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Disrupted (dwarf) galaxies and the formation of stellar halos

Andromeda Galaxy NGC 474

PANdAS survey Duc/Cuillandre/CFHT/Cole
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Disrupted (dwarf) galaxies and the formation of Galactic halos
in CDM

AF et al. 2020
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Mass spectrum of destroyed dwarf galaxies (halo

progenitors) in Milky Way-mass CDM haloes

based on 30 Auriga cosmological simulations
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* Afew tens of dwarf galaxies contribute

towards the formation of Galactic halos 10

N (>M)

* The mass budget is dominated by the few
more massive objects

* Dynamical friction drags these massive ones
towards the centre, and radializes the orbits 1
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How do things differ when looking into alternative dark
matter models, such as self-interacting (SIDM), that affect
low mass dark matter halos?

Victor Forouhar-Moreno - arXiv: 2407.05899
Fergus Henstridge + Alis Deason, Alex Riley,
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Alternative dark matter models: warm and self-interacting
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WDM

Suppression of power at small scales ->
lower abundance of low mass
halos/subhalos

* Delay in formation time of the lower mass
halos -> Lower concentration of DM halos

~

A. Fattahi, Stockholm Uni
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DM

No change in the abundance of field low
mass halos

(self)interaction between DM particles
thermalizes the inner regions of halos ->
shallow DM density profiles in the centre

SIDM-10




Simulations

Simulations presented in Forouhar-Moreno+2022

* periodic box with side length of 12Mpc
* Ran with P-Gadget3

* Galaxy formation model: EAGEL

* Resolution: ~8 X 104MO gas/stars

* 8 halos with halo mass ~ 104 Mg

simulations and found similar results.

we looked into a higher resolution runs from the APOSTLE Local Group
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WDM flavour

Thermal mass: 2.5 keV
Half-mode mass: ~10°Mg
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SIDM flavour:
Constant cross section of 10 cmz/gr

halos

.

~ few kpc DM cores in dwarf scale; ~ 10kpc DM cores in Milky Way-size

)
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Disrupted dwarf galaxies (halo progenitors) in various DM models

10°
Mass spectrum of disrupted objects =
. P
(halo progenitors) |
A X
: : =
* There are fewer disrupted objects
in WDM
* There are more disrupted objects 10°
in SIDM 1.5
= 10
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Vpeak [km S_l]

Peak mass before infalling to the MW-mass halos

Forouhar-Moreno, AF, Deason et al. 2024
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Density profiles of halos in various DM models

DM halos:

WDM and CDM are similar
SIDM is flatter in the centre

Stellar halos:

WDM is very similar to CDM

SIDM is shallower than CDM

A. Fattahi, Stockholm Uni
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Kinematics of stellar halos in various DM models

Velocity anisotropy profile of
stellar halos (relative to CDM)
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The inner regions of
SIDM Galactic halos
are less radial than
CDM
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Kinematics of stellar halos in various DM models

Based on APOSTLE high res runs

V. (km/s)

SIDM
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Kinematics of stellar halos in various DM models

Based on APOSTLE high res runs

Motions of 7,000,000 Gaia stars
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ESA F2 MISSION (selected in Nov 2022, full adoption in 2026, launch around 2030)
Lead by Spain - Pl: Rafael Guzman

Science goal:

Observing the low-surface brightness
(sub)structures around Milky Way-
like halos for probing galaxy
formation and dark matter physics on
small scales.

Observing strategy:

Survey: > 80 MW:-like galaxies
Total Observing time: 150 hrs/gal

Credit: Martinez-Delgado

SBlim < 31 mag arcsec™

A. Fattahi, Stockholm Uni Valencia 2025 14



Key takeaway points on
Galactic halos in CDM, (WDM) & SIDM

* Despite the change in the abundance of dwarf galaxies, stellar
halos in WDM are very similar to CDM

* Stellar halos in SIDM (cross section: 10 cm?/gr ) have flatter

density profiles in the centre, with significant differences in
kinematics.

* Most noticeable: stars in the central regions of stellar halos in
SIDM are in less radially biased orbits.



N/Ntot( < Rperi)

Disruption of dwarf galaxies in various DM models

Vpeak < 50 km/s Vpeak > 50 km/s
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Kinematics of stellar halos in various DM models

CDM WDM SIDM10

Galaxy 1

G1 [tm ~5.78 Gyr]

Galaxy 2

G2 [tm ~4.71 Gyr]

Galaxy 3

G3 [tm ~ 1.90Gyr]
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The formation of Galactic halos from disrupted dwarf galaxies

Number of “significant progenitors” (forming 90% of the stellar halo mass) at

various radii:

the inner regions are formed by very few dwarf galaxies, thar are relatively bright

(see, also, Deason et al. 2015, Monachesi et al. 2019, ...)
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Auriga halo no.
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The formation of Galactic halos from disrupted dwarf galaxies

Tracing back accreted stars to their progenitors

@ Low mass progenitors ‘ High mass progenitors

Mass contributed from various progenitors spherical shells
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One example:
AF+2020
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Kinematics of the inner stellar halo: Gaia-Enceladus-Sausage

Belokurov et al. 2018:

stars: [Fe/H] <-1, b >25deg

Velocity space of stars shows two prominent features
|.  Galactic disk rotating with ~ 200 km/s

Il. halo component with highly orbital

anisotropy, B ~ 0.85

A. Fattahi, Stockholm Uni

Motions of 7,000,000 Gaia stars
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Disrupted dwarf galaxies (halo progenitors) in various DM models

Mass spectrum of disrupted objects (halo
progenitors)

A 4

* There are fewer disrupted objects in WDM

* There are more disrupted objects in SIDM

Accreted stellar halo mass ( <R,q) relative to
CDM
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Low mass halos in WDM and SIDM
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