Subhalo Detection with Simulation-Based Inference
from Galaxy-Scale Strong Lenses
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The Nature fo Dark Matter: Substructure Detection
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Bullock and Boylan-Kolchin (2017)




Bayesian Inference
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Bayesian Inference: The Joint Probability
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Bayesian Inference: The Joint Probability

Joint probability: P(6,d | Model )
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Simulation-Based Inference



Simplest Case: Approximate Bayesian Computation

Converges given:

lim PABC(Q | do) = P(9 | do) (3)
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Neural Posterior Estimation (NPE)

1. Draw simulations:
d* ~P(d]|0"); 6" ~ P(0). (4)

2. Find an estimator of the posterior, IADW(G | d), with its
weights, w, such that:

w* = arg mvin Ep(a)[ DxL(P(6 | d) || Pu(o|d))], (5

* = arg max n(P,(0 | d))].
Du(P || Q) = X2, P() g £ W = arg maxBp(o o) [In(Pul(0 | ) ©)

3. Train a neural network from this loss function:

See Papamakarios and Murray (2016); L(w) = *H*:P(e,d)[|n(/:-’w(‘9 | d))] (7)
Lueckmann et al. (2017); Greenberg et al. _ R
(2019): Cranmer et al. (2020) 4. Use network to directly sample P, (6 | d).



Neural Density Estimation: Normalising Flows

Learns invertible and
differentiable
transformations between
any distribution and a
Gaussian.

(=)

e.g. Masked Autoregressive Flows (MAFs)



Simulation-Based Inference
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do: d1, d2--- Amortisable (all model evaluations can be data-independent in
NPE)
t>0 Bayesian uncertainty propagation from data to parameters

Likelihood can take an arbitrary form



Subhalo Search:
Forward Modelling & Inference




Subhalo Search: Forward Modelling the Subhalo Field

Number densities of perturbing interlopers and subhalos
Mass-concentration relation
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Subhalo Search: Forward Modelling the Subhalo Field

Source: Lens:

Perturbers:

Elliptical Core-Sersic * Power law mass
z=1 + z=05
* No external shear

Warm Dark Matter
Truncated NFW mass
M= 107

Nsubhatos € [0, 30]

He et al. (2022)
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Observational Effects

(HST-like)

e Exposure =8000s
* Skybackground =0.1

* Pixelscale =0.05"
* Ops =0.05"

+ Poisson noise




Subhalo Search: Forward Modelling the Subhalo Field

AutoLens: Mock Observations Compression/summary statistic: P(k)
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Nightingale et al. (2021) Repeat 1000 times...



Subhalo Search: Power Spectrum as a Summary
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Subhalo Search: Inference from the Power Spectrum

Posterior

Ensemble of 2 NDEs PO nina = 10,74 3.1

2 X MAFs

5x MADEs

2 hidden
layers

50 neurons
each

Nsubhalos

von Wietersheim-Kramsta et al. (in prep.)



Subhalo Search: Inference from the Power Spectrum

P(k): ngibhatos =10.8+£3.2 P(K): Mubhatos = 12.2739 P(k): ngubhatos =22+3
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von Wietersheim-Kramsta et al. (in prep.)



Subhalo Search: Inference from the Power Spectrum
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Subhalo Search: Inference with Other Summaries

P(K) : noiphatos =9.7 £3.3

CNN': Naabhalos = 128743

Other compression
schemes/summary
statistics:

Convolutional Neural
Networks (CNNs)

Rsubhalos

von Wietersheim-Kramsta et al. (in prep.)
CNNs can help recover other lens parameters, but lose
information on the subhalo field



Subhalo Search: Hybrid Summaries

existing info

Makinen et al. (2025)



Subhalo Search: Forward Modelling the Subhalo Field & the Macro Model

Source: Lens:

Perturbers:

Elliptical Core-Sersic  * Power law mass
z=1 e z=05

Axis ratio €[0.3,0.85) * No external shear
Axial tilt € [30,70]° + R;€[1.0,1.5]”

Warm Dark Matter
Truncated NFW mass
M= 107

l‘|suhhalos € [0’ 30]

He et al. (2022)
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(HST-like)

e Exposure =8000s
* Skybackground =0.1

* Pixelscale =0.05"
* Ops =0.05"

+ Poisson noise




Forward Modelling the Subhalo Field & the Macro Model

Latin Hypercube:

I
us

EinstNein radi

I

°

Nuomber o? subhalos

von Wietersheim-Kramsta et al. (in prep.)



Forward Modelling the Subhalo Field & the Macro Model

von Wietersheim-Kramsta et al. (in prep.)



Subhalo Search: Constraining Subhalos & the Macro Model

P(k) alone

CNN + Hybrid
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Conclusion & Outlooks




Conclusion & Outlooks

- SBI is a powerful method to incorporate model complexity & systematics
- We accurately and robustly recover the subhalo field from mocks
- The P(k) encodes most of the information on the subhalos

- SBI allows for simultaneous varying of subhalo & macro model parameters

- Future outlooks:
- Scale up to higher-dimensional parameter space
- Incorporate dark matter models (SIDM!)
- Add realistic systematics
- Apply to data



Questions?
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