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Self-Interacting Dark Matter

m Self-Interacting Dark Matter (SIDM): Class of particle physics
models that assume dark matter to be self-interacting.
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m Self-interactions appear to be natural from particle physics.

m SIDM is promising and can solve or at least mitigate
small-scale problems.
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How Can We Model SIDM?
Approximative:

m Gravothermal fluid model

assumes relaxed halo
m Jeans approach

From first principles:

m N-body simulations } computational expensive

m and more ...
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Modelling Dark Matter Self-Interactions

m SIDM is neither collisionless (like CDM) nor fully collisional
(like a fluid)

m Requires 6D phase-space information

m We have to solve the collisional Vlasov-Poisson / Boltzmann
equation:

o Vv v, f= (2

m Self-interactions are described by a collision term
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Places to look for SIDM
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Cosmological Simulations

Giulia Despali
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Correa et al. 2022 Despali et al. 2025
There are many more cosmological simulations, for a full box or as

a zoom-in simulation at various mass scales, as DM-only or “full
physics” run.
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Merging Galaxy Cluster

Merging galaxy clusters as probe of SIDM

m Simulations of El Gordo
analogues by Riccardo
Valdarnini

m More merger simulations
by various authors (e.g.
Stacy Kim, Andrew
Robertson, Moritz
Fischer, V. M. Sabarish)

Valdarnini 2024
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Stellar Streams as Probes of Dark Matter
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Review talks by Ana Bonaca and Ethan Nadler.
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SIDM Density Spike
m Black holes might
0.00 yr
host a DM spike sar
yr

m They accrete the DM

m Steady-state solution
for SIDM spike

m Slope depends on
velocity-dependence
(Shapiro &
Paschalidis 2014)

June 9, 2025 | Moritz S. Fischer

p(r) [Mo pc=3]

10

10° o

r[riscol

Sabarish et al. 2025

9/43



m Lm

U

Numerical schemes for N-body
codes
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Numerical Scheme for Self-Interacting Dark Matter

scatter
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A Brief History

m First SIDM N-body simulation by Burkert (2000) based on
pairs of particles.

m Improvement by Kochanek & White (2000) using the phase
space distribution and nearest neighbours for the kernel size.

m First simulation of the limit of a strongly forward-dominated
cross-section by Fischer et al. (2020).

m Further implementations: Koda & Shapiro 2011; Vogelsberger
et al. 2012; Rocha et al. 2013; Fry et al. 2015; Robertson et
al. 2017; Vogelsberger et al. 2019; Banerjee et al. 2020;
Correa et al. 2022; Yang & Yu 2022; Valdarnini 2024; and
more.
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Monte Carlo Scheme for SIDM

m Interactions of numerical particles are treated analogously to
collisions of physical particles

m Probability that two particles interact:

o(|AV; o
py = CUBYD L AG aea
my

— Impracticable for frequent scattering, because At — 0
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Geometric Factor
Different formulations for the geometric factor, Aj;, are used

Nij = W([xj — xil, hi)
(e.g. Vogelsberger et al., Robertson et al., Yang & Yu, Valdarnini)

M= [ Wlx=xlh) W(lx =], by)
(e.g. Rocha et al., Banerjee et al., Fischer et al., Correa et al.)

Different kernel functions, W, are employed, e.g. top-hat kernel or
spline kernel. They fulfil 1 = [ W(x, h) d3x, with a kernel size h
often set adaptively using the nearest neighbours.
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Time step criterion
Aim: Interaction probability should be kept small, P;; < 1.

m Need estimator for P during next time step.

m P of last time step, or formulation based on local velocity
dispersion is used.

m More robust estimator can be constructed when considering
the full velocity distribution, with v, being the velocity for
which v o(v) becomes maximal.

a2 L ()

Ve mN\j; m,

A;j; is the maximal possible value for the geometric factor.
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Time Integration

Our codes typically use a symplectic leap-frog integrator in the
kick-drift-kick (KDK) formulation.

l. v7+1/2 = v +al At;/2 (half-step kick)
I XM =XVt Ay (drift)
. artt = g:;‘lfu( J’.’H) (compute accelerations)
Y N (half-step kick)

Self-interactions are implemented between different steps:
Robertson et al. (1.-11.), Rocha et al. (I1.-11l.), Fischer et al. (IV.-I.),
Correa et al. (II., in between half-step drifts).
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Multiple Scatterings

Problem:
m Particles may scatter multiple times per time step

m Energy conservation is violated when using the same velocities
(from the beginning of the time step)

Solutions:
m Reduce At such that multiple scatters become negligible
or

m Update velocities after every interaction and ensure execution
in a consecutive manner

June 9, 2025 | Moritz S. Fischer 17 / 43



LMU

m
. ORIGINS
. RS s (
LIMIU | : \/

Parallelisation

Message passing interface (MPI) < =]
m distributed memory, /O \ g
communication between processes 2 3
Open multi-processing (OpenMP) / E
m shared memory accessible to 5 3 e

multiple threads \4/

Problem of multiple scatters for energy conservation is more
difficult for parallelised computations. Huge improvements by
Robertson et al. 2017, fully resolved by Fischer et al. 2020,
Valdarnini 2024.
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Tests
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How to test?

Aim: Make sure that code produces accurate solution.
Consistency:
m limay a¢—o {differential eq. — difference eq.} =0

Convergence:
m limax a¢—0 {exact solution — num. solution} =0

— Test problem with a known solution necessary!

Need to test various aspects, e.g. parallelisation, variable
time steps, ...
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Example: Scattering Rate
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m Periodic box without gravity, constant density, velocities
follow a Maxwell-Boltzmann distribution, N = 10%.

m Run with MPI and OpenMP parallelisation.
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Velocity- and angular
dependence
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Velocity Dependence

Daniel Gilman

Various velocity-dependencies can be simulated

M0 [Mo]
10¢ 109 108 107 10% 10° 10
T il T o B e WY T
. . el Mao=10"Mo ! 1 ] i
Including models with resonant “feu-ww

. —I” M M =10"Mg :
scattering < 0
. : = N 18
m Simulations by Tran et al. s ; )
— Single-peak 3 N T“
(2024, 2025) | N e
" 107 [0}
. . . 100 10" c
m Time step criterion should be 7z 2
able to handle the resonant T
peaks H NG
: — Multi-peak :
== adm
|0;’ - l(')»

b
107
Vet [kms ']

June 9, 2025 | Moritz S. Fischer 23 /43



Luowic-

MAXIMILIANS-
LIMU | civeesinss

MONCHEN

' “mLMU

a(f(crieis
(€

Angular Dependence

One can distinguish two regimes:

, O
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large-angle scattering
—rare —
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Frequent Self-Interacting Dark Matter (fSIDM)

Collision term can be reformulated (Fischer et al. 2020):

m Interactions of numerical particles are NOT treated as
collisions of physical particles

m Effective description (drag force) is used for the collision term

1 op(|AVy])
2

X

Fdrag = m2 |A‘7ij|2/\ij

m If numerical particles are close, they interact (no probability)
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Combining Schemes of rSIDM and fSIDM

m Realistic cross-section may
have small and large-angle
scattering

m 0. to distinguish small and
large angles

m fSIDM scheme for 8 < 6,
m rSIDM scheme for 6 > 6.
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***** isotropic I rare
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Arido et al. 2025
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Gravothermal collapse
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The Gravothermal Collapse of SIDM Halos

103
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Collapse Simulations
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Several studies of numerical Isolate NFW halo with N =5 x
properties (e.g. Mace et al., 107 particles, data is public
Palubski et al., Fischer et al.)

There is more to come, see talk by Frank van den Bosch.
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Numerical Challenge: SIDM Collapse

— CDM, 0.0 cm?g™!

Difficult to conserve total en- 1g10] — SIDM 2000 ey
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m Such dense objects are
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when particles change
time step.
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Numerical Challenge: Energy Drift
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Alternatives and extensions to
traditional N-body codes
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Exploiting spherical symmetries Oren Sione

Motivation: Study gravothermal collapse in spherical
symmetric halo

m Can use symmetries: a

D h * { t=0 Gyr 8

— 6D phase space 100 - I ot=1eyr 4O

reduces to 3D problem = I ot=15G6yr | O

Twr ] : I t=165Gyr | ¢

m N particles in spherical £ ] - EE —u;,

shells 2 } et ke

= S

m NSphere code 107 ] £

(Kamionkowski et al. s | X
2025) 1071 100

r [kpcl
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Direct Simulation Monte Carlo

Idea: Use Direct Simulation Monte Carlo (DSMC)

methods for SIDM

m Particles in cells are
scattered, simpler
“neighbour” search, no
kernel function

m First simulations for
NFW halo by Gurian &
May (2025), 3D phase
space

June 9, 2025 | Moritz S. Fischer

James Gurian
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Gurian & May 2025
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Satellites and Evaporation

Problem: Simulating satellites while resolving

the host is expensive

m Describe the host
potential analytically

m Additional interactions
for satellite-host
scattering (evaporation)

m Semi-analytic
description of
dynamical friction

June 9, 2025 | Moritz S. Fischer

Fraction of remaining mass
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Simulating various SIDM
models
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Simulations of Dissipative Interactions

DM could have dissipative processes

m Simulation of a simple model by
Shen et al. (2022, 2024), fraction
of Eyin is lost when particles
interact

m Simulations with a threshold
velocity by Huo et al. (2019)

m Atomic dark matter simulations by
Roy et al. (2023), subcomponent
can be described as a fluid

June 9, 2025 | Moritz S. Fischer

Xuejian Shen

Shen et al. 2021
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Simulations with Excited States Stephanie O'Neil

m Motivated by particle Zocted s
physics (e.g. Schutz & g " "
Slayter 2015, Medvedev £V g g
2014) 1 o
o ' ground state T
m Implementation in N-body £ e Fexcodssto E
codes (e.g. Vogelsberger et M P » 2
al. 2019) \; P
m Rich phenomenology ) E*‘::":":_;':;:v ’
(O'Neil et al. 2023, Leonard , . ,
et al. 2024, Low et al. 2025) relreplt
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Daneng Yang

Unequal-Mass Scattering

Simulations for a two-species model with unequal masses

SIDM2c

Central Density [Mo kpc—31

Yang et al. 2025
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Patil & Fischer 2025
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Scattering beyond
self-interactions
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Dark Matter—Baryon Scattering
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Fischer et al. 2025a
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Heat Conduction — Unequal Masses
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Fischer et al. 2025a
m Simulation with unequal masses (1:1000) and
forward-dominated cross-section
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Summary

].. Tests are important
m Of all parts of the code!
m Convergence against any solution is not enough

2. Gravothermal collapse is challenging to simulate
m Because of computational costs
m Exploiting symmetries is promising

3. We “can” simulate many interesting models
m Multi-state models and dissipative interactions
m Unequal-mass scattering (in multi-component models)
m Models with DM-baryon interactions
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Backup Slides
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Adaptive Gravitational Softening
dv, (h)+¢(i) -t
o[

|ri =1l
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(Price & Monaghan 2007; Springel 2010; Barnes 2012; lannuzzi &
Dolag 2011; Hopkins et al. 2023)
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