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Looking for axions in the mm/submm/Far- IR desert

Novel detection system:
Haloscope  + KIDs

Motivation
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Superconducting Lumped Element 

Resonators (LERs)
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LERs as Kinetic Inductance Detectors (KIDs)
Superconducting detectors for mm/submm astronomy

𝒇𝟎 =
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𝟐𝝅 𝑳𝑪



𝑬𝒑𝒉𝒐𝒕𝒐𝒏 > 𝟐𝜟𝒈𝒂𝒑

Superconducting Lumped Element 

Resonators (LERs)

LERs as Kinetic Inductance Detectors (KIDs)
Superconducting detectors for mm/submm astronomy
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Tuning operational frequency band: Pixel Geometry

LEKID → Inductor = Absorber

▪ Matching impedance:

▪ Solid absorber:

Z0 =Zeff

/20 > s

▪ Geometry→ Polarization sensitivity

Free Space
 Z0=377/sqZeff

Implementation
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LERs nanofabrication in Clean Room

Sputtering / Electron beam

evaporator:

Deposition of superconducting

films

Nano and micro 

lithography

Laser writer

Focus ion beam

ISO 4
Superconducting 
layer: Ti/Al

Resist

Etching:
Wet etching, ion milling and RIE

Stripper:
Removing the resist

Acetone bath

Oxygen plasma

Substrate

Implementation



Implementation



Radio-Frequency Characterization set-up

He3/He4 Dilution Refrigerator

Characterization

𝑻 ∼ 𝟖 𝒎𝑲
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M. C. de Ory et al. , IEEE TMTT (2024)

High internal quality factor: 𝑄𝑖 ∼  7 ⋅ 105 

Kinetic fraction: 𝛼 ≡
𝐿𝑘

𝐿𝑡𝑜𝑡𝑎𝑙
= 1 −

𝑓𝑒𝑥𝑝

𝑓𝑠𝑖𝑚𝐿𝑘=0

2

≈ 0.57

Dark cryogenic characterization
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Results

✓ High superconducting film quality

✓ High nanofabrication yield

9 pixels
demostrator



Proximity Effect: Titanium/Aluminum bilayers
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Setting the operational frequency band to the W-band

Results
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W-band : 75-110 GHz →  Ti/Al suitable

A. Catalano et al., A&A (2015)

Ti/Al: Tc ≈ 780 𝑚𝐾 𝑓𝑐𝑢𝑡 @ 60 𝐺𝐻𝑧

Impedance Matching

LEKID → Inductor is the effective optical

absorbing área → Geometry constrains

T=100 mK



Radiation absorption characterization

responsivity to W-band

Results

Blackbody temperature 
controls optical loading

Filter Stack

TBB  (1 K– 7K) : Optical Power Load



Radiation absorption characterization

responsivity to W-band

Results
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Radiation absorption characterization

responsivity to W-band

Results

Frequency noise response



Radiation absorption characterization

responsivity to W-band

Results

Frequency Noise Equivalent Power

𝑁𝐸𝑃𝛿𝑓 1.0 𝐾, 1 𝑘𝐻𝑧 ∼ 1.3 ⋅ 10−19 𝑊/ 𝐻𝑧 



• Characterized LEKIDs noise response sweeping the Black Body temperature.

• Best NEP is about 𝟏. 𝟑 ⋅ 𝟏𝟎−𝟏𝟗 𝑾/ 𝑯𝒛. We are still background limited.

• Sensitivity is close to the baseline of CADEx

Forward to achieve the CADEx goal

• TLSs reduction and 1/f noise mitigation

• Responsivity measurement improvements in a controlled low background 
environment.

Summary
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Kinetic Inductance Detectors (KIDs)
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Capacitor

Inductor

LK

nCP

Day et al., Nature (2003)

We can detect
incident power
by monitoring
the shift in f0

L=Lg+Lk

Kinetic Inductance Detectors (KIDs)
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Transmission line

Multiplexing → 1 wire > 1000 LERs

Multiples LERs coupled to a 

single transmission line

𝒍𝑪KIDs: 
1 read-out wire

>1000 pixels

Kinetic Inductance Detectors (KIDs)
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