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@ Particle models for SIDM

See Xiaoyong Chu's overview talk for more details and references




Thermal WIMP Freeze-Out
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Dark Sector Freeze-Out

+ Assume dark sector of dark matter particle y and light mediator ¢
+ Set relic abundance of y
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+ But ¢ itself contributes radiation energy density ~ Tgark, until it is nonrelativistic
+ Can avoid very abundant ¢ by
+ allowing rapid decay, for example ¢ — e e~

+ insisting ¢ mass is low enough for ¢ to redshift as radiation
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Examples of Simplified Models for SIDM

+ Heavy mediator: hard-sphere and velocity-independent scattering
+ “Light” mediator: Yukawa interaction (velocity-dependent scattering)
+ Very light or massless mediator: long-range, Coulomb-like interaction
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Model: Yukawa Scattering

04

+ Vector and scalar mediators gives rise to Yukawa potential V(r) = = Lo~ My"
r
+ Differential cross section (Born regime):
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Examples of Simplified Models for SIDM

+ Heavy mediator: hard-sphere and velocity-independent scattering
+ “Light” mediator: Yukawa interaction (velocity-dependent scattering)
+ Very light or massless mediator: long-range interaction

+ Mediator is force carrier for dark U(1) — i.e., dark E&M
+ Dark electron interacts with dark photon (massive or massless)
+ Atomic dark matter: formation of dark hydrogen
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Model: Atomic Dark Matter

+ Dark electron and dark proton undergo dark recombination
+ Composite dark hydrogen has atomic-scale self-interactions
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Examples of Simplified Models for SIDM

+ Heavy mediator: hard-sphere and velocity-independent scattering
+ “Light” mediator: Yukawa interaction (velocity-dependent scattering)
+ Very light or massless mediator: long-range interaction

+ Mediator is force carrier for dark U(1) — i.e., dark E&M
+ Dark electron interacts with dark photon (massive or massless)
+ Atomic dark matter: formation of dark hydrogen

+ Mediator is force carrier for dark SU(N) — i.e., dark strong force
+ Colored fermions interact with dark gluons
+ Below confinement scale: formation of dark nuclei, dark glueballs
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Model: Strongly-Interacting Dark Matter

+ Dark sector undergoes dark confinement
+ Composite dark nuclei have nuclear-scale self-interactions
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@ Impact on cosmology




Early-Universe Cosmology: Expansion History

+ Thermal dark particles contribute to N, (depends on decoupling temperature)
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Early-Universe Cosmology: Expansion History

+ Dark sector particles in general contribute to N, during BBN and CMB eras
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Early Universe Cosmology: Isocurvature

+ Dark radiation could produce

O°03 i -\ 7~ /‘-\\ 27

0.02

0.01 H*,

—0.01 F IaN

AD,/ Dé\.CDM(AD)
(
/

—0.02 = \'\ =

—0.03 I | | | | \-l
000 1000 1500 2000 2500

—— ACDM(AD) —— AD + DRID + AN (0.2) ¢
--- AD + DRID ¢ Planck-2018
—.— AD + ANot(0.2)

Ghosh, Kumar, Tsai (JCAP 2022; 2107.09076)
;[‘EXAS Kimberly Boddy 14




Early-Universe Cosmology: Suppression of Structure
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@ Impact on halos




Gravothermal Evolution https://github.com/kboddy/GravothermalSIDM

+ Mass conservation Make equations dimensionless using
oM G and 2 scales (e.g., r,and p,)
= 47rp
or
+ Hydrostatic equilibrium
d(pr?) M
) G—p where v = 1d velocity dispersion
or r?
+ Laws of thermodynamics
oL Y % S
— =—darpv | — ) In| — where L = luminosity
or ot ) ., P
+ Heat conduction o
T oT Self-graw.tatmg systems have
= — k— where k = heat conductivity negative heat capacity
Arr? or

Unstable system — gravothermal catastrophe

;[‘EXAS Kimberly Boddy 17


https://github.com/kboddy/GravothermalSIDM

Velocity-Dependent Scattering
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Implications for Black Hole Production

+ Can extrapolate scaling relations from Gad-Nasr et al. to estimate mass of black

hole that may form from collapse

+ BUT what about the mediator!?!
+ Inelastic processes that kick in during core collapse can change the story...

stay tuned! (KB, Kaplinghat, Outmezguine, Ryan, Sagunski)
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Broad Outlook

Need #1] Collaboration between simulators and particle theorists

Generate Initial Conditions +
Evolve Simulation (v'v'Y)

CCU T4«. _—_ﬂ Ul1l L‘_MM UCvCl0 \‘.._il‘ﬂl_f_ls.;i_.;IL. and coac comparison tests
[ - I

Need #3: Hydrodynamic simulations for observational targets

Need #4: Compare simulations to data in observable parameter space
_ Need #5: Fast realizations of observed systems to constrain dark matter

Need #6: Provide guidance to observers about dark matter signatures

Analyze Simulation Output

(V/Y)

l

Translate to Observable

Challenges:

+ Appropriate initial conditions from linear cosmology

+ Degeneracies with cosmological and astrophysical
parameters

Parameter Space (v VY) . o . .
s -+ Incorporating dark sector physics into simulations
l Kéﬁ',CDM(Blens) Keff,WDM(elens)
oo e - . . . .
i \‘ "+ 4 Whatis needed from simulations that gives us the
Efficiently Model Observables i 4x - W 8 . .
(VYY) &5 - ability to say something robust about dark matter
b,.(.au).- b ( ;':::fb within the realm of reasonability?
Keff,obs\ Vlens Keff,obs\ Ulens .
l ! | + How can dark matter models be parameterized to
Compare to Data (VVY) P(CDM, 0iens|Kefrobs)  P(WDM,@lens|Kefr,obs) get the most out Of simulations?

Snowmass 2021 Cosmic Frontier White Paper:
Cosmological Simulations for Dark Matter Physics (2203.07049)
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