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A multi-state model of SIDM

* Overview of code

* Results from an example model with varying initial states
 Main halo densities
 Main halo shapes
* Subhalo abundance

e Resonant DM



Milky Way Zoom-in simulations

* High-resolution main
halo and surroundings

e Low resolution
background

 Dark matter-only
(for now)
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Framework for SIDM model

excited state ¥? HO(/ =0.17

 Hypothetical two-state particle
 Model parameters:

» Ground state mass my; 5 =10.48 eV

endothermic
exothermic

 Mass splitting between states o

* Dark force mediator mass m,

| ground state !
* Coupling strength o my’ = 2.3 MeV
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Particles scatter elastically and inelastically

Elastic scattering: Inelastic scattering:
no state changes state changes
; s ; X1 +X1 — X2+X2 X2+X2 — X1 +X1
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Scattering alters dark matter distrib
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Igle

reduces inner density

Elastic scatter
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Scatterin

Up-scattering = «
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Dark matter i1s sub-resolution

 Macro simulation particle

e 2Xx10° M@

(i.,e. way too many physical particles)

 statistical sampling of dark
matter distribution
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Dark matter i1s sub-resolution
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Dark matter i1s sub-resolution

o Select particle
» |dentify nearby particles
o Scattering probability

* Does not scatter

» Elastic scattering with opposite
state

» Elastic scattering with same
state

* |nelastic scattering with same
state
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Aidan Leonard, MIT

CDM

Simulate varying initial states

Xinie = 0% Kinie = 20% x2 =40%

. :
» " -

100 kpc

100 kpc

 Same initial
K= 60% Yo =80% K= 100% cosmological conditions

e Set particle state at
simulation start

e Ran 11 simulations with
Initial excited state
fraction at intervals of

All particles
0)
y L eonard+ 2024 10%



Main halo density depends on initial state fraction
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Main halo density depends on initial state fraction

Ainit

Increasing initial
excited state fraction
gives lower density
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Ainit

Increasing initial
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Main halo density depends on initial state fraction

Ainit

Increasing initial
excited state fraction
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Main halo density depends on initial state fraction

Ainit

Increasing initial
excited state fraction
gives lower density

More excited particles
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Fits at various radii for

Fits at various radii for high initial

excited fraction
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More ground state particles

— More

— Particles fall in

— Condensing particles lose shape
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Satellites are decreased with all scattering

More excited particles

— More

— Particles escape potential
— Fewer satellites

Simulations with primarily
up-scattering also decrease
the satellite population due
to tidal disruption

108 10°
7‘/7‘2()(), mean [kPC] Mass [MG)]

Leonard+ 2024
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Upcoming
Lily Noyes, Penn

« Satellite evolution
o Satellite infall properties

* Merger histories?
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Resonant SIDM

halo mass [Ms]

 Enhanced cross section around 10> 10° 107 10° 10° 10% 10 10%7
particular velocities Model 1
Model 2

Model 3

 Model 2: Mres~108 Mg Model 4

Model 5

10? 10°
relative velocity [km s™1]

Gilman+ 2023
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Resonant SIDM

* Enhanced cross section around Resonant __
particular velocities
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Main halo is cored with more scattering
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Subhalos cored at high mass end
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Conclusions

* |Increased up-scattering
* Increases central density
* |ncreases halo sphericity
* |ncreased
 Decreases satellite population

« Somewhat decreased satellite population with up-scattering velocity threshold
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Conclusions

* L arge parameter space
e Scattering can get computationally expensive

 Form of scattering cross sections is flexible but currently isotropic

e Currently DMO
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Self-interacting dark matter (SIDM)

 Dark matter interacts with baryons through gravity

 Additional dark force between dark matter particles

CDM SIDM




Scattering cross sections
determine likelihood of reaction

Exothermic Endothermic Endothermic half-split
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Scattering cross sections
determine likelihood of reaction

Exothermic Constant Endothermic half-split
R B R e up-scattering
4yl o2+ 2
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Main halo appearance differs for each model

CDM Exothermic Constant up-scattering
z=0.00
« Same initial conditions
5 . . e Set particle state at
| simulation start
100 kpc
Endothermic up-scattering Endothermic half-split Endothermic

107 1()8 109
Surface density [Mgkpc™2]




Main halo density depends on initial state fraction
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Main halo density depends on initial state fraction

Increasing initial
excited state fraction
gives lower density
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Main halo density depends on initial state fraction
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More scattering Iin the center alters particle states
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More scattering Iin the center alters particle states

Dependent on
velocity
dispersion
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More scattering Iin the center alters particle states

Dependent on

Dependent on number density

velocity
dispersion | ower v
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Up-scattering makes halos spherical

* |nelastic scattering causes
particles to change orbit

r/ 1200, mecan
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Up-scattering makes halos spherical

I . * |nelastic scattering causes
nner region particles to change orbit
anisotropy

dependent on

density slope

More cored

—lower B

(Hansen & Moore 2006,
Navarro+ 2010)

r/ F200, mecan
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Up-scattering makes halos spherical
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DM stripping similar to CDM

—_— CDM — CDM
Resonant Resonant
Resonant x3 Resonant x3

10° 10° 10" 108 10° 1010
Subhalo Infall Mass M, in [Me] Subhalo Mass Mg, [Mg]




