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The Nature fo Dark Matter: Substructure Detection

Bullock and Boylan-Kolchin (2017)



Bayesian Inference

P(θ | d) = P(d | θ)P(θ)
P(d) (1)



Bayesian Inference: The Joint Probability

P(θ | d) = P(d | θ)P(θ)
P(d) ∝ P(θ,d)P(θ) (2)

Joint probability: P(θ,d | Model )
Simulator: di ∼ P(d | θ,Model)



Bayesian Inference: The Joint Probability

Joint probability: P(θ,d | Model )

d

Likelihood, 
                       P(d | = 0)

Posterior, P( |d = d0)



Simulation-Based Inference



Simplest Case: Approximate Bayesian Computation

Converges given:
lim
ϵ→0

PABC(θ | d0) = P(θ | d0). (3)

d

2

2

P(d | 0, )

P( |d d0, )



Neural Posterior Estimation (NPE)

DKL(P || Q) =
∑

x P(x) log
P(x)
Q(x)

See Papamakarios and Murray (2016);
Lueckmann et al. (2017); Greenberg et al.
(2019); Cranmer et al. (2020)

1. Draw simulations:

d∗ ∼ P(d | θ∗); θ∗ ∼ P(θ). (4)

2. Find an estimator of the posterior, P̂w(θ | d), with its
weights, w, such that:

w∗ = argmin
w

EP(d)[DKL(P(θ | d) || P̂w(θ | d))], (5)

w∗ = argmax
w

EP(θ,d)[ ln(P̂w(θ | d))]. (6)

3. Train a neural network from this loss function:

L(w) = −EP(θ,d)[ ln(P̂w(θ | d))] (7)

4. Use network to directly sample P̂w(θ | d).



Neural Density Estimation: Normalising Flows

Learns invertible and
differentiable
transformations between
any distribution and a
Gaussian.

e.g. Masked Autoregressive Flows (MAFs)



Simulation-Based Inference

Signal and uncertainty modelling of arbitrary complexity (vary all
complexities simultaneously)

Amortisable (all model evaluations can be data-independent in
NPE)

Bayesian uncertainty propagation from data to parameters

Likelihood can take an arbitrary form



Subhalo Search:
Forward Modelling & Inference



Subhalo Search: Forward Modelling the Subhalo Field

Number densities of perturbing interlopers and subhalos

Li et al. (2017) Ludlow et al. (2016)



Subhalo Search: Forward Modelling the Subhalo Field

He et al. (2022)



Subhalo Search: Forward Modelling the Subhalo Field

AutoLens: Mock Observations

Nightingale et al. (2021)

Compression/summary statistic: P(k)

Repeat 1000 times...



Subhalo Search: Power Spectrum as a Summary

von Wietersheim-Kramsta et al. (in prep.)



Subhalo Search: Inference from the Power Spectrum
Posterior

von Wietersheim-Kramsta et al. (in prep.)



Subhalo Search: Inference from the Power Spectrum

von Wietersheim-Kramsta et al. (in prep.)



Subhalo Search: Inference from the Power Spectrum



Subhalo Search: Inference with Other Summaries

Other compression
schemes/summary

statistics:

Convolutional Neural
Networks (CNNs)

von Wietersheim-Kramsta et al. (in prep.)

CNNs can help recover other lens parameters, but lose
information on the subhalo field



Subhalo Search: Hybrid Summaries

Makinen et al. (2025)



Subhalo Search: Forward Modelling the Subhalo Field & the Macro Model

He et al. (2022)



Forward Modelling the Subhalo Field & the Macro Model

Latin Hypercube:

von Wietersheim-Kramsta et al. (in prep.)



Forward Modelling the Subhalo Field & the Macro Model

von Wietersheim-Kramsta et al. (in prep.)



Subhalo Search: Constraining Subhalos & the Macro Model

von Wietersheim-Kramsta et al. (in prep.)



Conclusion & Outlooks



Conclusion & Outlooks

• SBI is a powerful method to incorporate model complexity & systematics

• We accurately and robustly recover the subhalo field from mocks

• The P(k) encodes most of the information on the subhalos

• SBI allows for simultaneous varying of subhalo & macro model parameters

• Future outlooks:
• Scale up to higher-dimensional parameter space
• Incorporate dark matter models (SIDM!)
• Add realistic systematics
• Apply to data



Questions?
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