

ID de la contribución : 847

Tipo : no especificado

First beta-decay spectroscopy of ^{132}Cd

miércoles, 20 de noviembre de 2024 9:45 (15)

Isotopes close to the doubly-magic nuclei ^{132}Sn are of strong interest from the point of view of nuclear structure. Spectroscopic studies are performed with the aim of obtaining a better understanding of the evolution of shell orbits in nuclei with large N/Z ratios, and providing critical tests of theoretical models. The information on the nuclear structure and decay properties of n-rich nuclei in this region may also provide input to calculations for astrophysical r-process.

A new experimental camping was carried out at the ISOLDE facility to study the β -decay of neutron-rich cadmium isotopes. High intensity Cd ($Z = 48$) beams were produced after the fission of a thick UC_x target, selectively ionized by the ISOLDE Resonance Ionization Laser Ion Source (RILIS) and separated in mass using the General Purpose Separator (GPS) ISOLDE mass separator. A temperature-controlled quartz transfer line was used to ensure purity of the cadmium beams [1]. The experiment exploited the excellent spectroscopic capabilities of the ISOLDE Decay Station (IDS). The fast-timing configuration was employed, which included 6 highly efficient clover-type HPGe detectors, altogether with 2 $\text{LaBr}_3(\text{Ce})$ and 3 ultra-fast β -plastic detectors arranged in close geometry.

Direct observation of γ -ray de-excitations and γ - γ coincidences in ^{132}In has been achieved following the β -decay of the ^{132}Cd 0^+ ground state (g.s.). The ^{132}In nuclear structure information is complemented by the β -n decay of ^{133}Cd , providing enhanced statistics. These results expand those from experiments at RIKEN facility [2,3].

The significantly higher statistics and the possibility of using coincident γ - γ measurements enable an expanded level scheme and more detailed comparison with shell-model calculations. An interpretation of the level structure is given based on the experimental findings and the particle-hole configurations arising from core excitations both from the $N < 82$ and $Z < 50$ shells, leading to positive- and negative-parity particle-hole multiplets [2,3].

[1] Fraile, L. M., & Korgul, A. (2020). Beta-decay spectroscopy of neutron-rich Cd isotopes (No. CERN-INTC-2020-070).

[2] T. Parry (2023). Structure of Neutron-rich Nuclei in the ^{132}Sn Region. PhD Thesis, University of Surrey, 2024.

[3] A. Jungclaus (et al.), (2016). Physical Review C, 93(4), 041301.

Abstract

Primary author(s) : LLANOS EXPÓSITO, Marcos (UCM)

Co-author(s) : FRAILE, Luis Mario (Universidad Complutense de Madrid); BENITO GARCÍA, Jaime (Grupo de Física Nuclear, Facultad de Ciencias Físicas, Universidad Complutense de Madrid- CEI Moncloa, E-28040 Madrid, Spain)

Presenter(s) : LLANOS EXPÓSITO, Marcos (UCM)

Clasificación de la sesión : Red FNUC (Red Temática de Física Nuclear)

Clasificación de temáticas : Red Temática de Física Nuclear (FNUC)