Reconstruction of GWBs at LISA: SGWBinner and Saqqara

Mauro Pieroni

European Organization for Nuclear Research (CERN) mauro.pieroni@cern.ch

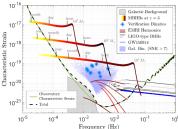
"Towards realistic detection forecasts of primordial GWBs" IFIC. Valencia

Outline

- Introduction
 - Measuring GWBs with LISA
 - Beyond the simplest scenario
 - Data generation and pre-processing
- Traditional techniques and SGWBinner
 - Statistical tools and likelihood
 - SGWBinner
 - Template-based analysis
- SBI for GWB and Saqqara
 - SBI in a nutshell
 - SBI for LISA GWB analysis
- 4 Conclusions and outlook

Measuring GWBs with LISA

Laser Interferometer Space Antenna

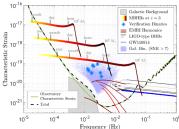


Few details on LISA:

- First GW interferometer in space
- Constellation of three satellites
- 2.5 million km arm lengths
- Peak sensitivity $10^{-2} \div 10^{-3}$ Hz
- Three correlated detectors
- Expected launch in mid 2030
- Operating for 4.5 yrs (nominal)

Measuring GWBs with LISA

Laser Interferometer Space Antenna



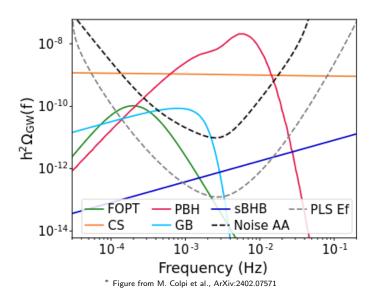
Few details on LISA:

- First GW interferometer in space
- Constellation of three satellites
- 2.5 million km arm lengths
- Peak sensitivity $10^{-2} \div 10^{-3}$ Hz
- Three correlated detectors
- Expected launch in mid 2030
- Operating for 4.5 yrs (nominal)

Very interesting for cosmology since we can (among others):

- Measure H_0
- Test modified gravity
- (Hopefully) detect and characterize GWBs!

Sources of GWBs in the LISA



Measuring GWBs with LISA

Basics of GW data analysis

Data
$$ilde{d}$$
 (in frequency space) \longrightarrow $ilde{d} = ilde{s} + ilde{n}$

• For individual sources $\langle \tilde{s} \rangle \neq 0$

• For noise $\langle \tilde{n} \rangle = 0$

• For GWBs $\langle \tilde{s} \rangle = 0$

For an isotropic GWB
$$\longrightarrow \langle h_{\lambda}(\vec{k}) \, h_{\lambda'}^*(\vec{k'}) \rangle \propto \delta_{\lambda\lambda'} P_h^{\lambda}(k) \delta(\vec{k} - \vec{k'})$$

Assuming $\langle \tilde{s}\tilde{n}\rangle = 0$ and Gaussian signal and noise

$$\left|\left\langle ilde{d}^{2}
ight
angle =\left\langle ilde{s}^{2}
ight
angle +\left\langle ilde{n}^{2}
ight
angle =\sum_{\lambda}\mathcal{R}_{\lambda}\,P_{h}^{\lambda}+\mathsf{N}\equiv\mathcal{R}\left[P_{h}+S_{n}
ight]
ight|$$

where we have introduced

- ullet The (quadratic) response function of the instrument ${\cal R}$
- The (intensity of the) signal power spectrum P_h (in 1/Hz)
- The noise power spectrum N (in 1/Hz)
- The (square of the) Strain sensitivity S_n (in 1/Hz)

Basics of GW data analysis

Data
$$\tilde{d}$$
 (in frequency space) \longrightarrow $\tilde{d} = \tilde{s} + \tilde{n}$

- For individual sources $\langle \tilde{s} \rangle \neq 0$

• For GWBs
$$\langle \tilde{s} \rangle = 0$$
For an isotropic GWB $\longrightarrow \langle h_{\lambda}(\vec{k}) h_{\lambda'}^*(\vec{k}') \rangle \propto \delta_{\lambda \lambda'} P_{b}^{\lambda}(k) \delta(\vec{k} - \vec{k}')$

• For noise
$$\langle \tilde{n} \rangle = 0$$

Assuming $\langle \tilde{s}\tilde{n}\rangle = 0$ and Gaussian signal and noise

$$\boxed{\left\langle \tilde{d}^{2}\right\rangle = \left\langle \tilde{s}^{2}\right\rangle + \left\langle \tilde{n}^{2}\right\rangle = \sum_{\lambda} \mathcal{R}_{\lambda} P_{h}^{\lambda} + N \equiv \mathcal{R} \left[P_{h} + S_{n} \right]}$$

where we have introduced

- The (quadratic) response function of the instrument \mathcal{R}
- The (intensity of the) signal power spectrum P_h (in 1/Hz)
- The noise power spectrum N (in 1/Hz)
- The (square of the) Strain sensitivity S_n (in 1/Hz)

In order to compare with cosmological predictions it's customary to introduce

$$\Omega_{\mathrm{GW}} \equiv rac{1}{3H_{2}^{2}M_{2}^{2}}rac{\partial
ho_{\mathrm{GW}}}{\partial\ln f} = rac{4\pi^{2}}{3H_{2}^{2}}f^{3}P_{h} \qquad ext{and} \qquad \Omega_{n}(f) = rac{4\pi^{2}}{3H_{2}^{2}}f^{3}S_{n}(f) \; ,$$

where $H_0 \simeq h_0 \times 3.24 \times 10^{-18} \, \mathrm{Hz}$ is the Hubble parameter today.

Measuring GWBs with LISA

Time Delay Interferometry

The simplest option is to build three (correlated)
Michelson-like data streams

Laser frequency noise is **huge** and must be suppressed with Time Delay Interferometry (TDI)

TDI = Combine measurements at different times to achieve noise reduction!

Measuring GWBs with LISA

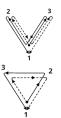
Time Delay Interferometry

The simplest option is to build three (correlated)
Michelson-like data streams

Laser frequency noise is **huge** and must be suppressed with Time Delay Interferometry (TDI)

TDI = Combine measurements at different times to achieve noise reduction! Using η_{ij} measurement in i coming from j and the delay operator D_{ij} we define:

- Michelson variables, dubbed XYZ, defined as (YZ are permutations): $X \equiv (1 D_{13}D_{31})(\eta_{12} + D_{12}\eta_{21}) + (D_{12}D_{21} 1)(\eta_{13} + D_{13}\eta_{31})$
- Sagnac variables, dubbed $\alpha\beta\gamma$, defined as $(\beta\gamma$ permutations): $\alpha \equiv \eta_{12} + D_{12}\eta_{23} + D_{12}D_{23}\eta_{31} (\eta_{13} + D_{13}\eta_{32} + D_{13}D_{32}\eta_{21})$



Time Delay Interferometry

The simplest option is to build three (correlated)

Michelson-like data streams

Laser frequency noise is **huge** and must be suppressed with Time Delay Interferometry (TDI)

TDI = Combine measurements at different times to achieve noise reduction! Using η_{ii} measurement in i coming from j and the delay operator D_{ii} we define:

- Michelson variables, dubbed XYZ, defined as (YZ are permutations): $X \equiv (1 D_{13}D_{31})(\eta_{12} + D_{12}\eta_{21}) + (D_{12}D_{21} 1)(\eta_{13} + D_{13}\eta_{31})$
- Sagnac variables, dubbed $\alpha\beta\gamma$, defined as ($\beta\gamma$ permutations):

 $\alpha \equiv \eta_{12} + D_{12}\eta_{23} + D_{12}D_{23}\eta_{31} - (\eta_{13} + D_{13}\eta_{32} + D_{13}D_{32}\eta_{21})$

In these variables, signal and noise (in different channels) are correlated!

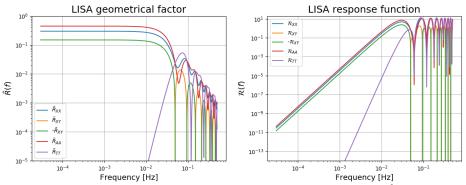
For equal arms, diagonalization via:
$$(\text{diagonal variables dubbed AET and } \mathcal{AET}) \longrightarrow \begin{pmatrix} -1/\sqrt{2} & 0 & 1/\sqrt{2} \\ 1/\sqrt{6} & -2/\sqrt{6} & 1/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{3} & 1/\sqrt{3} \end{pmatrix}_{\mathbf{G}}$$

The LISA response function

For an isotropic and non-chiral spectrum we get (see, e.g., 2009.11845):

$$\left\langle s_i^{TDI} s_j^{TDI} \right\rangle = \int \mathrm{d}k \, P_h(k) \mathcal{R}_{ij}^{TDI}(k) \;, \qquad \mathcal{R}_{ij}^{TDI}(k) \equiv 4 \, (2\pi k L)^2 |W^{TDI}(kL)|^2 \tilde{R}_{ij}^{TDI}(k) \;. \label{eq:state_state}$$

where $\mathcal{R}_{ij}^{TDI}(k)$ is the LISA response and $\tilde{R}_{ij}^{TDI}(k)$ is a geometrical factor. For XYZ/AET (AET is \sim diagonal) combinations we get:



At low frequencies the TT response is suppressed by a factor f^6 !

See https://github.com/Mauropieroni/GW_response

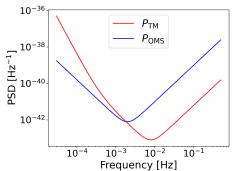
The LISA noise model

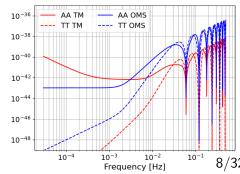
After TDI two main noise components:

Low frequencies are dominated by Test Mass (TM) noise large frequencies by Optical Metrology System (OMS) noise:

$$P_{TM}(f, A) = A^2 \times 10^{-30} \times F_{TM}(f)$$
,
 $P_{OMS}(f, P) = P^2 \times 10^{-24} \times F_{OMS}(f)$,

where $F_{TM}(f)$, $F_{OMS}(f)$ are some functions of frequency.



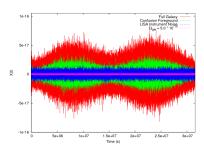


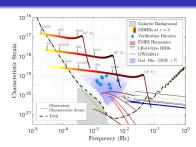
Beyond the simplest scenario

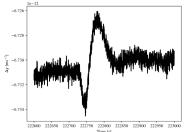
Stationarity won't hold ...

The LISA data won't be stationary:

- There will be transient signals
- Measured GWBs change with time
- There will be transient gliches





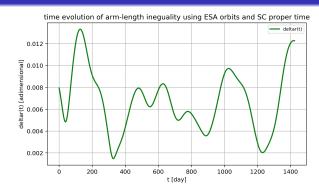


* LISA Collaboration, P. Amaro-Seoane et al., ArXiv: 1702.00786. M. R. Adams, Phys. Rev. D 89 (2014), 022001, ArXiv: 1307.4116. Q. Baghi et al., Phys. Rev. D 105 (2022), 042002, ArXiv: 2112.07490.

Beyond the simplest scenario

... LISA won't have equal arms...

Fluctuations in the arm-lengths of order up to 10^{-2} are expected!



Response functions and noise spectra will be modified

- Orthogonality of TDI variables might be affected
- T is not signal orthogonal anymore
 - ...

An accurate description is necessary to avoid biases in the analysis!

Beyond the simplest scenario

.. nor the same noise levels in all links!

Let us have a closer look at the problem of noise characterization (still stick with TM and OMS noise only with known templates)

Each spacecraft contains two test

12 (6 Acc +6 OMS) independent noise components are expected!

Several complications are added in the problem:

- Noise components propagate differently in different TDI variables
- Higher dimensionality of the parameter space
- Correlations between the noise parameters

Again, this requires care!

Data generation (in frequency domain)

Assuming signal and noise to be Gaussian, stationary, and isotropic independent realizations for each data segment and frequency are drawn:

$$ilde{s}_c(f_i) = rac{\mathcal{N}(0, \sqrt{\Omega_{\mathrm{GW}}(f_i)}) + i \ \mathcal{N}(0, \sqrt{\Omega_{\mathrm{GW}}(f_i)})}{\sqrt{2}} \ ilde{n}_c(f_i) = rac{\mathcal{N}(0, \sqrt{\Omega_n(f_i)}) + i \ \mathcal{N}(0, \sqrt{\Omega_n(f_i)})}{\sqrt{2}}$$

so that the spectra $(\Omega_{\rm GW})$ and Ω_n quantify the variance of fluctuations

Data generation (in frequency domain)

Assuming signal and noise to be Gaussian, stationary, and isotropic independent realizations for each data segment and frequency are drawn:

$$ilde{s}_c(f_i) = rac{\mathcal{N}(0, \sqrt{\Omega_{\mathrm{GW}}(f_i)}) + i \, \mathcal{N}(0, \sqrt{\Omega_{\mathrm{GW}}(f_i)})}{\sqrt{2}}$$
 $ilde{n}_c(f_i) = rac{\mathcal{N}(0, \sqrt{\Omega_n(f_i)}) + i \, \mathcal{N}(0, \sqrt{\Omega_n(f_i)})}{\sqrt{2}}$

so that the spectra $(\Omega_{\mathrm{GW}}$ and $\Omega_n)$ quantify the variance of fluctuations

Given that:

- LISA will be operating for 4yrs (and assume also 75% efficiency)
- We choose data segments of roughly 12 days

in practice we have:

- Roughly 95 independent measurements at each frequency.
- A frequency resolution of around 10⁻⁶Hz

This implies: $\sim 5\times 10^5\times 95$ points in total (per channel), which is a lot!

Data pre-processing

Is it possible to get something similar but faster??

Data pre-processing

Is it possible to get something similar but faster??

Let us start by defining $D_c(f_i)$ (our new data), as:

$$D_c(f_i) \equiv \langle \tilde{d}_c^2(f_i) \rangle = \langle (\tilde{s}_c(f_i) + \tilde{n}_c(f_i))^2 \rangle = \langle \tilde{s}_c^2(f_i) \rangle + \langle \tilde{n}_c^2(f_i) \rangle \; .$$

We can reduce the complexity of the problem by performing two operations:

Data pre-processing

Is it possible to get something similar but faster??

Let us start by defining $D_c(f_i)$ (our new data), as:

$$D_c(f_i) \equiv \langle \tilde{d}_c^2(f_i) \rangle = \langle (\tilde{s}_c(f_i) + \tilde{n}_c(f_i))^2 \rangle = \langle \tilde{s}_c^2(f_i) \rangle + \langle \tilde{n}_c^2(f_i) \rangle \; .$$

We can reduce the complexity of the problem by performing two operations:

• We average over the (95) data segments: This leaves us with some $D(f_i)$ (the averaged data) and an estimate of the error $\sigma(f_i)$ (the standard deviation or the data).

Data pre-processing

Is it possible to get something similar but faster??

Let us start by defining $D_c(f_i)$ (our new data), as:

$$D_c(f_i) \equiv \langle \tilde{d}_c^2(f_i) \rangle = \langle (\tilde{s}_c(f_i) + \tilde{n}_c(f_i))^2 \rangle = \langle \tilde{s}_c^2(f_i) \rangle + \langle \tilde{n}_c^2(f_i) \rangle \; .$$

We can reduce the complexity of the problem by performing two operations:

- We average over the (95) data segments: This leaves us with some $D(f_i)$ (the averaged data) and an estimate of the error $\sigma(f_i)$ (the standard deviation or the data).
- We coarse grain (i.e. bin) the data (in frequency):
 i.e. from the initial linear 10⁻⁶Hz spacing (~ 5 × 10⁵ points)
 → we go to some final (and less dense) set of frequencies f_i
 This leaves us with the final dataset f_i, D_i, with errors σ_i and weights w_i.

Data pre-processing

Is it possible to get something similar but faster??

Let us start by defining $D_c(f_i)$ (our new data), as:

$$D_c(f_i) \equiv \langle \tilde{d}_c^2(f_i) \rangle = \langle (\tilde{s}_c(f_i) + \tilde{n}_c(f_i))^2 \rangle = \langle \tilde{s}_c^2(f_i) \rangle + \langle \tilde{n}_c^2(f_i) \rangle .$$

We can reduce the complexity of the problem by performing two operations:

- We average over the (95) data segments: This leaves us with some $D(f_i)$ (the averaged data) and an estimate of the error $\sigma(f_i)$ (the standard deviation or the data).
- We coarse grain (i.e. bin) the data (in frequency): i.e. from the initial linear 10^{-6} Hz spacing ($\sim 5 \times 10^{5}$ points) \longrightarrow we go to some final (and less dense) set of frequencies f_i This leaves us with the final dataset f_i , D_i , with errors σ_i and weights w_i .

To gain a factor $\sim \mathcal{O}(100 \times 100)$ in computation time!

Statistical tools and likelihood

Data modeling and likelihood

To perform the analysis (in a Bayesian framework) we need to specify

$$p(\theta|\tilde{d}) = \mathcal{L}(\tilde{d}|\theta)\pi(\theta)/\pi(\tilde{d})$$
,

meaning, we have to choose a likelihood (and the priors).

Data modeling and likelihood

To perform the analysis (in a Bayesian framework) we need to specify

$$p(\theta|\tilde{d}) = \mathcal{L}(\tilde{d}|\theta)\pi(\theta)/\pi(\tilde{d})$$
,

meaning, we have to choose a likelihood (and the priors).

Whittle likelihood should work (see any of the existing reviews):

$$-2 \ln \mathcal{L}(\tilde{d}|\theta) \propto \sum_f \tilde{d}_i C_{ij}^{-1}(f|\theta) \tilde{d}_j^* + \ln \left[\det C_{ij}(f|\theta) \right],$$

where C_{ij} is the covariance matrix for $\langle \tilde{d}_i \tilde{d}_j^* \rangle$ given by:

$$C_{ij}(f,\theta) = S_{ij}\left(f,\vec{\theta}_s\right) + N_{ij}\left(f,\vec{\theta}_n\right).$$

Data modeling and likelihood

To perform the analysis (in a Bayesian framework) we need to specify

$$p(\theta|\tilde{d}) = \mathcal{L}(\tilde{d}|\theta)\pi(\theta)/\pi(\tilde{d})$$
,

meaning, we have to choose a likelihood (and the priors).

Whittle likelihood should work (see any of the existing reviews):

$$-2 \ln \mathcal{L}(\tilde{d}|\theta) \propto \sum_f \tilde{d}_i C_{ij}^{-1}(f|\theta) \tilde{d}_j^* + \ln \left[\det C_{ij}(f|\theta)\right],$$

where C_{ij} is the covariance matrix for $\langle \tilde{d}_i \tilde{d}_j^* \rangle$ given by:

$$C_{ij}(f,\theta) = S_{ij}\left(f,\,\vec{\theta}_s\right) + N_{ij}\left(f,\vec{\theta}_n\right) \;.$$

For fast estimates of the uncertainties on parameter reconstruction we can use the Fisher Information Matrix (FIM):

$$\textbf{\textit{F}}_{ij} \equiv -\frac{\partial^2 \ln \mathcal{L}(\tilde{\textbf{\textit{d}}}|\theta)}{\partial \theta_i \partial \theta_j} \bigg|_{\theta_0} = \sum_{\epsilon} \mathsf{Tr} \left[C^{-1} \frac{\partial \textbf{\textit{C}}}{\partial \theta_i} C^{-1} \frac{\partial \textbf{\textit{C}}}{\partial \theta_j} \right] \; ,$$

NB

- FIM only works if the posterior is Gaussian
- FIM won't tell us anything about possible biases

Statistical tools and likelihood

An accurate likelihood for the compressed data

What about the compressed data??

A Gaussian likelihood would give a systematic low bias! (astro-ph/9808264, astro-ph/0205387, astro-ph/0302218, 0801.0554)

Consider the Gaussian likelihood:

$$\ln \mathcal{L}_{G}\left(\vec{\theta}, \vec{n}\right) \propto -\frac{N_{chunks}}{2} \sum_{i,j} \sum_{k} w_{ij}^{(k)} \left(\frac{D_{ij}^{(k)} - h^{2}\Omega_{\mathrm{GW}}\left(f_{ij}^{(k)}, \vec{\theta}\right) - h^{2}\Omega_{n,ij}\left(f_{ij}^{(k)}, \vec{n}\right)}{h^{2}\Omega_{\mathrm{GW}}\left(f_{ij}^{(k)}, \vec{\theta}\right) + h^{2}\Omega_{n,ij}\left(f_{ij}^{(k)}, \vec{n}\right)}\right)^{2}$$

and the Lognormal likelihood:

$$\ln \mathcal{L}_{LN}\left(\vec{\theta}, \vec{n}\right) \propto -\frac{N_{chunks}}{2} \sum_{i,j} \sum_{k} w_{ij}^{(k)} \ln^2 \left(\frac{h^2 \Omega_{\mathrm{GW}}\left(f_{ij}^{(k)}, \vec{\theta}\right) + h^2 \Omega_{n,ij}\left(f_{ij}^{(k)}, \vec{n}\right)}{D_{ij}^{(k)}} \right)$$

Then we define our likelihood as (astro-ph/0302218, 2009.11845)

$$\ln \mathcal{L} = \frac{1}{3} \ln \mathcal{L}_G + \frac{2}{3} \ln \mathcal{L}_{LN}$$

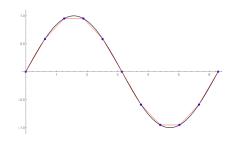
which includes the skewness contributions and thus is more accurate.

SGWBinner algorithm

We look for best approximation of the signal with a multi-PL

$$h^2 \Omega_{\mathrm{GW}} \left(f, \, \vec{\theta} \right) = \sum_i 10^{\alpha_i} \left(\frac{f}{\sqrt{f_{\min,i} \, f_{\max,i}}} \right)^{p_i} \, \Theta \left(f - f_{\min,i} \right) \, \Theta \left(f_{\max,i} - f \right) \, .$$

where Θ is the Heaviside step function.



A sketch of the algorithm:

Build a robust noise prior

SBI for GWB and Saggara

- Bin the frequency range and reconstruct the signal
- Merge as many bins as possible (to avoid overfitting)
- Define a procedure to compute the error on the reconstruction
- Sinal MCMC run with common noise parameters

Criterion for merging

Two motivations for merging:

- Larger N means smaller bins which implies larger errors
- For large values of N, the reconstruction with N bins (i.e. 2N parameters) may overfit the signal

Typically reducing the number N of bins may improve the analysis!

Criterion for merging

Two motivations for merging:

- Larger N means smaller bins which implies larger errors
- For large values of N, the reconstruction with N bins (i.e. 2N parameters) may overfit the signal

Typically reducing the number N of bins may improve the analysis!

For a couple of consecutive bins (i, i+1) we can compute

$$\begin{split} \Delta \, \mathrm{AIC} &= \mathrm{AIC}_{\mathrm{after \ merging}} - \mathrm{AIC}_{\mathrm{before \ merging}} \\ &= \chi^2_{\mathrm{after \ merging}} - \chi^2_{\mathrm{before \ merging}} - 2 \, k_{\mathrm{1-bin}} \end{split}$$

where the Akaike Information Criterion (AIC) is $\mathrm{AIC} \equiv \chi^2 + 2k$.

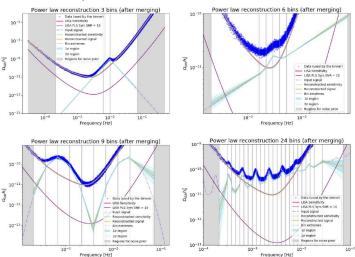
In practice:

 $\Delta AIC < 0$

It is convenient to merge the two bins

Frequency shape reconstruction

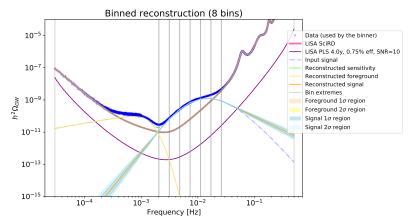
Some examples of reconstructions with the SGWBinner code



Joint treatment of SGWB + noise + foreground

The code can work with several components in the data! Consider for example the signal due to Galactic binaries:

$$\label{eq:GW} h^2 \Omega_{\rm GW} = 10^{\alpha_{FG}} f^{2/3} {\rm e}^{-a_1 f + a_2 f \sin(a_3 f)} \left\{ 1 + \tanh \left[a_4 (f_k - f) \right] \right\} \; .$$



Introduction

Forecasting LISA constraints I (FIM)

```
Choose a template

Get forecasts (e.g., using FIM)
on the template parameters

Convert in constraints on model parameter

Forecast constrains
on fundamental physics!
```

 10^2

 -10^{1}

 10^{-1} $\stackrel{50}{\circ}$ 10^{-2} 10^{-3} 10^{-3}

1 & 5 10⁻¹ 5

10-2 1

 10^{-3}

 10^{-2}

 10^{-4}

Forecasting LISA constraints I (FIM)

Choose a template

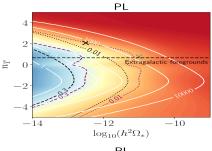
Get forecasts (e.g., using FIM) on the template parameters

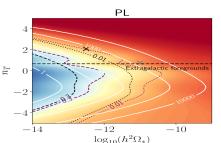
Convert in constraints on model parameter

Forecast constrains on fundamental physics!

Example: a power-law

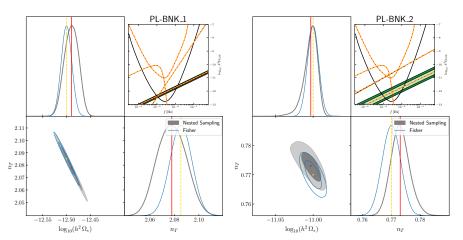
$$\Omega_{\rm GW} h^2 = 10^{\log_{10}(h^2\Omega_*)} \left(\frac{f}{f_*}\right)^{n_T}$$





Forecasting LISA constraints II (Full analysis)

Validate FIM results generating data and running some data analysis pipeline

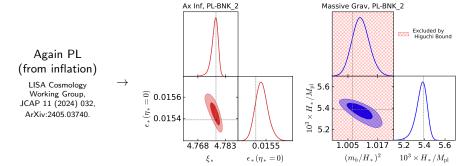


LISA Cosmology Working Group, JCAP 11 (2024) 032, ArXiv:2405.03740.

Introduction

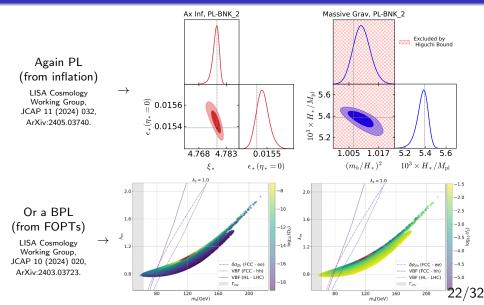
Template-based analysis

Forecasting LISA constraints III (model parameters)



Introduction

Forecasting LISA constraints III (model parameters)



Template-based analysis

Also more complex noise ...

Let's consider a more complex noise model

- 6 TM parameters
- 6 OMS parameters

Does that impact the signal reconstruction?

Introduction

Let's consider a more complex noise model

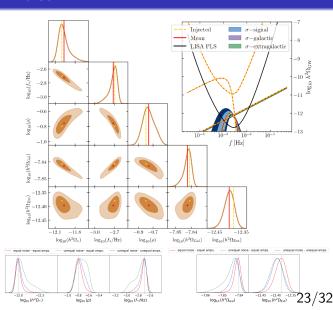
- 6 TM parameters
- 6 OMS parameters

Does that impact the signal reconstruction?

Tested for:

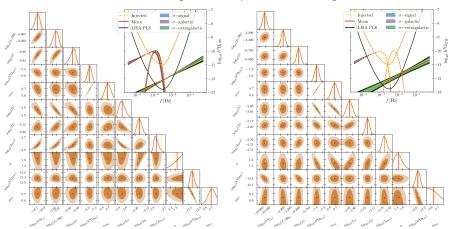
- Power Law Hartwig et al. Phys.Rev.D 107 (2023), 123531, ArXiv: 2303.15929.
- Lognormal bump
 Kume et al. ArXiv: 2410.10342.

Seems like not much!



.. and foreground models

What about relaxing the assumptions on the foreground?



Depends on how degenerate the components are...

SBI for GWB data analysis

Traditional methods (MCMC, nested sampling, whatever) are quite efficient and guaranteed to converge (in some cases)

SBI for GWB and Saggara

but

scale poorly with number of parameters and require explicit likelihoods

Can alternative approaches perform better in some cases?

SBI for GWB data analysis

Traditional methods (MCMC, nested sampling, whatever) are quite efficient and guaranteed to converge (in some cases)

SBI for GWB and Saggara

but

scale poorly with number of parameters and require explicit likelihoods

Can alternative approaches perform better in some cases?

Normally, with Bayesian inference, we try to study the posterior probability:

$$p(\theta|d) = \frac{p(d|\theta) \pi(\theta)}{p(d)} \equiv r(d,\theta) \pi(\theta),$$

where we have introduced:

$$r(d,\theta) \equiv \frac{p(d|\theta)}{p(d)} = \frac{p(\theta|d)}{\pi(\theta)} = \frac{p(\theta,d)}{p(d) \pi(\theta)} ,$$

i.e., $r(d, \theta)$ is the ratio between joint probability and marginal probability.

Given a pair (θ, d) , $r(d, \theta)$ can be used to assess whether θ can generate d!

SBI for GWB data analysis

Traditional methods (MCMC, nested sampling, whatever) are quite efficient and guaranteed to converge (in some cases)

but

scale poorly with number of parameters and require explicit likelihoods

Can alternative approaches perform better in some cases?

Normally, with Bayesian inference, we try to study the posterior probability:

$$p(\theta|d) = \frac{p(d|\theta) \pi(\theta)}{p(d)} \equiv r(d,\theta) \pi(\theta),$$

where we have introduced:

$$r(d,\theta) \equiv \frac{p(d|\theta)}{p(d)} = \frac{p(\theta|d)}{\pi(\theta)} = \frac{p(\theta,d)}{p(d)\pi(\theta)}$$

i.e., $r(d, \theta)$ is the ratio between joint probability and marginal probability.

Given a pair (θ, d) , $r(d, \theta)$ can be used to assess whether θ can generate d!

This can be cast in a minimization problem that can be solved with ML the approach is typically referred to as Neural Ratio Estimation (NRE) (basically build a classifier to say whether θ , d are joint or marginal...).

A very simple example

Let's consider:

$$d = \theta^2 + \epsilon$$

with

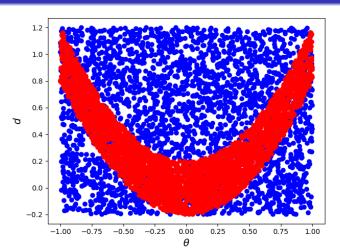
 $\theta \sim U[-1,1]$

$$\epsilon \sim U[-.2, .2]$$

Marginal samples $d, \theta \sim p(d)p(\theta)$

Joint samples

 $d, \theta \sim p(d, \theta)$



A very simple example

Let's consider:

$$d = \theta^2 + \epsilon$$

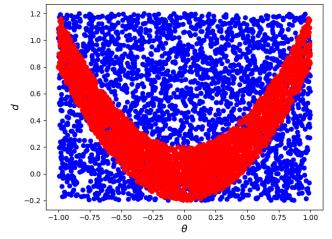
with

$$\theta \sim U[-1,1]$$

 $\epsilon \sim U[-.2,.2]$

Marginal samples $d, \theta \sim p(d)p(\theta)$

Joint samples $d, \theta \sim p(d, \theta)$

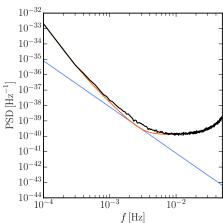


In very large parameter spaces you can target a subset of the parameters!

Automatically marginalize over the other parameters (here ϵ)!

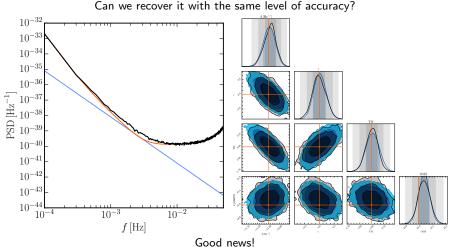
Recover previous results ...

Assume we inject a power law signal:
Can we recover it with the same level of accuracy?



Recover previous results ...

Assume we inject a power law signal:



James Alvey et al., Phys. Rev. D 109 (2024) 083008, ArXiv:2309.07954.

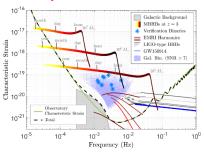
Code available at https://github.com/PEREGRINE-GW/saqqara/

SBI for GWB and Saggara

00000

plus something completely new!

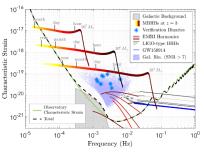
What if there's something else beyond GWB and noise?



Introduction

plus something completely new!

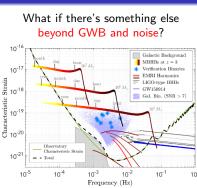
What if there's something else beyond GWB and noise?



A minimal setup for this: randomly inject transients slightly below the threshold for detection

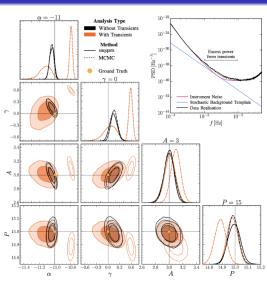
Would this still work??

... plus something completely new!



A minimal setup for this: randomly inject transients slightly below the threshold for detection

Would this still work??



SBI for GWB and Saggara

Introduction

What about noise non-stationarities? (FIM)

The noise won't be stationary for the whole mission duration ...

How does this impact the signal parameters reconstruction?

SBI for GWB and Saggara

Introduction

What about noise non-stationarities? (FIM)

The noise won't be stationary for the whole mission duration

How does this impact the signal parameters reconstruction?

A strategy to answer this question:

- Cut the data into segments (where stationarity holds)
- Analyze segment-by-segment (FIM or training a network)
- Combine the results (assuming each segment is an independent draw)

What about noise non-stationarities? (FIM)

The noise won't be stationary for the whole mission duration ...

How does this impact the signal parameters reconstruction?

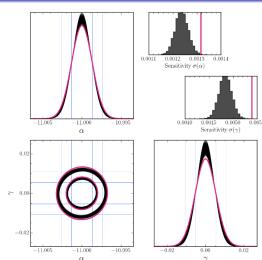
A strategy to answer this question:

- Cut the data into segments (where stationarity holds)
- Analyze segment-by-segment (FIM or training a network)
- Combine the results

 (assuming each segment is an independent draw)

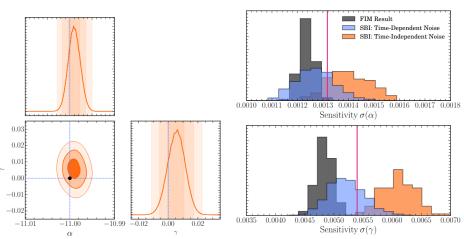
First test with FIM:

Looks like you actually do better!



What about noise non-stationarities? (Full analysis)

Validate FIM results with a full analysis



Moreover, training segment-by-segment is 100 times faster!

James Alvey et al., ArXiv:2408.00832.
Code available at https://github.com/PEREGRINE-GW/saqqara/
See also https://github.com/Mauropieroni/GW_response

Conclusions and outlook

Conclusions

- Analyzing LISA data will be guite difficult
- Agnostic (or at least not very signal dependent) methods are useful
- Traditional methods work (but they might be expensive)
- SBI (and ML in general) looks quite promising ...
- ... it works with transients and non-stationarities in the noise!

Future perspectives

- Keep improving on detector modeling
- More realistic noise model and data generation procedure
- Include anisotropies in the signal
- New ideas/techniques?

Last slide

Thank you for your attention!