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Overview

X Gravitational lensing-dark matter connection
X Overview of methods and technical developments

X Exciting new results

X The future



Difterent dark matter models can predict ditferent dark matter halos

Milky Way mass halo with subhalos in Warm Dark Matter (Nadler et al. 2024)
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The halo mass function depends on dark matter model
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Halo density profiles depend on dark matter model
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By measuring the properties of dark matter halos we
can test different dark matter models

XWIMPS

% Sterile Neutrinos

X Axions

X Primordial Black Holes

X Self-Interacting Dark Matter

Schive et al. 2014



Traditional measurements of dark matter halos rely on galaxies as

tracers
Observed Milky Way Satellites
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The power of strong gravitational lensing

RXJO911+0551 WGD JO405-3308 HS 0810+2554

PS J1606-2333 WFI 2033-4723 SDSS J1330+1810

Credit NASA/ESA HST GO-15177, 13732 Pl Nierenberg



The power of strong gravitational lensing

RXJO911+0551 WGD JO405-3308 HS 0810+2554

X Enables the measurement
of density profiles and mass
function of completely dark
halos

PS J1606-2333 WFI 2033-4723 SDSS J1330+1810

Credit NASA/ESA HST GO-15177, 13732 Pl Nierenberg



The power of strong gravitational lensing

RXJO911+0551 WGD JO405-3308 HS 0810+2554

X Enables the measurement
of density profiles and mass
function of completely dark
halos

XWorks over cosmological
distances

PS J1606-2333 WFI 2033-4723 SDSS J1330+1810

Credit NASA/ESA HST GO-15177, 13732 Pl Nierenberg



Strong lenses have multiple images of one background source
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| ensed images can be affected by dark matter halos

Low mass perturbers cause deflections
and magnifications to lensed images

Vegetti et al. 2010



Ftfect of low-mass halos

Gravitational Potential

U(0) = ds 2 /@(Ddé’, 2)dz
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Magnification

Deflection « first second derivative

derivative
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Strong gravitational lensing studies of dark matter measure
deflections and magnifications of images relative to the main
lens gravitational potential

Resolved source, Resolved source, Unresolved source,
single detection multi-detection multi-detection

CASTLES

Vegetti et al. 2010 Birrer et al. 2017



Example of imaging detection of a dark subhalo

~ 10" M, subhalo
detected not visible in imaging

Convergence
Data 9
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Vegetti et al. 2012



Example of imaging detection of a dark subhalo

~ 10" M, subhalo
detected not visible in imaging
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Example of imaging detection of a dark subhalo

~ 10" M, subhalo
detected not visible in imaging

Convergence
Data ke

B tNFW, elliptical main lens
Bl (INFW, w/ multipoles

—— CDM halo ¢c(M), +/- 20
(Dutton 2014)

Constantr ~ 1 kpc
pert

0.5

halo is denser than
predicted for a CDM halo;
confirmed by several other
groups: Minor et al. 2021, Enzi et
al. 2024 ,Ballard et al. 2024,
Despali et al. 2024. See talks
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Vegetti et al. 2012 nor et al. 2021



Sensitivity to the density profile
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| ensing and clusters

Real Cluster Simulated Cluster
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Strong and weak lensing can also be used to constrain cluster density profiles



Individual detection results from 28 lenses with HST

SDSSJ0029+2544
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Individual detection results from 28 lenses with HST
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COWLS survey: new JWST imaging of lenses

Nightingale et al. 2025

Discovery of > 100 strong
lenses with multi-band JWST

Imaging.

Lens (z ~ 2) and source (z ~
5 - 11) redshifts maximize
sensitivity to line-of-sight
dark matter halos.

/

3

Work in progress to detect dark subhalos in this new data set!



Method can be applied to |mag|ng at all wave\engths
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Method can be applied to |mag|ng at all wavelengths

mJy beam !
0.0 0.4 0.6 0.8 1.0

SDP-81
Band 6

Can get milli-arcsecond spatial resolution,
requires modelling ~ 10° visibilities (GVLBI)
See talk by Devon Powell
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Detection of the subhalo field

Substructure Deflection Field Mock observed lens . Mock Residdals
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The power spectrum of the residuals is connected to the substructure deflection field

In practice, challenging with current detectors given effects like IPC (Bayer et al. 2023)

2.



Detection of the subhalo field
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The power spectrum of the residuals is connected to the substructure deflection field

In practice, challenging with current detectors given effects like IPC (Bayer et al. 2023)



Forward modelling with machine learning

100 Subhalo Mass Function Constraints for Test Set 4

—— Test Distribution
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Wagner-Carrena et al. 2024 See also e.g. He et al. 2022



Forward modelling with machine learning

100 Subhalo Mass Function Constraints for Test Set 4

— Test Distribution

10 Lenses Constraint
i 50 Lenses Constraint
B 100 Lenses Constraint
B 1000 Lenses Constraint

These are forecasts but they have implemented
many exciting computational advancements in ML
to make this measurement a reality soon

Potential
"Dark Halos"
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Wagner-Carrena et al. 2024 See also e.g. He et al. 2022




Unresolved source a.k.a. "flux ratios’

Credit: STSCI, GO-15177, 13732 Pl Nierenberg



Example of the signal




Example of the signal




Example of the signal

Deflection  first B&
derivative

a(0) = Vy

Magnification
second derivative




EFxample of the signal

Deflection « first
derivative

a(f) = Vi

Localized perturbations
change the image
magnifications while
leaving positions minimally
changed

Magnification
™ second derivative




Example of the signal

Deflection « first
derivative

leaving positions minimally

Localized perturbations
change the image
magnifications while

changed

Magnification

Probed Sightline . .
second derivative

_ 0_, 6 I ’
&(0) = Vi
Source QSO




Localized perturbations

Example of the signal e e me:

magnifications while
leaving positions minimally

changed
T
T
— T

Same physics, just smaller

Deflection  first B
],

derivative

52(67) 61& — 2
— C N
Source QSO




L ensing signal with varying density profile
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L ensing signal with varying density profile

Tidal stripping must remove ~95% of mass before we
see a significant change in lensing signal (for one halo)
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Have to use a large enough source

% Quasar Radio Jet (Mao |

and Schneider 1998, ' Nuclear Narrow Line Emission
Dalal and Kochanek '

2002 )

X Quasar narrow-line

emission (Moustakas
and Metcalf 2003)

X Quasar warm dust (e.qg.
Algol et al. 2000, Chiba
et al. 2005 and more)

'CTrOSS

All ~milli-arcseconds given

typical source redshifts '
Vernardos et al. 2023



Have to use a large enough source
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X Quasar narrow-line

emission (Moustakas
and Metcalf 2003)

X Quasar warm dust (e.qg.
Algol et al. 2000, Chiba
et al. 2005 and more)

'CTrOSS

All ~milli-arcseconds given

typical source redshifts '
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Have to use a large enough source

% Quasar Radio Jet (Mao |

Dt o Kocnanak, |_Only 7 known
’ E
Dalal and Kochanek Only 7 known Nuclear Narrow Line Emission
X Quasar narrow-line

2002 )
emission (Moustakas ﬁ

-
and Metcalf 2003) In virtually every
lensed quasar ‘-,3.."

X Quasar warm dust (e.d i
Algol et al. 2000, Chiba |
et al. 2005 and more)

1 rg (1014 Cm) 10

'CTrOSS

All ~milli-arcseconds given

typical source redshifts '
Vernardos et al. 2023



Narrow-line measured with Keck OSIRIS/HST

Keck OSIRIS with Nierenberg et al. 2017

Uncorrected

Adaptive Optics
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Nierenberg et al. 2014 HST GO-15177, 13732, Pl Nierenberg



Narrow-line measured with Keck OSIRIS/HST

Keck OSIRIS with Nierenberg et al. 2017

Uncorrected

Adaptive Optics
- \ g E iy 151111 e
®° ' N e ——

5 NI

Nierenberg et al. 2014 HST GO-15177, 13732, Pl Nierenberg

Results from 11 lenses...



Forward modelling pipeline

We generate millions of
realizations of dark matter halos

: ® Probed Sightline
and subhalos, Field halos | o . : g

Multi-plane lensing convergence maps

marginalizing over: e ~ —
®
¥ Dark matter properties (e.g. half- Source QSO S
Lens Halo
mode mass)
CDM Realization WDM Realization

X Tidal stripping of subhalos

X Mass distribution of main
deflector (including deviations
from ellipticity)

X Source size

Gilman, Birrer, Nierenberg et al. 2020a



Forward modelling pipeline

We generate millions of

realizations of dark matter halos Multi-plane lensing convergence maps

- ° Probed Sightl;

and subhalos, a . robed Signtiine
T . e o ,
marginalizing over: %o e :
- .
¥ Dark matter properties (e.g. half- Source QSO $
"I Lens Halo
mode mass)
CDM Realization WDM Realization

X Tidal stripping of subhalos

X Mass distribution of main
deflector (including deviations
from ellipticit

Pipeline and data can be used to
test any dark matter model with
analytic description for non-

linear density field

X Source size

Gilman, Birrer, Nierenberg et al. 2020a




Simulation Pipeline Example

~ 10° — 10° simulations per lens for accurate statistics




Simulation Pipeline Example

~ 10° — 10° simulations per lens for accurate statistics
WDM




ompare measurement with simulation distribution

CDM

more structure = more perturbation

WDM

less structure = less perturbation

-20~

-40~

FLUX RATIO (IMAGE 1 / IMAGE 2)



ompare measurement with simulation distribution

CDM WDM

more structure = more perturbation less structure = less perturbation

Measured flux ratio

a0 <+

FLUX RATIO (IMAGE 1/ IMAGE 2)



Compare measurement with simulation distribution

3 flux ratios per lens each with different responses to variations in macromodel/substructure

CDM WDM

more structure = more perturbation less structure = less perturbation

Measured flux ratio

a0 <+

o . )
(:),\?),VQ '\6) '\‘?

(r)

FLUX RATIO (IMAGE 1/ IMAGE 2)



Compare measurement with simulation distribution

3 flux ratios per lens each with different responses to variations in macromodel/substructure

CDM WDM

more structure = more perturbation less structure = less perturbation

Measured flux ratio

a0 <+

S

Daniel Gilman, Postdé'
U. Chicago Brinson Fellow

FLUX RATIO (IMAGE 1/ IMAGE 2)



10g10(Mhm)[Mo]

Constraint on halo half-mode-mass
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10g10(Mhm)[Mo]

Constraint on halo half-mode-mass

10

9
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.o.s. normalization  slope of sh mass function norm of SH mass fn  10910(Mhm)[Mo]

Gilman, Birrer, Nierenberg et al. 2020



An end-to-end dark matter experiment

Dark matter particle Non-linear structure Gravitational Lensing Flux Measurement and
physics Anna Nierenberg, Anna Nierenberg, inference
Alex Kusenko (UCLA) Charles Gannon, R?/an Ke.eley (UCM) Anna Nierenberg,
Kevork Abazaiian, Ryan Keeley (UCM) Simon Birrer (Stony Brook) Ryar.1 Keeley,
Manoj Kaplinghat (UCl) ~ Andrew Benson (Camegie)  fommaso Treu. Maria Perez Mendoza
Risa Wechsler (Stanford) Hadrian Paugnat (UCLA) (UCM)
Ethan Nadler (UCSD) Daniel Gilman (U. Chicago) Daniel Gilman
Tommaso Treu, (U. Chicago)

Xiaolong Du (UCLA)
Daniel Gilman (U. Chicago)



Open source and validated on mock data

25 LENSES

IMAGE POSITIONS, FLUX
RATIOS & IMAGING DATA

|0910 Zsub e U(—Z-S, - 1-0)
10910 Zsub €C (—1.4,0.2)

X Lenstronomy (Birrer and
Amara 2018, Birrer et al.
2021)

FLUX RATIO UNCERTAINTIES 3%

X Pyhalo (Gilman et al. 2022)

> Samana (Gilman et al. 2024, 5 o o
inc AMN) 5 o ) |
See Daniel Gilman’'s Talk e I v s S

Gilman, Birrer, Nierenberg et al. 2024
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Primordial Black Holes

Narrow-line flux ratios

Primordial Black Holes
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Primordial Black Holes

Narrow-line flux ratios

Primordial Black Holes

arcsec

Dike et al. 2023
Rule out dm black hole fraction

>0.1 for 10* < M, /M, < 10°




Fuzzy dark matter

halos and fluctuations
Agye = 10~1:6%0.2

halos only

-22.5 -21.0 -19.5 -18.0 -16.5
l0g10(My/eV)

-0.03 -0.02 -0.01 0.00 0.01
Keffective (halo)



Fuzzy dark matter

halos and fluctuations
Afiuc = 10—1.6i0.2

halos only

-22.5 -21.0 -19.5 -18.0 -16.5
l0g10(My/eV)

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 LarOChe: Gilman et al- 2022
Keffective (halo)

See also Powell et al. 2023 for complementary gravitational imaging result



Many dark matter models tested

SIDM with cores only

Gilman et al. 2022



Many dark matter models tested

SIDM with cores only SIDM cores+core collapse

disfavored
Gilman et al. 2022



Adding a new source



Previous results with 11 narrow-line lenses

Uncorrected
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Previous results with 11 narrow-line lenses New Results: 31 lenses

with JWST

Keck OSIRIS with JWST GO-2046 Pl Nierenberg

@ Adaptive Optics
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Previous results with 11 narrow-line lenses New Results: 31 lenses

with JWST

Keck OSIRIS with JWST GO-2046 Pl Nierenberg

Adaptive Optics

s

Uncorrected

&
5 O\

Nierenberg et al. 2014 Nierenberg et al. 2017
.y - G141 |«

Quasar nuclear

narrow-line emission

~80 pc

(O]

ar

\

HST GO-15177, 13732, Pl Nierenberg=™ "




Previous results with 11 narrow-line lenses New Results: 31 lenses

with JWST

-2046 Pl Ni
Cock OSIRIS with JWST GO-2046 ierenberg
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Nierenberg et al. 2024

Quasar warm dust
emission ~1-10 pc




Comparison of nuclear narrow-line and warm dust sensitivity

15
mmmm Warm Dust (5 pc), 107 M,
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Nierenberg et al. 2024



Comparison of nuclear narrow-line and warm dust sensitivity

15 Warm dust sensitive to perturbations
below 10" M,

mmmm Warm Dust (5 pc), 107 M,
10k = =+ Warm Dust (5 pc), 10° Mg
mmmm Nuclear narrow-line (80 pc), 107 M4
= = 1 Nuclear narrow-line (80 pc), 10° Mg
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Nierenberg et al. 2024



First results: 5 Narrow-line + 9
JWST lenses

Ryan Keeley
UCM Postdoc

4.0 5.5 7.0 8.5 10.0

Keeley, Nierenberg et al. 2024



First results: 5 Narrow-line + 9
JWST lenses

One of the strongest constraints ever on
the dark matter half-mode mass

Ryan Keeley
UCM Postdoc

4.0 5.5 7.0 8.5 10.0

Keeley, Nierenberg et al. 2024



memm | y-a, Villasenor 2023

== 1 NL Only, Gilman 2019
mmmm NL+Dust, Keeley 2024
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Coming soon...new WDM and SIDM
measurements with all 31 JWST lenses

Look for Keeley et al. and Gilman et al. 2025 on arXiv!



Pushing the method torward

X Improved modelling of the mass distribution of the lens

X Tidal evolution of dark matter subhalos



Deviations from ellipticity in the detlector

Isophotes of a
gravitational lens

Multipole deviations from ellipticity in field ellipticals
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Deviations from ellipticity in the deflector

Isophotes of a
gravitational lens

Multipole deviations from ellipticity in field ellipticals

I ap/a>0 Isodensity contour

B ap/a<O (multipo]es exaggerated 5x)
@ No Multipoles Y i

Mild & Algined m=4
Strong & Aligned m=4
Mild & Misaligned m =4

8 + B

I8 Baryons make up ~70% of mass in
projection within the Einstein
radius, so multipoles should be
dominated by contribution from
light

© Q © B Q
& NN

N
3 — do s — Po

Oh, Nierenberg et al. 2024,
based on Hao et al. 2006

He et al. 2024




Combining angular complexity with detections: unresolved sources

Correct dark matter inferred with simulated data in the presence of multipoles

Warm Dark Matter Truth

25 LENSES

IMAGE POSITIONS, FLUX
RATIOS & IMAGING DATA
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Cold Dark Matter Truth

25 LENSES

IMAGE POSITIONS AND
FLUX RATIOS ONLY

IMAGE POSITIONS, FLUX
RATIOS & IMAGING DATA
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Gilman, Birrer, Nierenberg et al. 2024



Combining angular complexity and halo detection with resolvea
SOUrces

Subhalo No Angular Complexity Angular Complexity No Subhalo
f444 -- Base __ i f444 -- m1+m3 Alog(E)
2.5" O 2.5" | *
.64 N
1.5" 1.5" A
o
g.5" 0.5"; o
o
i
-0.5" -0.5" -
iy
-1.5" -1.5"F N
258 IS S 1 | S B 0
-2.5" -1.5" -0.5" 0.5" 1.5" 25" 55 155" 05" 05" 15" 2.5

- First dark matter subhalo candidate in JWST data.
- Including angular complexity in mass model reduces detection

significance, but subhalo still favoured.
Lange et al. 2024



Z [kKpc/h)

New simulations of group scale halos with different dark matter
models

CDM-h SIDM-h Group

300 0.5*Rvir 0.5*Rvir
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=200

-300

-300 -200 -100 0 100 200 300 -300 -200 -100 0 100 200 300
X [kpc/h] x [kpc/h]

Nadler et al. 2025

Despali et al. 2022



Including information from quasar host galaxy

X Lensed quasar host galaxy
dramatically decreases
uncertainty on the lens
mass distribution

X Leads to better dark matter
constraints

Reconstructed

See Daniel Gilman’s Talk

Reconstructed

Realization

#352938

e

8

Realization
#392573

Mock #4

0919 flux

[ACCEPTE ] Realization
= BT 0?2

105 |#352938

1.06

.06
A

[REJECTED| Realization

#392573

1= Mock #4|

Gilman, Birrer, N

0.1

=0.05

-0.05

-0.1

0.1

0.05

1

K — Kmacro

=

i At
et

. -
L A —_— —_—

=

"Nor;'lalizéd'Residual's =m
ACCEPTE)']_ ¢ L

Realization
#352938

.' B Ix.
Sl =7

- .. 'J:L'- i

i
i

-

.t R 3 B : - >
Normalized Residuals

[REJECTE DJ ek

-

-

S, —

-1

"t T
..“.._’ous .-.i-:: wr -
LD . L ey
oL e !. ,‘:'1‘ by

R

:. . :.. Mock #4.};
x v

—

. ] Realization[

L5 | #392573

leren

berg et al. 2024




Summary of what have we learnead

X Lenses reveal low-mass structure with many different methods
X Forward modelling lets us test many different dark matter models

X Hints of very dense subhalos relative to CDM predictions?



| ooking to the future - resolved imaging

The future is
happening
100,000 new
galaxy-galaxy
lenses in Euclid/
[ SST

. ’ | (o

Credit: ESA/Euclid/Euclid Consortium/NASA, image processing by M. Walmsley, M. Huertas-Company, J.-C. Cuillandre



| ooking to the future - resolved imaging

Forecast for imaging detection sensitivities with Roman

9.572

9.570

9.568

9.566

9.564

9.562

Mean Mass of Least Massive Detectable Subhalo [log,,(M/Mg )]
30, 12,500 s exposure, FO87

9.560

Wedig et al. inc AMN 2025



| ooking to the future-tlux ratios

X Hundreds of quadruply imaged

quasars will be discovered in LSST

and Euclid

X ~200 NL flux ratios can be followed

up with Keck in the next ~5 years

108 | | | | | | | | | | | ||
I\ 107 nonlens I!
% 106
i
o 10°
O =
= 10
N
~ 103
3 102
Z.
101 V | | | | | | | | | | | | | | | | | |
g 1 | | | | | | | | I | | | | |
_g 10-1 quad
o 10-%
- cusp
qs:: 10 o E_l 1 | | Y BN | L1 1 | L 1 1 L1 l_g
18 20 e 24 o 28
i, [mag]
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Next generation detectors

X¥Enable
measurement of
flux ratios In fainter

lenses OSIRIS
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Next Generation Telescopes -Resolved sources

Higher resolution leads to
lower halo mass sensitivity:
EELTs and next generation

adaptive optics will enable
detection of lower mass
subhalos

Vegetti



Next Generation Telescopes - Flux Ratios
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Zelko, Nierenberg et al. 2023 (600s exposures) IRIS Simulation by Nils-Erik
Rundquist (UCSD)



COn Cl US|OnS This work supported by

XMany different teams are using independent
gravitational lensing techniques to measure the
properties of dark matter, consistently revealing low-
mass structure signals in lenses.

;'f'" _"',."“‘:f"}o;"-"-_'.._’/"‘:.

- o
X Current methods enable a broad range of dark CAREER Award
matter models to be tested

X Lensing has a bright future with many new lenses
being discovered and new instruments/telescopes
being built




