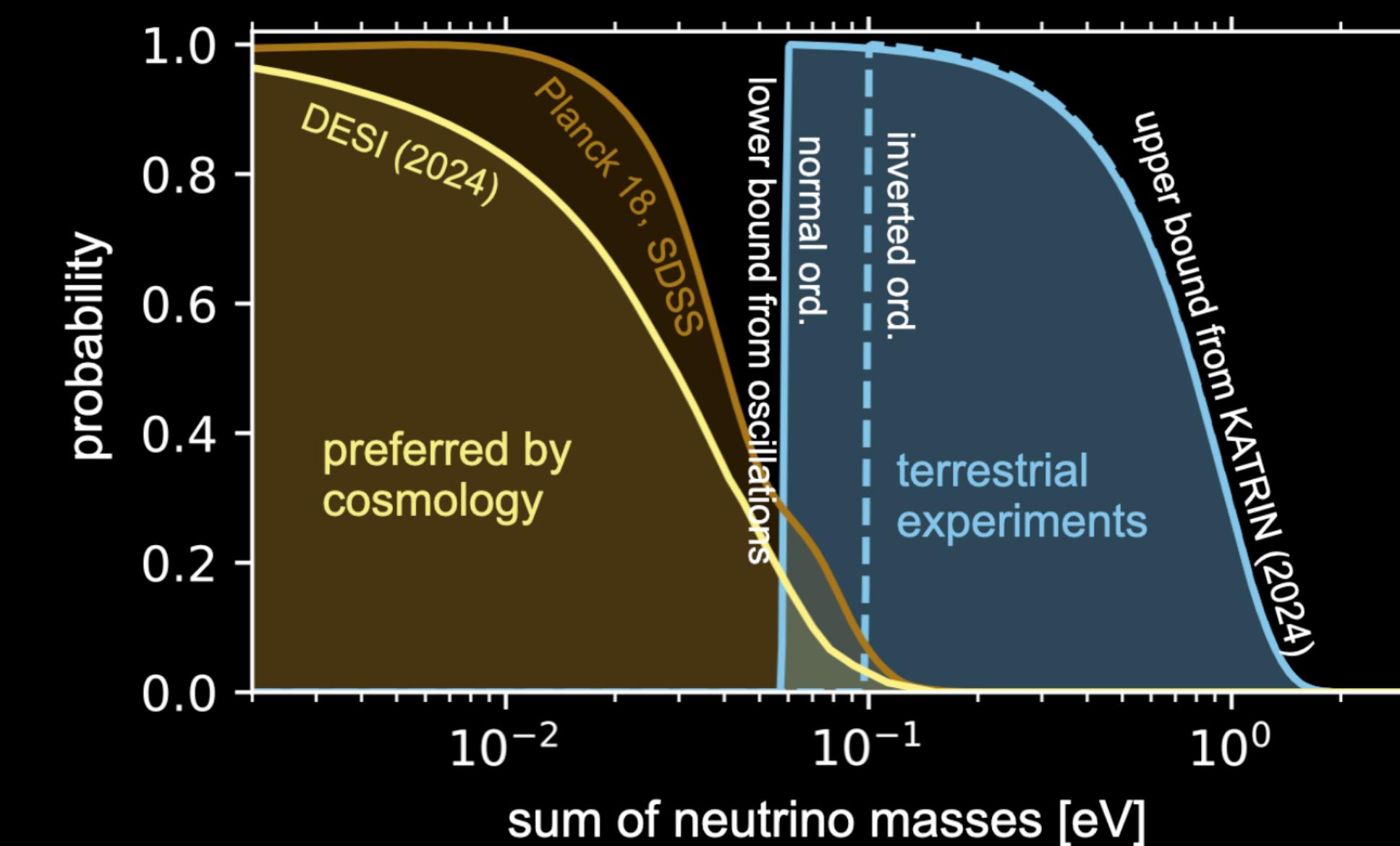
GENERALITAT
VALENCIANA

Gen-T

Neutrino Mass Bounds

Laboratory vs. Cosmology

Courtesy: Thomas Schwetz (Durham 2025); updated from 2302.14159

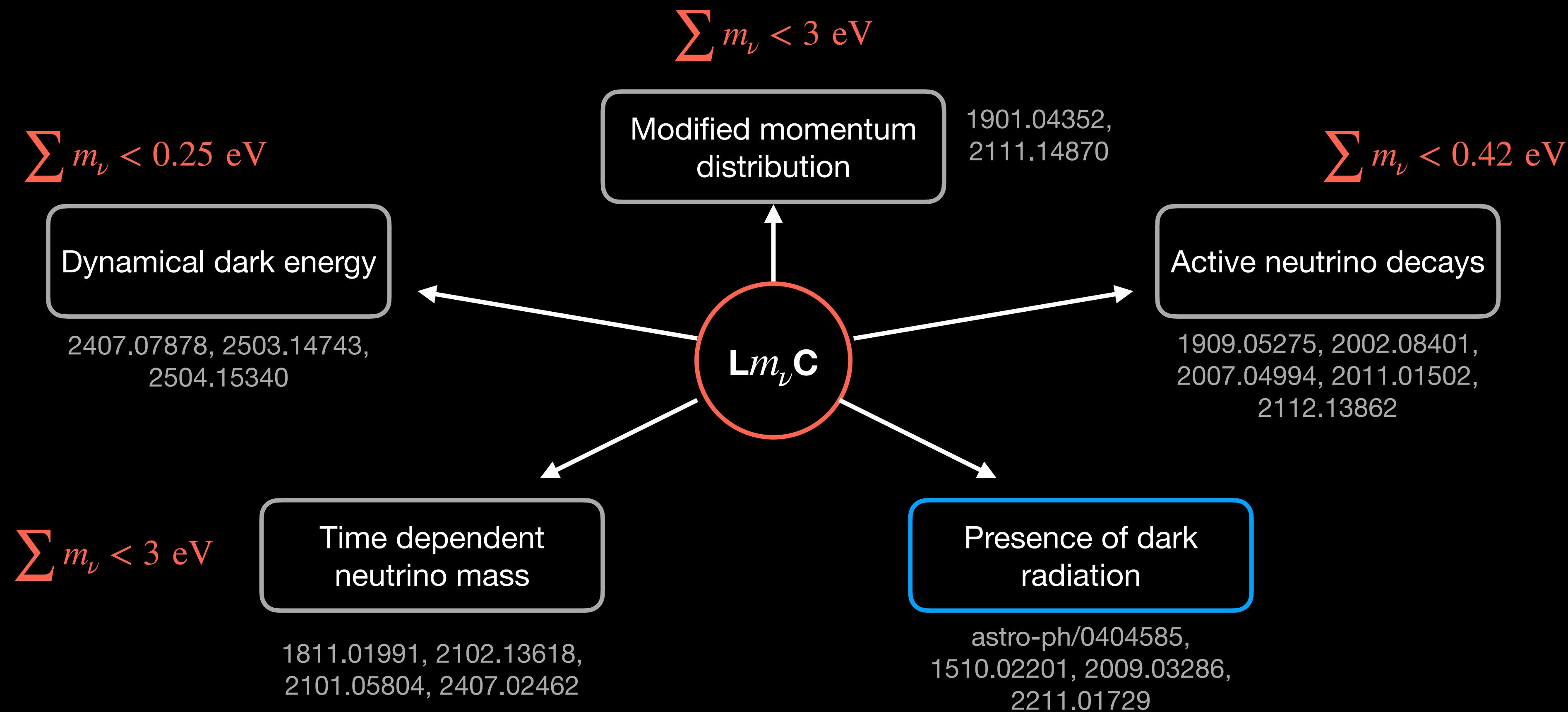


Standard cosmological scenario → We may not observe finite absolute neutrino mass in the laboratory

Can the two be reconciled? Can cosmological bounds be relaxed?

Relaxing the Cosmological ν mass bound

Large ν mass cosmology



Large m_ν Cosmology

Presence of dark radiation

Cosmological bounds are sensitive to neutrino energy density

$$\Omega_\nu h^2 \equiv \frac{\sum m_\nu n_\nu^0 h^2}{\rho_{\text{critical}}} < 1.3 \times 10^{-3} \text{ (95 \% CL)} \longrightarrow \sum m_\nu \times \left(\frac{n_\nu^0}{56 \text{ cm}^{-3}} \right) < 0.12 \text{ eV (95 \% CL)} \quad \text{PLANCK 2018}$$

Reduce number density of neutrinos \rightarrow Mass bound can be relaxed

At earlier times for ultra-relativistic ν s: Energy density characterised by $N_{\text{eff}} \propto \langle p_\nu \rangle n_\nu$

2.99 ± 0.17 PLANCK 2018

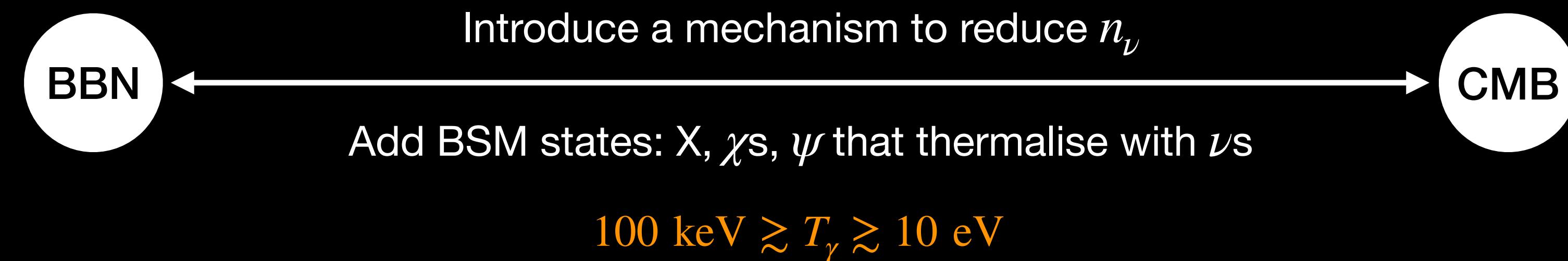
$3.044(1)$ SM prediction

$$N_{\text{eff}} \equiv \frac{8}{7} \left(\frac{11}{4} \right)^{4/3} \left(\frac{\rho_{\text{rad}} - \rho_\gamma}{\rho_\gamma} \right)$$

Compensate decrease in n_ν : Add new light/massless d.o.f \rightarrow Dark radiation

Large m_ν Cosmology

Presence of dark radiation + dark matter



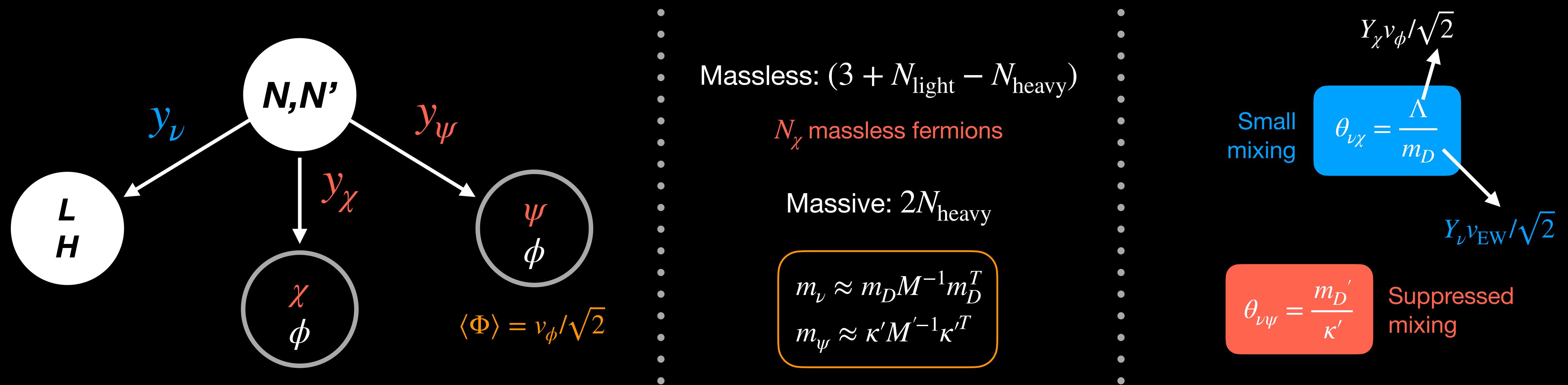
Post ν -decoupling ($T_\gamma \sim 2$ MeV):
Neutrinos cannot be produced anymore:
Production of new states at their expense
 $\rightarrow n_\nu$ reduced

$$\left[\sum m_\nu \right]_{\text{eff}} = \sum m_\nu \frac{n_\nu}{n_\nu^{\text{SM}}}$$

Thermal DM below MeV possible if DM comes into thermal equilibrium post ν -decoupling

The Model

Minimally Extended Type-I Seesaw with $U(1)_X$



Similar to $\nu\Lambda$ MDM: Ko
and Tang: 1404.0236

DM freeze-out in DS

Production & Depletion

$$\nu\nu \leftrightarrow Z' \leftrightarrow \chi\chi$$

DM can be produced by $Z' \leftrightarrow \psi\psi$ ($m_{Z'} > 2m_\psi$) or $Z'Z' \leftrightarrow \psi\psi$ and $\chi\chi \leftrightarrow \psi\psi$ ($m_\psi > m_{Z'}$)

Freeze-out: $\psi\psi \leftrightarrow \chi\chi$ and $\psi\psi \leftrightarrow Z'Z'$ freeze-out at $T_{\text{dark}} < m_\psi$

$$\psi\psi \rightarrow \psi\psi$$

$$\psi\chi \rightarrow \psi\chi$$

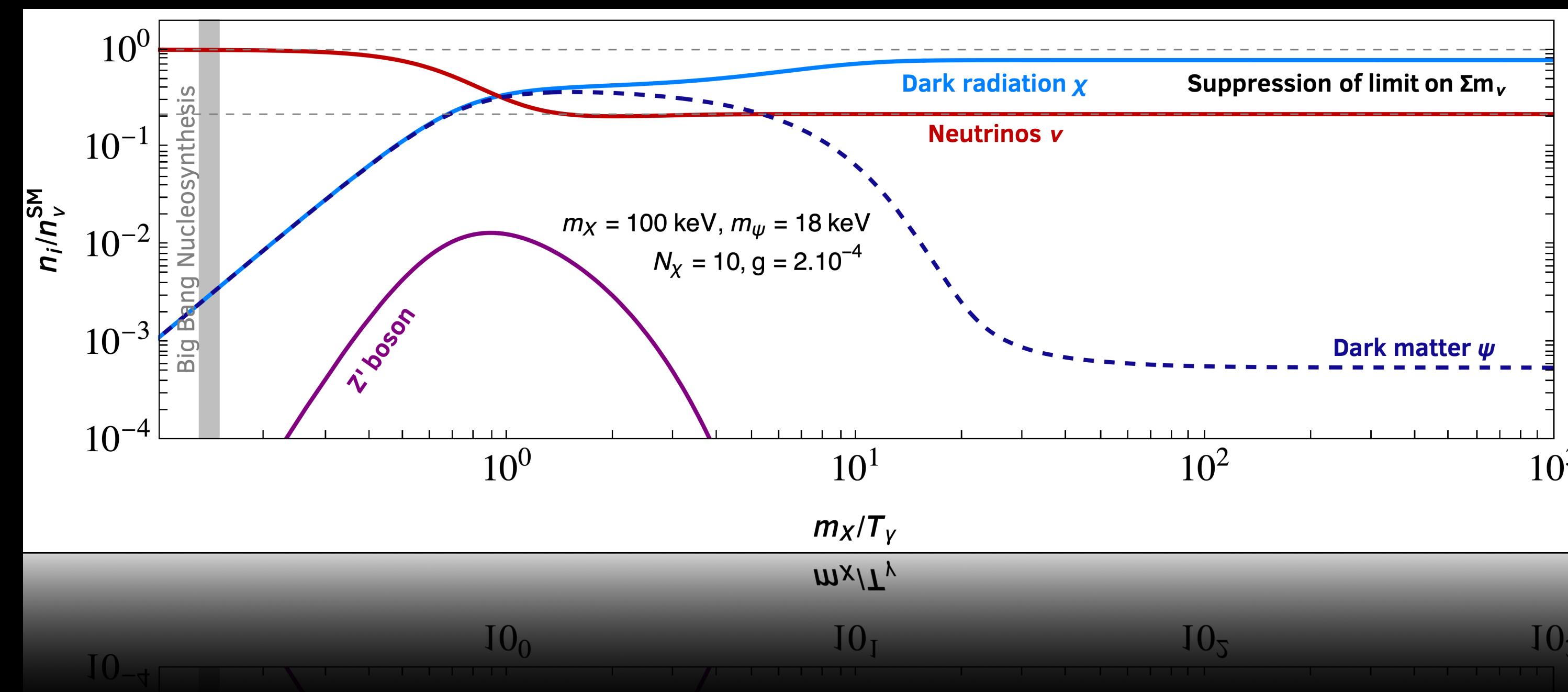
$$\mathcal{L}_{\text{int}} = \sum_f Q_f g Z'_\mu \bar{f} \gamma^\mu f$$

$$\lambda_{Z'}^{\nu\nu} \simeq \frac{m_{Z'}}{v_\phi} \theta_{\nu\chi}^2$$

$$\lambda_{Z'}^{\nu\chi} = \frac{m_{Z'}}{v_\phi} \theta_{\nu\chi}$$

$$\lambda_{Z'}^{\psi\psi} = \lambda_{Z'}^{\chi\chi} = \frac{m_{Z'}}{v_\phi}$$

$$\lambda_{Z'}^{\nu\psi} = \frac{m_{Z'}}{v_\phi} \theta_{\nu\psi}$$



DM freeze-out in DS

Relic abundance

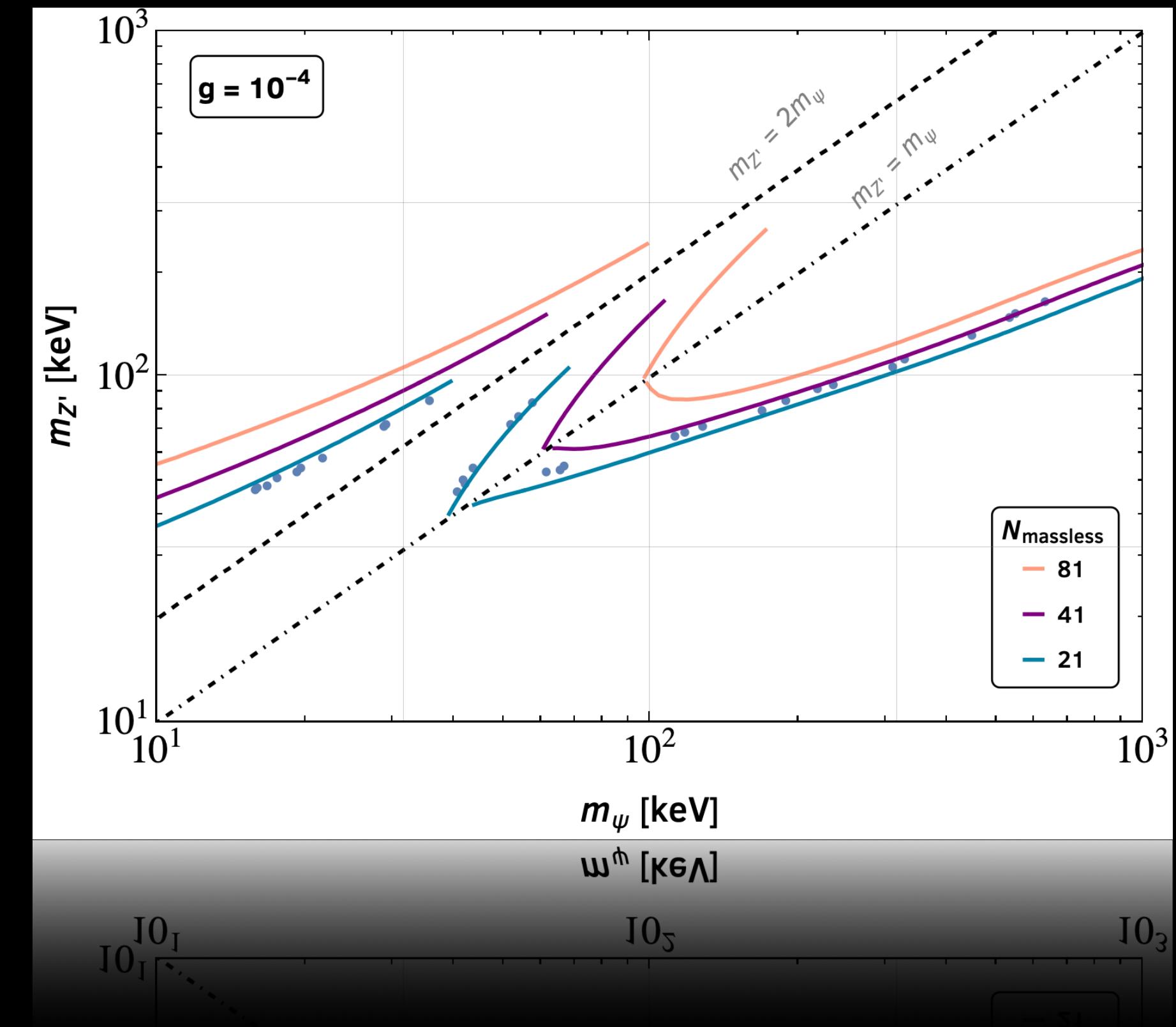
ψ comes into thermal equilibrium with the DS and finally freezes out

$$\Omega_\psi h^2 \simeq x_f \frac{10^{-10} \text{ GeV}^{-2}}{\langle \sigma v \rangle_{\text{tot}}}$$

$$(\sigma v)_{\psi\psi \rightarrow \chi\chi} \approx \tilde{N} \frac{g^4}{48\pi} \frac{m_\psi^2}{(m_{Z'}^2 - 4m_\psi^2)^2} v^2 \quad \text{p-wave suppressed}$$

$$(\sigma v)_{\psi\psi \rightarrow Z'Z'} \approx \frac{g^4}{16\pi m_\psi^2} \left(1 - \frac{m_{Z'}^2}{m_\psi^2}\right)^{1/2} \left(1 + \frac{m_\psi^4}{m_{Z'}^4} v^2\right)$$

Extreme limits: $m_{Z'} \gg m_\psi$ or vice versa $\rightarrow (\sigma v) \propto v_\phi^{-4}$



Constraints

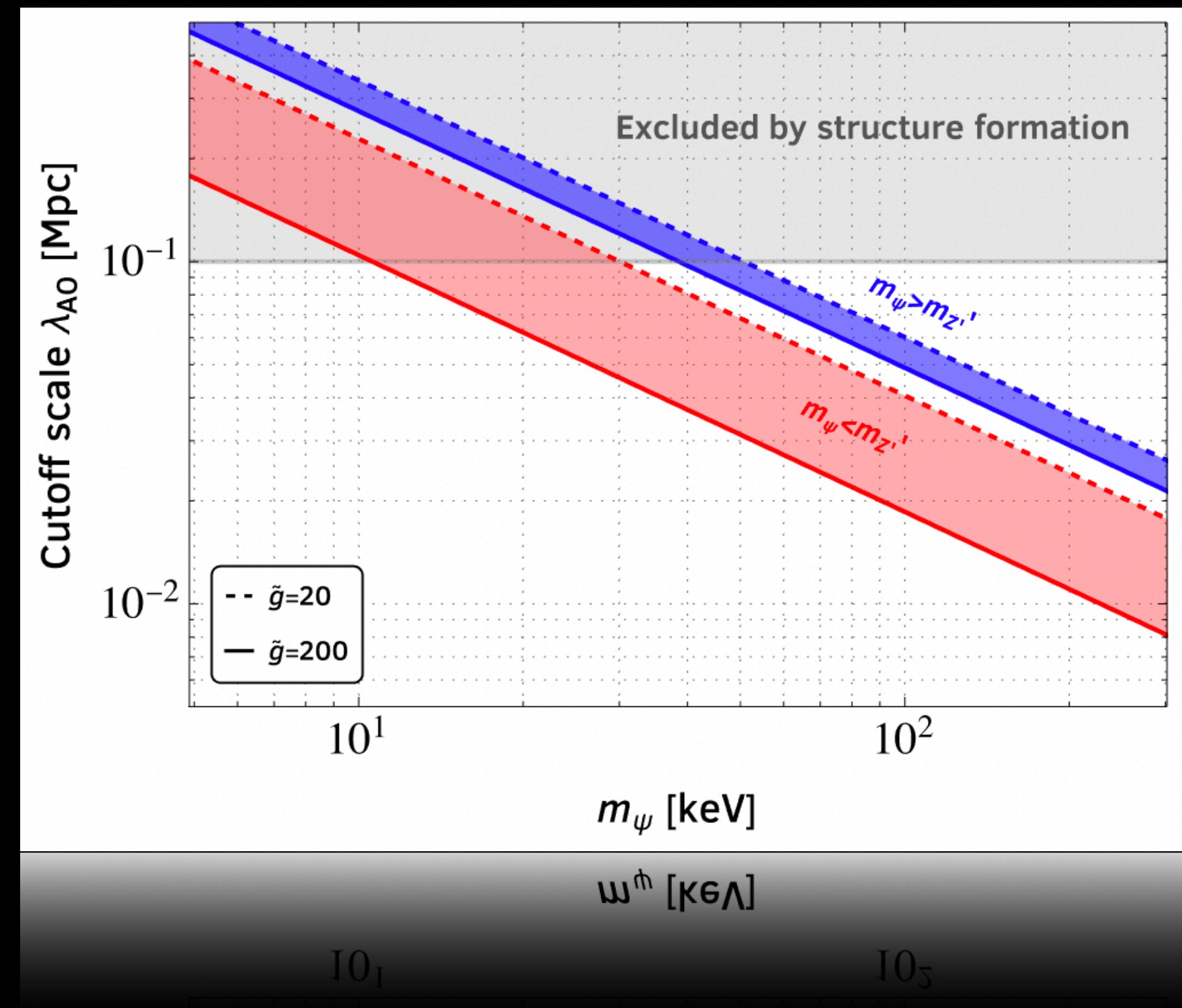
Structure formation

Potentially large free-streaming scale →
Prevent formation of small scale structures

Post freeze-out DM ψ remains in thermal contact with dark radiation χ via elastic processes $\psi\chi \leftrightarrow \psi\chi$

$$M_{\text{hm}} = \frac{4\pi}{3} \rho_{\text{DM}} \left(\frac{\lambda_{\text{hm}}}{2} \right)^3 \approx 1.9 \times 10^7 M_{\odot} \left(\frac{\lambda_{\text{hm}}}{0.1 \text{ Mpc}} \right)^3$$

Depends on
temperature of
kinetic decoupling
 T_{kd}



Viable Parameter Space

Putting everything together

Thermalisation

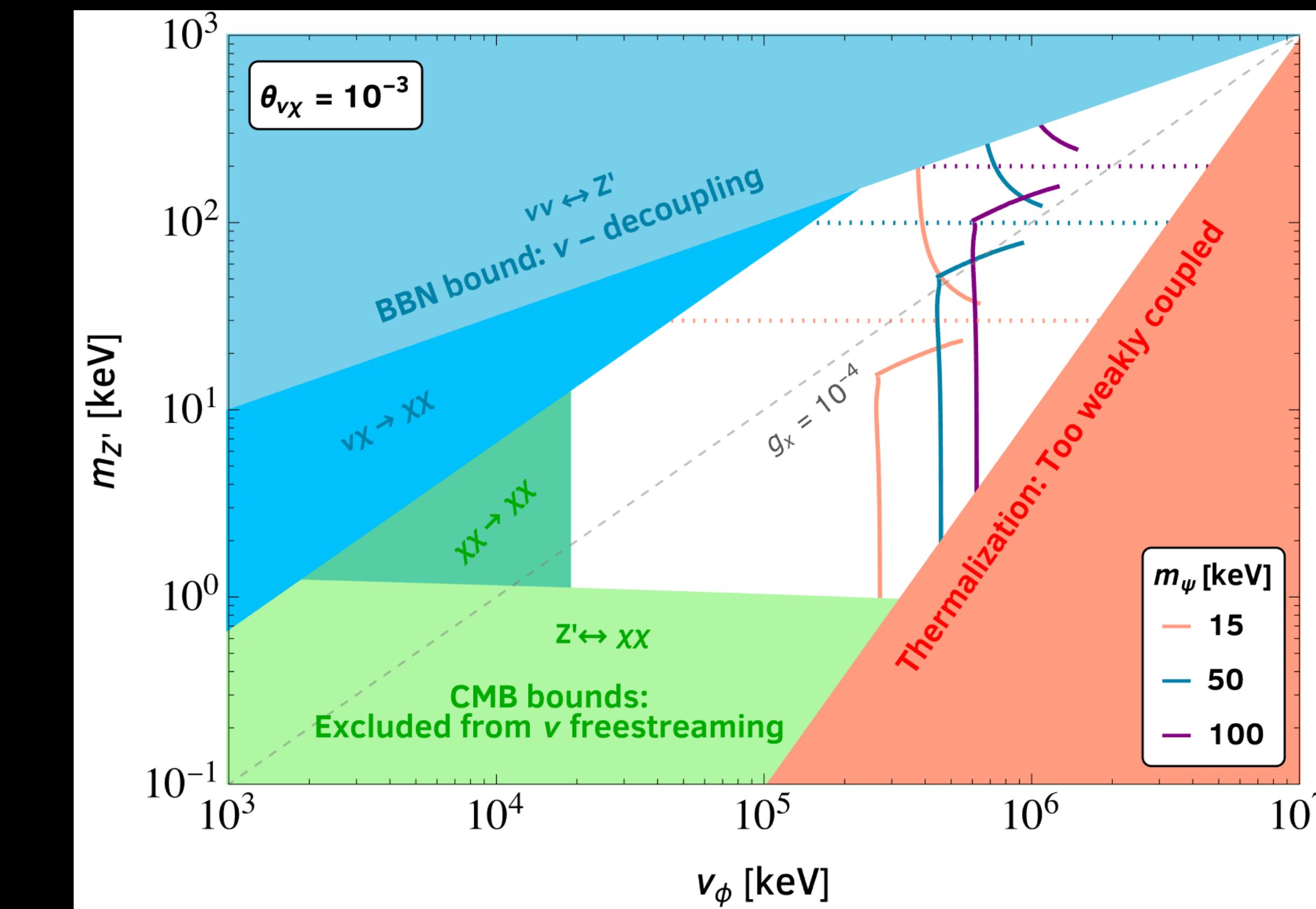
νs should thermalise with Z' in $0.7 \text{ MeV} > T_\gamma > 10 \text{ eV}$

BBN constraints

νs should not thermalise with Z' ; avoid χ 's exponential growth $\nu\chi \leftrightarrow \chi\chi$ at $T_\gamma > 0.7 \text{ MeV}$

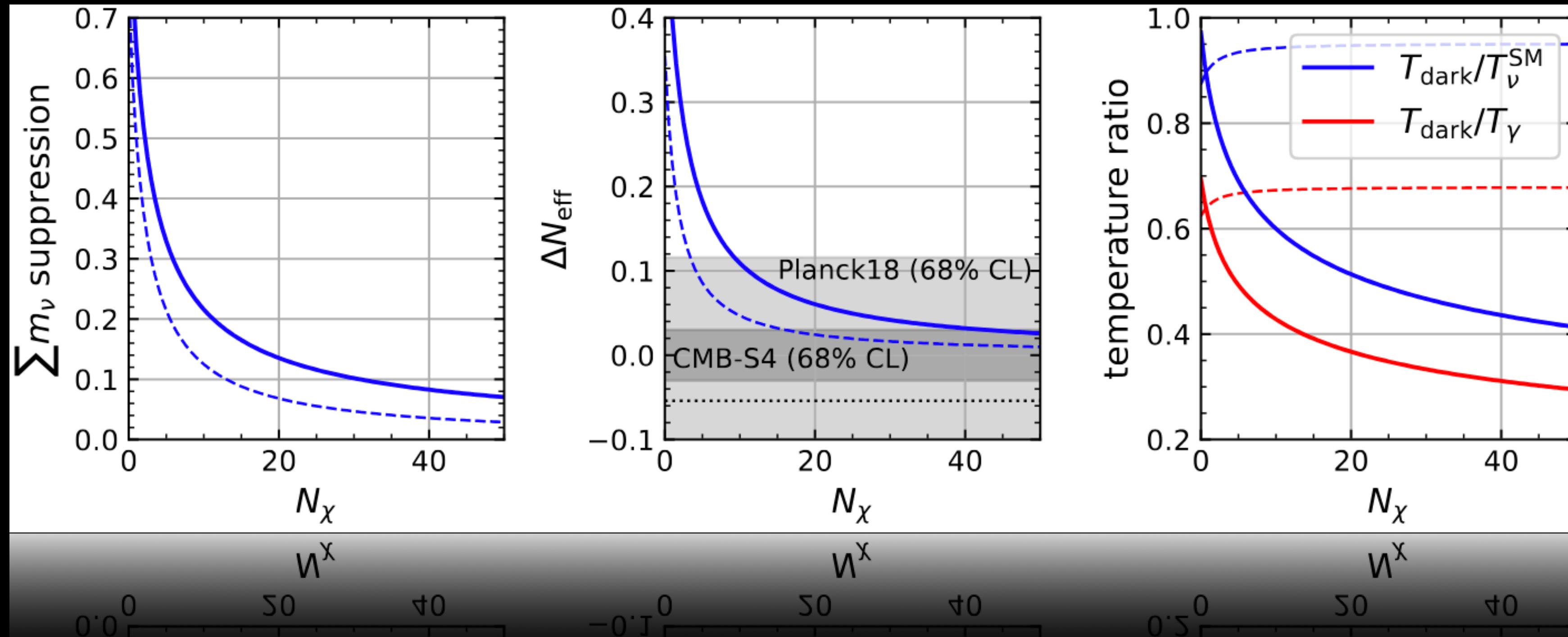
CMB constraints

$\nu\nu \rightarrow Z'$ and $Z' \rightarrow \chi\chi$ must be inefficient at $z \sim 10^5$; CMB not perturbed by lack of χ free streaming



Neutrino Mass Suppression

N_{eff} and DS Temperature



M [GeV]	M' [GeV]	m_D [GeV]	κ' [GeV]	Λ [GeV]	v_ϕ [GeV]	m_ψ [keV]	$m_{Z'}$ [keV]	$g = m_{Z'}/v_\phi$	$\theta_{\nu\chi}$	N_χ	n_ν/n_ν^{SM}	ΔN_{eff}
10^{11}	10^2	4.47	0.043	0.004	0.5	18.5	100	2×10^{-4}	10^{-3}	10	0.216	0.109
10^{12}	10^3	14.14	0.23	0.141	0.8	53	77	9.6×10^{-5}	10^{-2}	10	0.216	0.109
10^{13}	10^2	44.7	0.1	0.044	0.6	100	32	5.3×10^{-5}	10^{-3}	20	0.135	0.060

Summary

Comparing cosmology and laboratory bounds on $\sum m_\nu \rightarrow$ **Hints of new physics**

The cosmological neutrino mass bound can be relaxed with a **light dark sector: many new interactions!**

DM thermalises with the DS and then freezes out \rightarrow **Abundance set by DS gauge interactions, not by mixing with SM neutrinos**

Signatures of the model \rightarrow **Slightly increased N_{eff} at late times, Suppressed matter power spectrum at small scales**

Backup

Neutrino Mass Suppression

N_{eff} and DS Temperature

New degrees of freedom come into equilibrium with neutrinos at T_{ν}^{eq} to form a system with T_{eq}

$$\rho_{\nu}(T_{\nu}^{\text{eq}}) = \sum_{f=\nu,\chi,\psi} \rho_f(T_{\text{eq}}) + \rho_Z(T_{\text{eq}})$$

System evolves adiabatically from T_{eq} to T_{fin} when ψ, Z' become non-relativistic, use $a_{\text{eq}}^3 s_{\text{eq}}(T_{\text{eq}}) = a_{\text{fin}}^3 s_{\text{fin}}(T_{\text{fin}})$

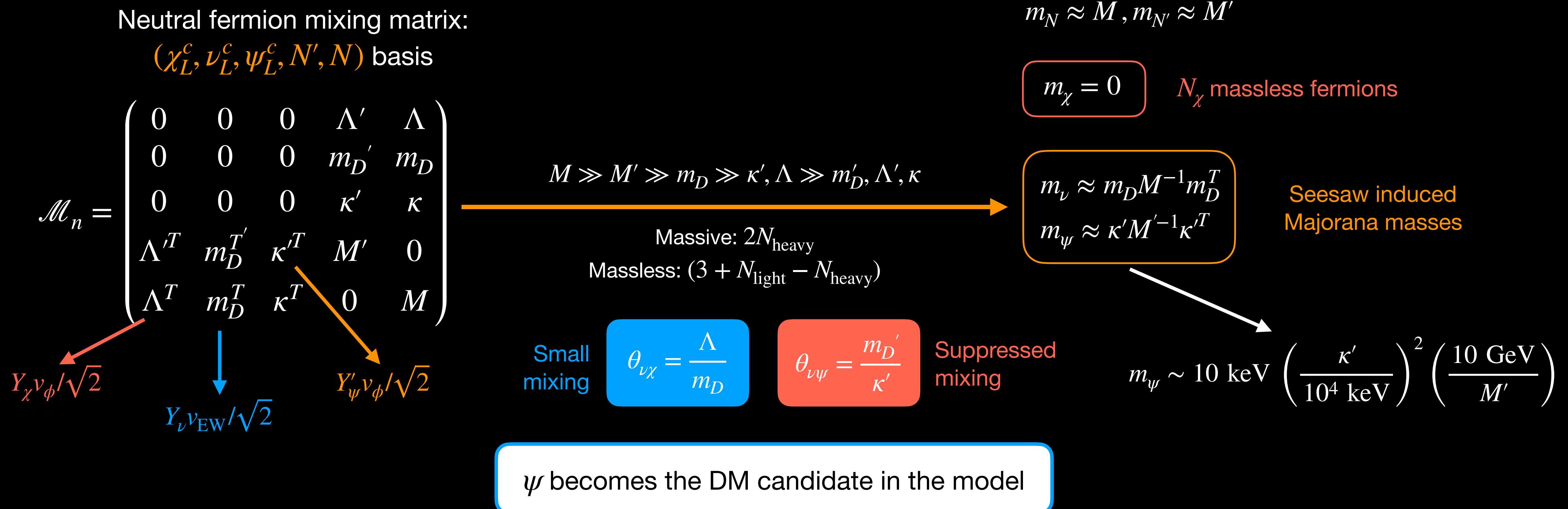
$$\frac{n_{\nu}}{n_{\nu}^{\text{SM}}} = \left(\frac{T_{\text{dark}}}{T_{\nu}^{\text{SM}}} \right)^3 = \frac{g_{\nu} + \tilde{g} + g_{\psi} + \frac{8}{7}g_{Z'}}{g_{\nu} + \tilde{g}} \left(\frac{g_{\nu}}{g_{\nu} + \tilde{g} + g_{\psi} + \frac{8}{7}g_{Z'}} \right)^{3/4}$$

$$N_{\text{eff}} \equiv \frac{8}{7} \left(\frac{11}{4} \right)^{4/3} \frac{\rho_{\text{dark}}}{\rho_{\gamma}} = \frac{g_{\nu} + \tilde{g}}{2} \left(\frac{T_{\text{dark}}}{T_{\nu}^{\text{SM}}} \right)^4$$

$$\left[\sum m_{\nu} \right]_{\text{eff}} = \sum m_{\nu} \frac{n_{\nu}}{n_{\nu}^{\text{SM}}}$$

The Model

Masses & Mixings



Constraints

Structure formation

$$\text{Free-streaming} \quad \lambda_{\text{FS}} \approx \frac{1}{2} \int_{t_{\text{kd}}}^{t_{\text{MRE}}} dt \frac{v_\psi}{a(t)} \approx \frac{1}{2} \left(\frac{4\pi^3 g_{\text{eff}}}{135} \right)^{-1/2} \sqrt{\frac{\xi}{T_{\text{kd}} m_\psi}} \frac{M_{\text{pl}}}{T_0} \log \frac{T_{\text{kd}}}{T_{\text{MRE}}}$$

$$\text{Acoustic oscillations} \quad \lambda_{\text{AO}} = \int_0^{t_{\text{kd}}} \frac{dt}{a(t)} = \frac{1}{aH} \Big|_{\text{kd}} \approx \left(\frac{4\pi^3 g_{\text{eff}}}{45} \right)^{-1/2} \frac{M_{\text{pl}}}{T_{\text{kd}} T_0}$$

$$\lambda_{\text{cutoff}} = \max(\lambda_{\text{FS}}, \lambda_{\text{AO}}) < 0.1 \text{ Mpc}$$

Constraints

Stability & X-ray bounds

DM decay $\rightarrow \psi$ lifetime should be larger than the age of the universe

$$m_\psi < m_{Z'}$$

$$\psi \rightarrow \nu \chi \chi$$

$$m_\psi > m_{Z'}$$

$$\psi \rightarrow Z' \nu$$

$$\theta_{\nu\psi}^2 < 2 \times 10^{-16} \left(\frac{15 \text{ keV}}{m_\psi} \right)^5 \left(\frac{21}{\tilde{N}} \right) \left(\frac{\nu_\phi}{2 \text{ GeV}} \right)^4$$

$$\theta_{\nu\psi}^2 < 1.2 \times 10^{-30} \left(\frac{m_{Z'}}{10 \text{ keV}} \right)^2 \left(\frac{10^{-4}}{g} \right)^2 \left(\frac{40 \text{ keV}}{m_\psi} \right)^3$$

⋮

Sterile ν DM mixing with active ν s \rightarrow Observable monochromatic X-ray line

$$\psi \rightarrow \nu \gamma$$

$$\Gamma_{\psi \rightarrow \nu \gamma} = \frac{9 \alpha G_F^2}{256 \cdot 4\pi^4} \sin^2(2\theta_{\nu\psi}) m_\psi^5$$

$$\theta_{\nu\psi}^2 \lesssim 7.65 \times 10^{-13} \left(\frac{15 \text{ keV}}{m_\psi} \right)^5$$

$\theta_{\nu\psi}$ should be really suppressed