

ID de la contribución : 889

Tipo : no especificado

Recent results of experiment IS690: Exploring the excited structure of ^{11}Li through (t,p) reactions at CERN-ISOLDE

martes, 19 de noviembre de 2024 16:58 (7)

Halo nuclei are a group of nuclei characterized by a low binding energy for their last nucleons, situated in low orbital momentum states and, as a consequence, an unusually large spatial extension that deviates from the standard $r = r_0 A^{1/3}$ relation. The first empirical observation of this behaviour came from experimental measurements of the interaction cross-section for neutron-rich nuclei, specifically the scattering cross-section of Lithium isotopes. As the number of neutrons approached the dripline, the interaction radius deviated from theoretical predictions, with ^{11}Li being the most noticeable case [1]. This discovery was interpreted as a new type of nuclear structure [2], formed by a compact core and an external set of nucleons. This hypothesis was confirmed a few years later in ^{11}Li break-up experiments [3].

^{11}Li can be considered the archetype of a two-neutron halo: a three-body system formed by two weakly correlated neutrons loosely bound to the ^9Li ground state (g.s.) [4]. Despite being intensively studied for a long time, there are still open questions regarding the structure of ^{11}Li . While the g.s. is known to be a mixture of p (59(1)%), s (35(4)%), and d (6(4)%) waves [5], knowledge of higher-energy resonant states (no excited states are bound in ^{11}Li) is not well settled, as different reaction studies give different results.

The low-lying continuum spectrum of ^{11}Li is dominated by broad dipole structures observed in several experiments, while narrower resonances have been proposed up to 6.2 MeV. Recent results on the low-lying continuum structure in ^{11}Li have been obtained from inelastic p- and d-scattering at TRIUMF [6,7]. The elastic cross-sections obtained from both experiments are consistent; however, the inelastic scattering results indicated a resonant state at 0.80(4) MeV, $\Gamma = 1.15(6)$ MeV for proton inelastic scattering [7], and this same resonance was characterized to be at 1.03(4) MeV, $\Gamma = 0.51(11)$ MeV with deuteron scattering [6]. However, a more relevant question concerns the physical process involved: excitation to resonance or direct excitation to the continuum?

Most experiments that explore the excited structure of ^{11}Li start from ^{11}Li g.s, which is promoted to excited levels. The only exception is the study of the (very complex) $^{14}\text{C}(\pi^-, p+d)$ reaction [8], whose results were limited by low resolution. The MAGISOL collaboration has performed an experiment, IS690 [9], intending to probe the excited structure of ^{11}Li through an alternate approach: populate directly the excited states of ^{11}Li using a two-neutron transfer reaction $^9\text{Li}(t,p)^{11}\text{Li}$, and obtain information of the excited states through the momentum distribution of the residual proton. This experiment complements the $^{11}\text{Li}(p,t)^{9}\text{Li}$ experiment carried out at TRIUMF [10], additionally, knowledge of the elastic scattering channel can be employed to fix optical potentials in the theoretical models.

IS690 took place at the Scattering Experimental Chamber (SEC) in the HIE-ISOLDE facility at CERN between the 14th and 22nd of October 2024. A post-accelerated 7 MeV/u ^9Li beam was impinged on a ^3H target (^3H absorbed in a thin Ti-foil at a ratio of $\sim 0.4/1$). The energy of the incoming ^9Li beam, 7 MeV/u, was chosen to facilitate the 2n transfer while reducing the number of additional open channels. An upgraded detection setup was prepared to detect the emitted protons from the $^9\text{Li}(t,p)^{11}\text{Li}$ reaction and distinguish them from background reactions, especially $^9\text{Li}(p,d)^{10}\text{Li}$ and elastic channels, as well as protons from $\text{Ti}(t,p)$. The setup offered optimal angular coverage and consisted of three detector structures: (a) five particle telescopes (DSSD+PAD) forming a pentagon around the target, (b) a frontal telescope formed by two S3-CD detectors, and (c) a backward S5 detector to detect backward protons.

In this contribution, we will give an overview of the experiment and a summary of the (very recent) data obtained, along with our preliminary analysis.

References

1. I. Tanihata et al., Phys. Rev. Lett. 55 (1985) 2676.
2. P.G. Hansen and B. Jonson, Europhys. Lett. 4 (1987) 409.
3. T. Kobayashi et al., Phys. Rev. Lett. 60 (1988) 2599.
4. M.V. Zhukov et al., Phys. Rep. 231 (1995) 151.
5. J. Tanaka et al., Phys. Lett. B 774 (2017) 268.
6. R. Kanungo et al., Phys. Rev. Lett. 114 (2015) 192502.
7. I. Tanihata and K. Ogata, Eur. Phys. J. A 55 (2019) 239.
8. M.G. Gornov et al., Phys. Rev. Lett. 81 (1998) 766.
9. M.J.G. Borge and J. Cederk  l, Proposal to the ISOLDE and Neutron Time-of-Flight Committee (2021), European Organization for Nuclear Research.
10. T. Roger et al., Phys. Rev. C 79 (2009) 031603(R).

Abstract

Primary author(s) : FERNANDEZ RUIZ, Daniel (IEM-CSIC); TENGBLAD, Olof (IEM -CSIC); GARCIA BORGE, Maria Jose (ISOLDE-CERN)

Presenter(s) : FERNANDEZ RUIZ, Daniel (IEM-CSIC)

Clasificación de la sesión : Red FNUC (Red Tem  tica de F  sica Nuclear)

Clasificación de tem  ticas : Red Tem  tica de F  sica Nuclear (FNUC)