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DM capture in the Sun

Press, Spergel 85’

capture of DM by the Sun through DM-nucleon scatterings, followed by DM

annihilation => flux of primary or secondary neutrinos: observable on earth




DM capture in the Sun: equilibrium between capture and annihilation
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applies to the symmetric DM case because requires annihilation
limited accumulation of DM due to the annihilation



A possibility to probe capture of asymmetric DM in the Sun with large DM accumulation:

Dark matter bound state formation in the Sun

asymmetric DM case:

no more annihilation but still possibility of an observable flux
L> from DM bound state formation
L—> allows to emit a flux without destroying the DM particles

Q—> more DM accumulation and enhanced emitted flux



First step: Capture and thermalization of DM within a DM core

DM capture on nucleons: linear grow of Ny

dNX — C* Press, Spergel 85’
dt

Garani, Palomares-Ruiz 17’

captured DM particles interact with nucleons and thermalize with them
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2nd step: Dark matter bound state formation in the Sun catching up

2 DM particles undergoing an attractive force can form a bound state

L> for instance from aYukawa interaction with a light scalar ¢

Q—> BSF proceeds from the emission of this light scalar

DM

¢ BS

DM

Yukawa potential between 2 identical particle is attractive V(r) = —%e™™¢"



2nd step: Dark matter bound state formation in the Sun catching up

dN .
dtx =C, — AbeNi —> equilibrium between BSF and capture on nucleons
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BSF catching up the capture
10%8| My =107 GeV | equilibrium between BSF and
m, =50 GeV / capture on nucleons
. 1035 |
linear grow from sinf, = 1012 toquil = To = (C*Absf)_1/2

32
capture on nucleons ——1Q7}

1029 T

5> 10%°}

N—"

Z 1023}
1020 |
1017 =f”

1014 |

101} .
— NX:CXZO, CQX:O == N2XCX:O' CQXZO

108_|_|.|.|.|.|.|.|.|_|_|.|.|.|.|.|.|.| T T T T T T S AT T S T |
1012 1013 1014 1015 1016 1017 1018 1019

t [s]




2nd step:Thermal radius for BS

once formed the BS particles thermalize with nucleons

C__— within thermal sphere whose radius Is
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3rd step: DM capture from DM self-interactions: capture on DM
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4th step: DM capture from DM self-interactions: capture on BS
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Flux of scalar mediators once the geometric rate is saturated

4 of ¢ emitted /sec = # of BS created /sec # of DM captured/sec ~ # of DM crossing the BS core/sec
mi = r = =
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Determination of the rates (1)

capture on nucleon rate:
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here we assume for definiteness that DM-nucleon scattering proceeds through mixing of ¢ with the SM scalar
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Determination of the rates (2)
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Determination of the rates (3)

capture on DM rate: DM self-interactions Gould 92°....
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integrating only on kinematical cases which allow capture in one scattering
calculated in semi-classical approximation with partial wave expansion...

L—> range of the Yukawa force ~ 1/mg is much larger than de Broglie wavelength of DM particle ~ 1/(m,v)

—> elastic cross section can be calculated from Yukawa potential in a classical way
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Determination of the rates (4)

capture on BS rate: DM DM
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Capture on nucleon, BSF, capture on DM and capture on BS rates
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Flux of neutrinos reaching the earth

here we assume ¢ , once emitted, decays into 2 neutrinos escaping the Sun
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flux of neutrinos from the direction of the Sun, unlike atmospheric neutrinos



Long list of constraints: a kind of miracle that one can get an observable flux!

the only 4 parameters enter in many relevant quantities and potential extra effects:
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® self-capture leading directly to bound state: subleading

® creation of heavier bound state: presumably subleading

e cvaporation of DM particles: negligible for m, 2 5 GeV

® DM self-interactions

® DM direct detection: same cross section as for capture on nucleons

® DM indirect detection: neutrino flux from BSF in the galactic center

® BBN constraint on ¢ lifetime



DM self-interactions constraints
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asymmetric self-interacting DM is one of the way to avoid more easily some of the constraints



DM direct detection constraints
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DM indirect detection constraints (neutrino flux from galactic center)

if BSF in the Sun => unavoidable BSF also in the galactic center

L—>ﬂux of neutrinos from galactic center

Bounds on dark coupling

kYA

o5l Bounds from ,"
Super-K & Bore,é(ino
1

10*



Example of explicit particle physics model

L5 Low+ Ly +X (i~ my) x + 5 (96 — gs6xx — V (6, H)

L—» ¢-h mixing

”;NWN + Y46 NN +h.c.

—Ly, = Y,NL-H +

!

v-N seesaw mixing ¢ — vv decay




Summary

for instance from DM Yukawa interaction with light scalar

- allow to emit a flux of particles for asymmetric DM and without destroying DM

- the BS provide additional targets for capturing DM in the Sun from DM self-interact.

induced by same Yukawa interact.

can allow large exponential increase of DM capture in the Sun

exponentially increased flux of emitted particles

- can lead to observable flux of 10 MeV-| GeV neutrinos

- rich and around the corner associated phenomenology

DM direct detection
DM self-interactions

DM indirect detection from galactic center







Lower bound on scalar mixing for thermalization of DM

106 Mixing angle for thermalization within 4.5 Gyrs
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