Next-generation statistical inference tools

Simulation-based inference, marginal statistics & accelerated nested sampling

Will Handley

<wh260@cam.ac.uk>

Royal Society University Research Fellow Institute of Astronomy, University of Cambridge Kavli Institute for Cosmology, Cambridge Gonville & Caius College willhandley.co.uk/talks

13th November 2024

Contents

Likelihood-based inference

Sampling & model comparison MCMC & Nested sampling

Simulation-based inference

Principles & motivation

Practice: NRE vs NDE

Marginal inference

Theory

Practice: margarine

Accelerated nested sampling

Why can nested sampling be slow?

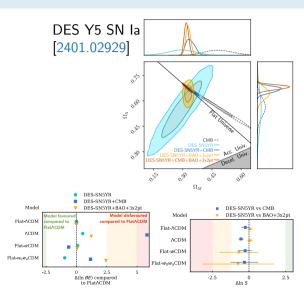
Accelerating with β -flows

Accelerating with jax

The standard approach if you are fortunate enough to have a likelihood function $P(D|\theta)$:

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

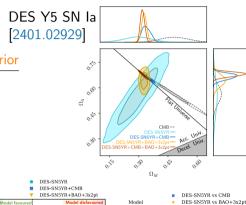
- 1. Define prior $\pi(\theta)$
 - spend some time being philosophical
- 2. Sample posterior $\mathcal{P}(\theta|D)$
 - use out-of-the-box MCMC tools such as emcee or MultiNest
 - make some triangle plots
- 3. Optionally compute evidence $\mathcal{Z}(D)$
 - e.g. nested sampling or parallel tempering
 - do some model comparison (i.e. science)
 - talk about tensions

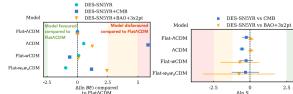


The standard approach if you are fortunate enough to have a likelihood function $P(D|\theta)$:

$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$
 Posterior = $\frac{\text{Likelihood} \times \text{Prior}}{\text{Evidence}}$

- 1. Define prior $\pi(\theta)$
 - spend some time being philosophical
- 2. Sample posterior $\mathcal{P}(\theta|D)$
 - use out-of-the-box MCMC tools such as emcee or MultiNest
 - make some triangle plots
- 3. Optionally compute evidence $\mathcal{Z}(D)$
 - e.g. nested sampling or parallel tempering
 - do some model comparison (i.e. science)
 - talk about tensions

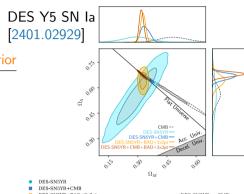


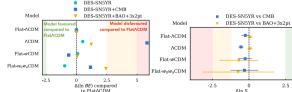


The standard approach if you are fortunate enough to have a likelihood function $\mathcal{L}(D|\theta)$:

$$\mathcal{P}(\theta|D) = \frac{\mathcal{L}(D|\theta)\pi(\theta)}{\mathcal{Z}(D)}$$
 Posterior = $\frac{\text{Likelihood} \times \text{Prior}}{\text{Evidence}}$

- 1. Define prior $\pi(\theta)$
 - spend some time being philosophical
- 2. Sample posterior $\mathcal{P}(\theta|D)$
 - use out-of-the-box MCMC tools such as emcee or MultiNest
 - make some triangle plots
- 3. Optionally compute evidence $\mathcal{Z}(D)$
 - e.g. nested sampling or parallel tempering
 - do some model comparison (i.e. science)
 - talk about tensions

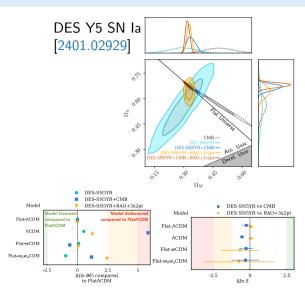




The standard approach if you are fortunate enough to have a likelihood function $\mathcal{L}(D|\theta)$:

$$P(\theta|D)P(D) = P(\theta, D) = P(D|\theta)P(\theta),$$

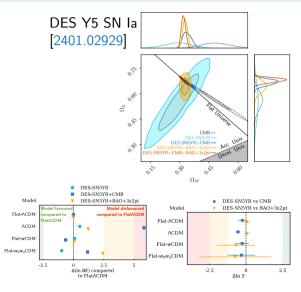
- 1. Define prior $\pi(\theta)$
 - spend some time being philosophical
- 2. Sample posterior $\mathcal{P}(\theta|D)$
 - use out-of-the-box MCMC tools such as emcee or MultiNest
 - make some triangle plots
- 3. Optionally compute evidence $\mathcal{Z}(D)$
 - e.g. nested sampling or parallel tempering
 - do some model comparison (i.e. science)
 - talk about tensions



The standard approach if you are fortunate enough to have a likelihood function $\mathcal{L}(D|\theta)$:

$$\mathcal{P} \times \mathcal{Z} = \mathcal{J} = \mathcal{L} \times \pi$$
, Joint = $\mathcal{J} = P(\theta, D)$

- 1. Define prior $\pi(\theta)$
 - spend some time being philosophical
- 2. Sample posterior $\mathcal{P}(\theta|D)$
 - use out-of-the-box MCMC tools such as emcee or MultiNest
 - make some triangle plots
- 3. Optionally compute evidence $\mathcal{Z}(D)$
 - e.g. nested sampling or parallel tempering
 - do some model comparison (i.e. science)
 - talk about tensions



The three pillars of Bayesian inference

Parameter estimation

What do the data tell us about the parameters of a model? e.g. the size or age of a ΛCDM universe

$$P(\theta|D, M) = \frac{P(D|\theta, M)P(\theta|M)}{P(D|M)} \qquad P(M|D) = \frac{P(D|M)P(M)}{P(D)}$$

$$P = \frac{\mathcal{L} \times \pi}{2} \qquad \frac{\mathcal{Z}_{M}\Pi_{M}}{\sum_{m} Z_{m}\Pi_{m}}$$

$$Posterior = \frac{Likelihood \times Prior}{Likelihood \times Prior}$$

Model comparison

How much does the data support a particular model? e.g. ΛCDM vs a dynamic dark energy cosmology

$$P(M|D) = \frac{P(D|M)P(M)}{P(D)}$$

$$\frac{\mathcal{Z}_{M}\Pi_{M}}{\sum_{m} Z_{m}\Pi_{m}}$$

 $Posterior = \frac{Evidence \times Prior}{Normalisation}$

Tension quantification

Do different datasets make consistent predictions from the same model? e.g. CMB vs Type IA supernovae data

$$\mathcal{R} = \frac{\mathcal{Z}_{AB}}{\mathcal{Z}_{A}\mathcal{Z}_{B}}$$

$$\log \mathcal{S} = \langle \log \mathcal{L}_{AB} \rangle_{\mathcal{P}_{AB}} - \langle \log \mathcal{L}_{A} \rangle_{\mathcal{P}_{A}} - \langle \log \mathcal{L}_{B} \rangle_{\mathcal{P}_{B}}$$

The three pillars of Bayesian inference

Parameter estimation

What do the data tell us about the parameters of a model? e.g. the masses and spins of a BBH collision

$$P(\theta|D,M) = \frac{P(D|\theta,M)P(\theta|M)}{P(D|M)} \quad P(M|D) = \frac{P(D|M)P(M)}{P(D)}$$

$$P = \frac{\mathcal{L} \times \pi}{Z} \qquad \frac{Z_M \Pi_M}{\sum_m Z_m \Pi_m}$$

$$Posterior = \frac{Likelihood \times Prior}{Friday = 1}$$

Model comparison

How much does the data support a particular model? e.g. IMRPhenom vs **FOBNR** waveform models

$$P(M|D) = \frac{P(D|M)P(M)}{P(D)}$$
$$\frac{\mathcal{Z}_{M}\Pi_{M}}{\sum_{m} Z_{m}\Pi_{m}}$$

$$Posterior = \frac{Evidence \times Prior}{Normalisation}$$

Tension quantification

Do different datasets make consistent predictions from the same model? e.g. Automated glitch detection

$$\mathcal{R} = \frac{\mathcal{Z}_{AB}}{\mathcal{Z}_{A}\mathcal{Z}_{B}}$$

$$\begin{split} \log \mathcal{S} &= \langle \log \mathcal{L}_{AB} \rangle_{\mathcal{P}_{AB}} \\ &- \langle \log \mathcal{L}_{A} \rangle_{\mathcal{P}_{A}} \\ &- \langle \log \mathcal{L}_{B} \rangle_{\mathcal{P}_{B}} \end{split}$$

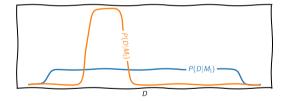
Model comparison $\mathcal{Z} = P(D|M)$

Bayesian model comparison allows mathematical derivation of key philosophical principles.

Viewed from data-space *D*:

Popper's falsificationism

- Prefer models that make bold predictions.
- ▶ if proven true, model more likely correct.



▶ Falsificationism comes from normalisation

Viewed from parameter-space θ :

Occam's razor

- Models should be as simple as possible
- ...but no simpler
- Occam's razor equation:

$$\log \mathcal{Z} = \langle \log \mathcal{L} \rangle_{\!\mathcal{P}} - \mathcal{D}_{\mathsf{KL}}$$

• "Occam penalty": KL divergence between prior π and posterior \mathcal{P} .

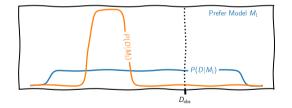
$$\mathcal{D}_{\mathsf{KL}} \sim \log \frac{\mathsf{Prior} \ \mathsf{volume}}{\mathsf{Posterior} \ \mathsf{volume}}$$

Model comparison $\mathcal{Z} = P(D|M)$

Bayesian model comparison allows mathematical derivation of key philosophical principles. Viewed from data-space D:

Popper's falsificationism

- Prefer models that make bold predictions.
- if proven true, model more likely correct.



Falsificationism comes from normalisation

Viewed from parameter-space θ :

Occam's razor

- Models should be as simple as possible
- ... but no simpler
- Occam's razor equation:

$$\log \mathcal{Z} = \langle \log \mathcal{L} \rangle_{\!\mathcal{P}} - \mathcal{D}_{\mathsf{KL}}$$

"Occam penalty": KL divergence between prior π and posterior \mathcal{P} .

$$\mathcal{D}_{KL} \sim \log \frac{\text{Prior volume}}{\text{Posterior volume}}$$

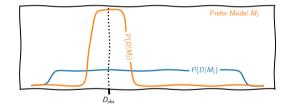
Model comparison $\mathcal{Z} = P(D|M)$

Bayesian model comparison allows mathematical derivation of key philosophical principles.

Viewed from data-space *D*:

Popper's falsificationism

- Prefer models that make bold predictions.
- ▶ if proven true, model more likely correct.



▶ Falsificationism comes from normalisation

Viewed from parameter-space θ :

Occam's razor

- Models should be as simple as possible
- ...but no simpler
- Occam's razor equation:

$$\log \mathcal{Z} = \langle \log \mathcal{L} \rangle_{\!\mathcal{P}} - \mathcal{D}_{\mathsf{KL}}$$

• "Occam penalty": KL divergence between prior π and posterior \mathcal{P} .

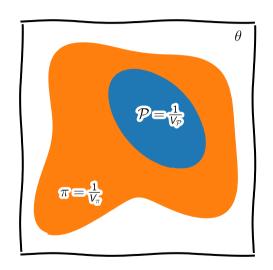
$$\mathcal{D}_{\mathsf{KL}} \sim \log \frac{\mathsf{Prior volume}}{\mathsf{Posterior volume}}$$

Why do sampling?

- ► The cornerstone of numerical Bayesian inference is working with **samples**.
- Generate a set of representative parameters drawn in proportion to the posterior $\theta \sim \mathcal{P}$.
- The magic of marginalisation ⇒ perform usual analysis on each sample in turn.
- The golden rule is stay in samples until the last moment before computing summary statistics/triangle plots because

$$f(\langle X \rangle) \neq \langle f(X) \rangle$$

• Generally need $\sim \mathcal{O}(12)$ independent samples to compute a value and error bar.

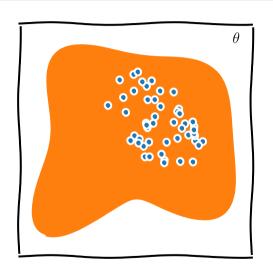


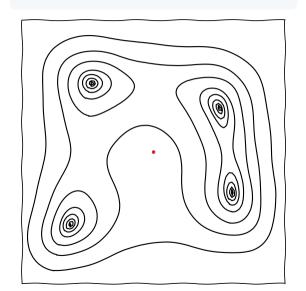
Why do sampling?

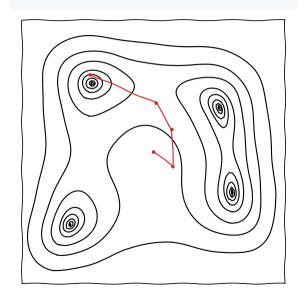
- The cornerstone of numerical Bayesian inference is working with samples.
- Generate a set of representative parameters drawn in proportion to the posterior $\theta \sim \mathcal{P}$.
- ► The magic of marginalisation ⇒ perform usual analysis on each sample in turn.
- ► The golden rule is **stay in samples** until the last moment before computing summary statistics/triangle plots because

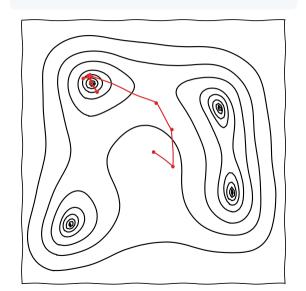
$$f(\langle X \rangle) \neq \langle f(X) \rangle$$

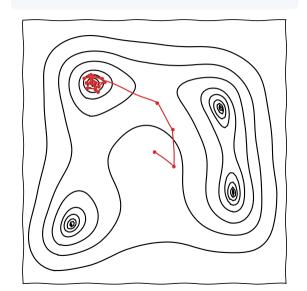
• Generally need $\sim \mathcal{O}(12)$ independent samples to compute a value and error bar.

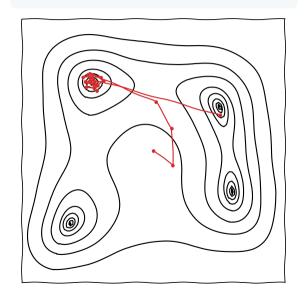


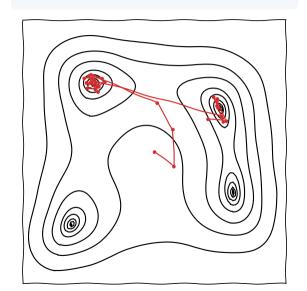


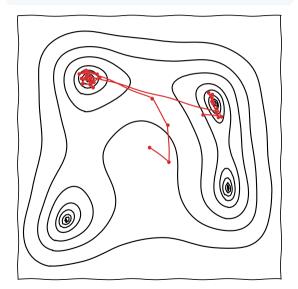


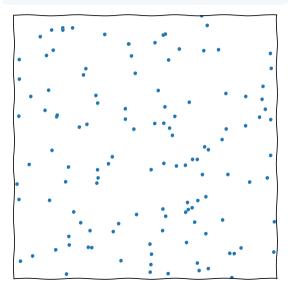


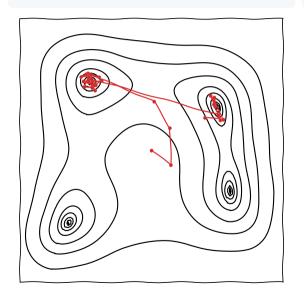


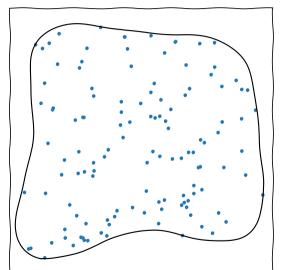


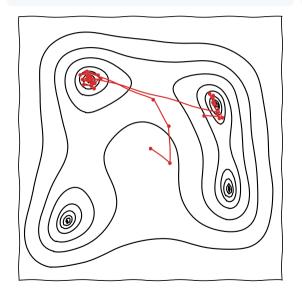


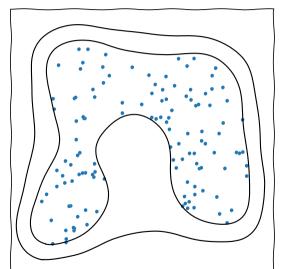


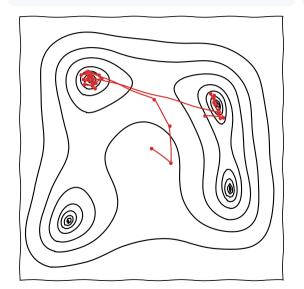


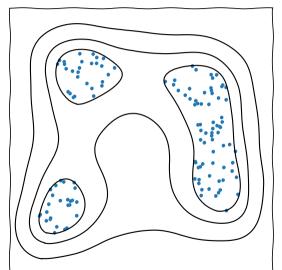


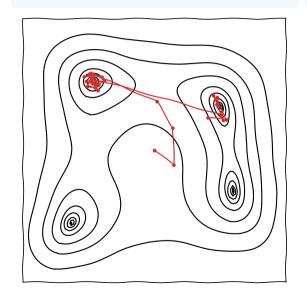


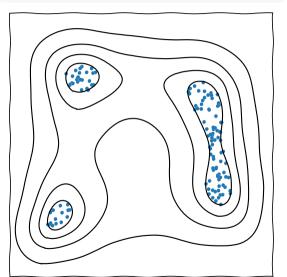


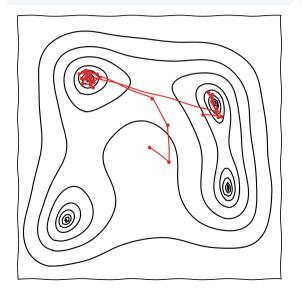


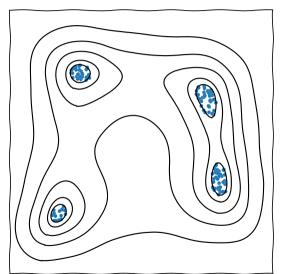


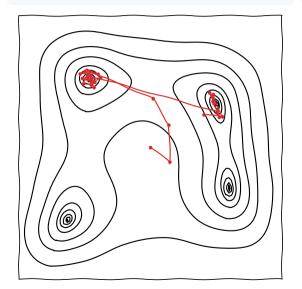


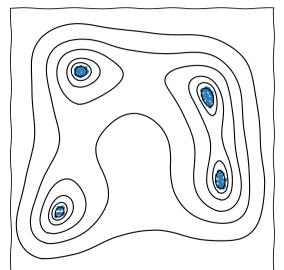


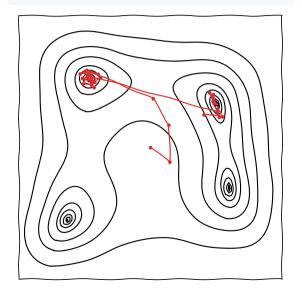


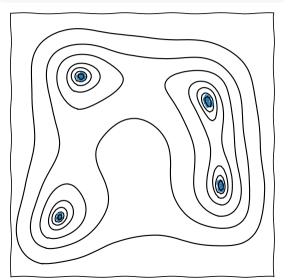


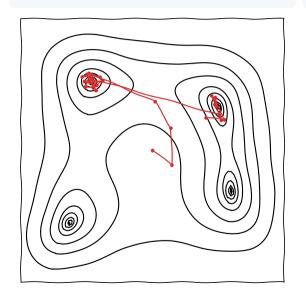


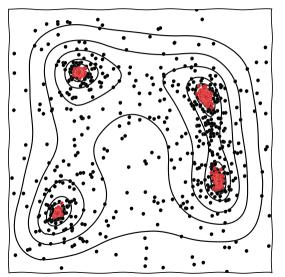




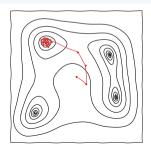




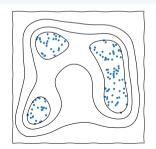




- Single "walker"
- Explores posterior
- ▶ Fast, if proposal matrix is tuned
- Parameter estimation, suspiciousness calculation
- Channel capacity optimised for generating posterior samples

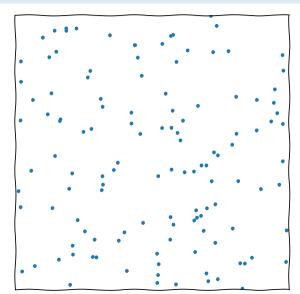


- Ensemble of "live points"
- Scans from prior to peak of likelihood
- Slower, no tuning required
- Parameter estimation, model comparison, tension quantification
- Channel capacity optimised for computing partition function



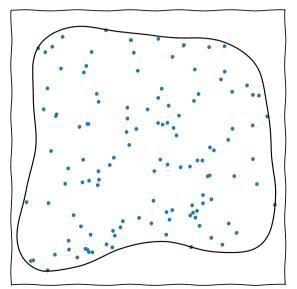
- ▶ Start with *n* random samples over the space.
- Delete outermost sample, and replace with a new random one at higher integrand value.
- ► The "live points" steadily contract around the peak(s) of the function.
- We can use this evolution to estimate volume probabilistically.
- At each iteration, the contours contract by $\sim \frac{1}{n}$ of their volume.
- ▶ This is an exponential contraction, so

$$\int f(x)dV \approx \sum_{i} f(x_{i})\Delta V_{i}, \quad V_{i} = V_{0}e^{-i/n}$$



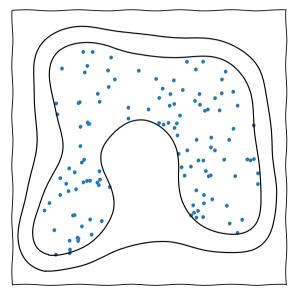
- ▶ Start with *n* random samples over the space.
- Delete outermost sample, and replace with a new random one at higher integrand value.
- ► The "live points" steadily contract around the peak(s) of the function.
- We can use this evolution to estimate volume probabilistically.
- At each iteration, the contours contract by $\sim \frac{1}{n}$ of their volume.
- ▶ This is an exponential contraction, so

$$\int f(x)dV \approx \sum_{i} f(x_{i}) \Delta V_{i}, \quad V_{i} = V_{0}e^{-i/n}$$



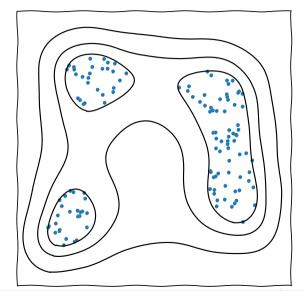
- ▶ Start with *n* random samples over the space.
- Delete outermost sample, and replace with a new random one at higher integrand value.
- ► The "live points" steadily contract around the peak(s) of the function.
- We can use this evolution to estimate volume probabilistically.
- At each iteration, the contours contract by $\sim \frac{1}{n}$ of their volume.
- ▶ This is an exponential contraction, so

$$\int f(x)dV \approx \sum_{i} f(x_{i}) \Delta V_{i}, \quad V_{i} = V_{0}e^{-i/n}$$



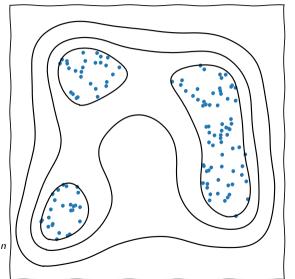
- ▶ Start with *n* random samples over the space.
- Delete outermost sample, and replace with a new random one at higher integrand value.
- ► The "live points" steadily contract around the peak(s) of the function.
- We can use this evolution to estimate volume probabilistically.
- At each iteration, the contours contract by $\sim \frac{1}{n}$ of their volume.
- ▶ This is an exponential contraction, so

$$\int f(x)dV \approx \sum_{i} f(x_{i}) \Delta V_{i}, \quad V_{i} = V_{0}e^{-i/n}$$

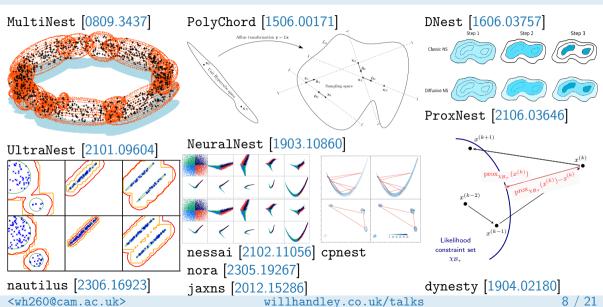


- ▶ Start with *n* random samples over the space.
- Delete outermost sample, and replace with a new random one at higher integrand value.
- ► The "live points" steadily contract around the peak(s) of the function.
- We can use this evolution to estimate volume probabilistically.
- At each iteration, the contours contract by $\sim \frac{1}{n} \pm \frac{1}{n}$ of their volume.
- ▶ This is an exponential contraction, so

$$\int f(x)dV \approx \sum_{i} f(x_i) \Delta V_i, \quad V_i = V_0 e^{-(i \pm \sqrt{i})/n}$$



Implementations of Nested Sampling [2205.15570] (NatReview)



Types of nested sampler

- ▶ Broadly, most nested samplers can be split into how they create new live points.
- i.e. how they sample from the hard likelihood constraint $\{\theta \sim \pi : \mathcal{L}(\theta) > \mathcal{L}_*\}$.

Rejection samplers

- ▶ e.g. MultiNest, UltraNest.
- ▶ Constructs bounding region and draws many invalid points until $\mathcal{L}(\theta) > \mathcal{L}_*$.
- Efficient in low dimensions, exponentially inefficient $\sim \mathcal{O}(e^{d/d_0})$ in high $d > d_0 \sim 10$.

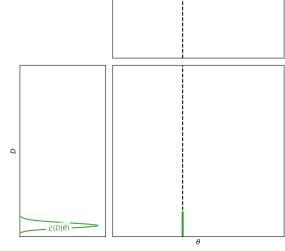
Chain-based samplers

- e.g. PolyChord, ProxNest.
- Run Markov chain starting at a live point, generating many valid (correlated) points.
- Linear $\sim \mathcal{O}(d)$ penalty in decorrelating new live point from the original seed point.

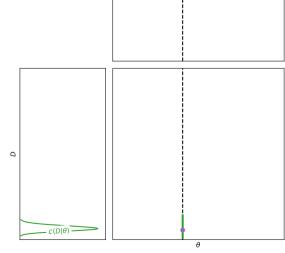
- Nested samplers usually come with:
 - resolution parameter n_{live} (which improve results as $\sim \mathcal{O}(n_{\text{live}}^{-1/2})$.
 - ▶ set of *reliability* parameters [2101.04525], which don't improve results if set arbitrarily high, but introduce systematic errors if set too low.
 - e.g. Multinest efficiency eff or PolyChord chain length n_{repeats} .

- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ▶ Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$ and evidence $\mathcal{Z}(D)$ and possibly likelihood $\mathcal{L}(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.

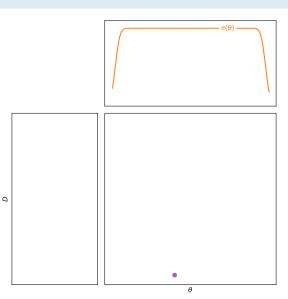
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- Task of SBI is take joint $\mathcal J$ samples and learn posterior $\mathcal P(\theta|D)$ and evidence $\mathcal Z(D)$ and possibly likelihood $\mathcal L(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



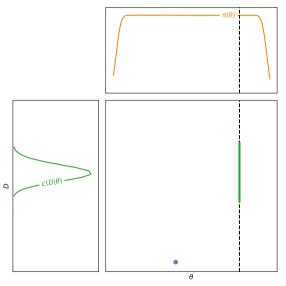
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- Task of SBI is take joint $\mathcal J$ samples and learn posterior $\mathcal P(\theta|D)$ and evidence $\mathcal Z(D)$ and possibly likelihood $\mathcal L(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



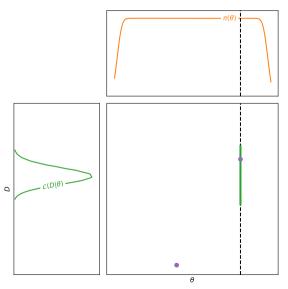
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ▶ Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$ and evidence $\mathcal{Z}(D)$ and possibly likelihood $\mathcal{L}(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



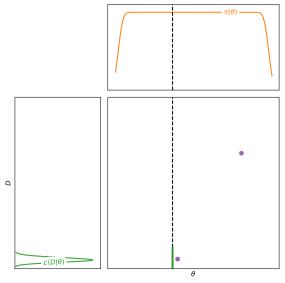
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$ and evidence $\mathcal{Z}(D)$ and possibly likelihood $\mathcal{L}(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



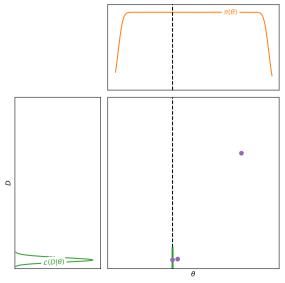
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$ and evidence $\mathcal{Z}(D)$ and possibly likelihood $\mathcal{L}(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



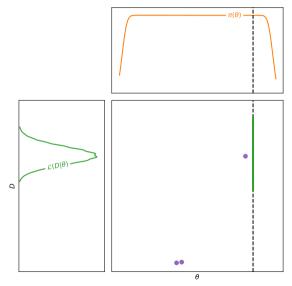
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- Task of SBI is take joint $\mathcal J$ samples and learn posterior $\mathcal P(\theta|D)$ and evidence $\mathcal Z(D)$ and possibly likelihood $\mathcal L(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



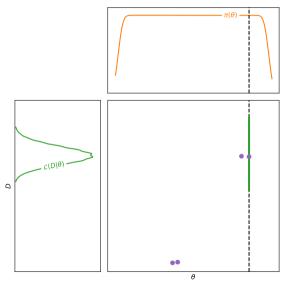
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- Task of SBI is take joint $\mathcal J$ samples and learn posterior $\mathcal P(\theta|D)$ and evidence $\mathcal Z(D)$ and possibly likelihood $\mathcal L(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



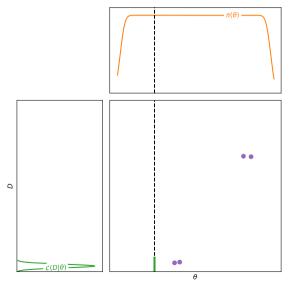
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- Task of SBI is take joint $\mathcal J$ samples and learn posterior $\mathcal P(\theta|D)$ and evidence $\mathcal Z(D)$ and possibly likelihood $\mathcal L(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



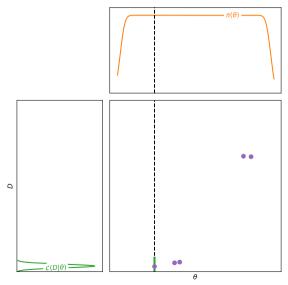
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- Task of SBI is take joint $\mathcal J$ samples and learn posterior $\mathcal P(\theta|D)$ and evidence $\mathcal Z(D)$ and possibly likelihood $\mathcal L(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



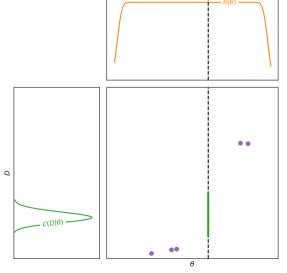
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- Task of SBI is take joint $\mathcal J$ samples and learn posterior $\mathcal P(\theta|D)$ and evidence $\mathcal Z(D)$ and possibly likelihood $\mathcal L(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



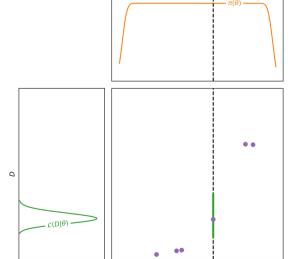
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- Task of SBI is take joint $\mathcal J$ samples and learn posterior $\mathcal P(\theta|D)$ and evidence $\mathcal Z(D)$ and possibly likelihood $\mathcal L(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



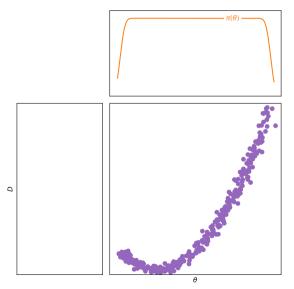
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ▶ Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$ and evidence $\mathcal{Z}(D)$ and possibly likelihood $\mathcal{L}(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



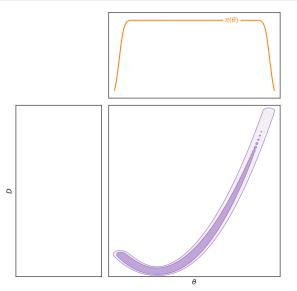
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- ▶ Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ▶ Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$ and evidence $\mathcal{Z}(D)$ and possibly likelihood $\mathcal{L}(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



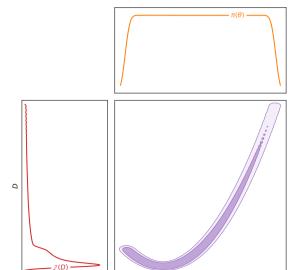
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ▶ Task of SBI is take joint $\mathcal J$ samples and learn posterior $\mathcal P(\theta|D)$ and evidence $\mathcal Z(D)$ and possibly likelihood $\mathcal L(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



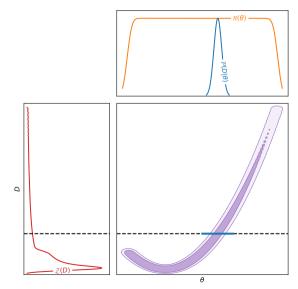
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint $\mathcal J$ samples and learn posterior $\mathcal P(\theta|D)$ and evidence $\mathcal Z(D)$ and possibly likelihood $\mathcal L(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



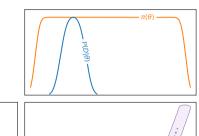
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$ and evidence $\mathcal{Z}(D)$ and possibly likelihood $\mathcal{L}(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.

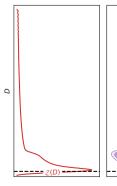


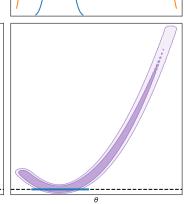
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$ and evidence $\mathcal{Z}(D)$ and possibly likelihood $\mathcal{L}(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



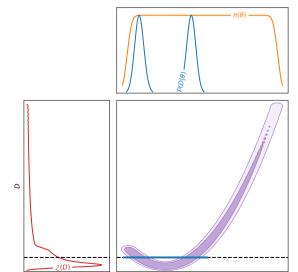
- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$ and evidence $\mathcal{Z}(D)$ and possibly likelihood $\mathcal{L}(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



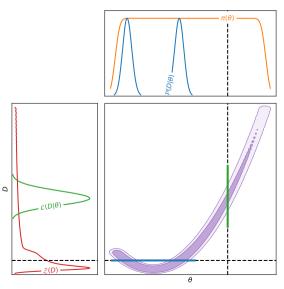




- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ► Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$ and evidence $\mathcal{Z}(D)$ and possibly likelihood $\mathcal{L}(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



- ▶ What do you do if you don't know $\mathcal{L}(D|\theta)$?
- If you have a simulator/forward model $\theta \to D$ defines an *implicit* likelihood \mathcal{L} .
- Simulator generates samples from $\mathcal{L}(\cdot|\theta)$.
- With a prior $\pi(\theta)$ can generate samples from joint distribution $\mathcal{J}(\theta,D) = \mathcal{L}(D|\theta)\pi(\theta)$ the "probability of everything".
- ▶ Task of SBI is take joint \mathcal{J} samples and learn posterior $\mathcal{P}(\theta|D)$ and evidence $\mathcal{Z}(D)$ and possibly likelihood $\mathcal{L}(D|\theta)$.
- Present state of the art achieves this using machine learning (neural networks).
 - My group's research tries to removes machine learning github.com/handley-lab/lsbi.



Why SBI?

SBI is useful because:

- If you don't have a likelihood, you can still do inference
 - This is the usual case beyond CMB cosmology
- 2. Faster than LBL
 - emulation also applies to LBI in principle
- 3. No need to pragmatically encode fiducial cosmologies
 - Covariance computation implicitly encoded in simulations
 - ▶ Highly relevant for disentangling tensions & systematics
- 4. Equips AI/ML with Bayesian interpretability
- 5. Lower barrier to entry than LBI
 - Much easier to forward model a systematic
 - Emerging set of plug-and-play packages
 - For this reason alone, it will come to dominate scientific inference

github.com/sbi-dev

github.com/undark-lab/swyft

github.com/florent-leclercq/pyselfi

github.com/justinalsing/pydelfi

SBI in astrophysics

- 2024 has been the year it has started to be applied to real data.
- Mostly for weak lensing
- However: SBI requires mock data generation code
- Most data analysis codes were built before the generative paradigm.
- It's still a lot of work to upgrade cosmological likelihoods to be able to do this (e.g. plik & camspec).

Investigating the turbulent hot gas in X-COP galaxy clusters

S. Dupourqué¹, N. Clerc¹, E. Pointecouteau¹, D. Eckert², S. Ettori³, and F. Vazza^{4,5,6}

Dark Energy Survey Year 3 results: simulation-based cosmological inference with wavelet harmonics, scattering transforms, and moments of weak lensing mass maps II. Cosmological property.

M. Gatti, ^{1, *} G. Campaille, ² N. Jeffrey, ³ L. Whiteway, ³ A. Porredon, ⁴ J. Prat, ⁵ J. Williamson, ³ M. Raveri, ² B.

Neural Posterior Estimation with guaranteed exact coverage: the ringdown of GW150914

Marco Crisostomi^{1,2}, Kallol Dey³, Enrico Barausse^{1,2}, Roberto Trotta^{1,2,4,5}

Applying Simulation-Based Inference to Spectral and Spatial Information from the Galactic Center Gamma-Ray Excess

Katharena Christy,^a Eric J. Baxter,^b Jason Kumar^a

KiDS-1000 and DES-Y1 combined: Cosmology from peak count statistics

Joachim Hamois-Déraps^{1*}, Sven Heydenreich², Benjamin Giblin³, Nicolas Martinet⁴, Tilman Tröster⁶, Marika Asgari^{1,6,7}, Pierre Burger^{8,0,10}Tiago Castro^{1,12,13,14}, Klaus Dolag¹⁵, Catherine Heymans^{3,16}, Hendrik Hildebrandt¹⁶, Benjamin Joachimi¹⁷ & Angus H. Wright¹⁶

KiDS-SBI: Simulation-Based Inference Analysis of KiDS-1000

Maximilian von Wietersheim-Kramsta^{1,2,3}, Kiyam Lin¹, Nicolas Tessore¹, Benjamin Joachimi¹, Arthur Loureiro^{6,5}, Robert Reischke^{6,7}, and Angus H. Wright⁷

Simulation-based inference of deep fields: galaxy population model and redshift distributions

Beatrice Moser, a.1 Tomasz Kacprzak, a.b Silvan Fischbacher, a Alexandre Refregier, Dominic Grimm, Luca Tortorellic

SMBIG: Cosmological Constraints using Simulation-Based Inference of Galaxy Clustering with Marked Power Spectra

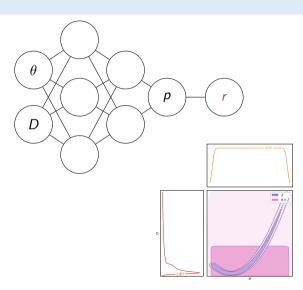
ELENA MASSARA \bigcirc 1,2,4 CHANGHOON HAISS \bigcirc 3 MICHAEL ERCHENGERG, SERRIEV HO, 5 JIAMIN HOU, 5,7 PARGO LEMOS, 8,8,5 CHIRAG MOOL, 5,8 ARABRI MORADSEERAD DEZAM \bigcirc 9,111 LIAM PARKER, 5,12 AND BERNO REGALDO-SANT BIANCARD \bigcirc 9,121 LIAM PARKER, 5,12 AND

Neural Ratio Estimation

► SBI flavours: github.com/sbi-dev/sbi

NPE Neural posterior estimation
NLE Neural likelihood estimation
NJE Neural joint estimation
NRE Neural ratio estimation

- ► NRE recap:
 - 1. Generate joint samples $(\theta, D) \sim \mathcal{J}$
 - straightforward if you have a simulator: $\theta \sim \pi(\cdot)$, $D \sim \mathcal{L}(\cdot|\theta)$
 - 2. Generate separated samples $\theta \sim \pi$, $D \sim \mathcal{Z}$
 - aside: can shortcut step 2 by scrambling the (θ, D) pairings from step 1
 - 3. Train probabilistic classifier p to distinguish whether (θ, D) came from \mathcal{J} or $\pi \times \mathcal{Z}$.
 - 4. $\frac{p}{1-p} = r = \frac{P(\theta, D)}{P(\theta)P(D)} = \frac{\mathcal{J}}{\pi \times \mathcal{Z}} = \frac{\mathcal{L}}{\mathcal{Z}} = \frac{\mathcal{P}}{\pi}$.
 - 5. Use ratio r for parameter estimation $\mathcal{P} = r \times \pi$



Neural Ratio Estimation

► SBI flavours: github.com/sbi-dev/sbi

NPE Neural posterior estimation
NLE Neural likelihood estimation
NJE Neural joint estimation
NRE Neural ratio estimation

- ▶ NRE recap:
 - 1. Generate joint samples $(\theta, D) \sim \mathcal{J}$
 - * straightforward if you have a simulator: $\theta \sim \pi(\cdot)$, $D \sim \mathcal{L}(\cdot|\theta)$
 - 2. Generate separated samples $\theta \sim \pi$, $D \sim Z$
 - aside: can shortcut step 2 by scrambling the (θ, D) pairings from step 1
 - 3. Train probabilistic classifier p to distinguish whether (θ, D) came from \mathcal{J} or $\pi \times \mathcal{Z}$.
 - 4. $\frac{p}{1-p} = r = \frac{P(\theta, D)}{P(\theta)P(D)} = \frac{\mathcal{J}}{\pi \times \mathcal{Z}} = \frac{\mathcal{L}}{\mathcal{Z}} = \frac{\mathcal{P}}{\pi}$.
 - 5. Use ratio r for parameter estimation $\mathcal{P} = r \times \pi$

Bayesian proof

- ▶ Let $M_{\mathcal{J}}$: $(\theta, D) \sim \mathcal{J}$, $M_{\pi \mathcal{Z}}$: $(\theta, D) \sim \pi \times \mathcal{Z}$
- ► Classifier gives $p(\theta, D) = P(M_{\mathcal{J}}|\theta, D) = 1 P(M_{\pi Z}|\theta, D)$
- Bayes theorem then shows $\frac{p}{1-p} = \frac{P(M_{\mathcal{J}}|\theta,D)}{P(M_{\pi\mathcal{Z}}|\theta,D)} = \frac{P(\theta,D|M_{\mathcal{J}})P(M_{\mathcal{J}})}{P(\theta,D|M_{\pi\mathcal{Z}})P(M_{\pi\mathcal{Z}})} = \frac{\mathcal{J}}{\pi\mathcal{Z}},$
 - $P(M_{\mathcal{J}}) = P(M_{\pi \mathcal{Z}}),$
 - and by definition

where we have assumed

 $\bullet \pi(\theta) \mathcal{Z}(D) = P(\theta, D|M_{\pi \mathcal{Z}}).$

Neural Ratio Estimation

► SBI flavours: github.com/sbi-dev/sbi

NPE Neural posterior estimation
NLE Neural likelihood estimation
NJE Neural joint estimation
NRE Neural ratio estimation

- NRE recap:
 - 1. Generate joint samples $(\theta, D) \sim \mathcal{J}$
 - straightforward if you have a simulator: $\theta \sim \pi(\cdot)$, $D \sim \mathcal{L}(\cdot|\theta)$
 - 2. Generate separated samples $\theta \sim \pi$, $D \sim Z$ aside: can shortcut step 2 by scrambling the
 - (θ, D) pairings from step 1
 - 3. Train probabilistic classifier p to distinguish whether (θ, D) came from \mathcal{J} or $\pi \times \mathcal{Z}$.
 - 4. $\frac{p}{1-p} = r = \frac{P(\theta, D)}{P(\theta)P(D)} = \frac{\mathcal{J}}{T \times \mathcal{J}} = \frac{\mathcal{L}}{\mathcal{J}} = \frac{\mathcal{P}}{T}$.
 - 5. Use ratio r for parameter estimation $\mathcal{P} = r \times \pi$

Why I like NRE

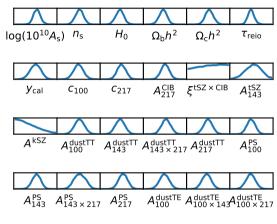
- The link between classification and inference is profound.
- Density estimation is hard Dimensionless r divides out the hard-to-calculate parts.

Why I don't like NRE

- Practical implementations require marginalisation [2107.01214], or autoregression [2308.08597].
- Model comparison and parameter estimation are separate [2305.11241].

Marginal inference

- Many cosmological likelihoods come with nuisance parameters that have limited relevance for onward inference.
- ▶ Notation: CMB cosmology
 - Likelihood (e.g. plik),
 D Data (e.g. CMB).
 - θ Cosmological parameters (e.g. Ω_m , H_0 ...),
 - α Nuisance parameters (e.g. Ω_m , N_0 ...),
 - α Nuisance parameters (e.g. A_{planck} ...), M Model (e.g. Λ CDM).
- ► Some marginal statistics (e.g. marginal means, posteriors...) are easy to compute.
- More machinery is needed for e.g. nuisance marginalised likelihoods and marginal KL divergences \mathcal{D}_{KI} .



Marginal inference

- Many cosmological likelihoods come with nuisance parameters that have limited relevance for onward inference.
- Notation: GW cosmology

Likelihood

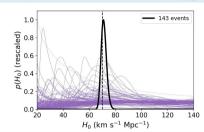
(e.g. LAL), (e.g. GW170817).

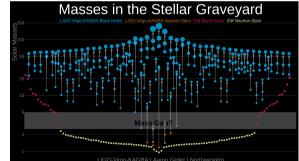
D Data

e.g. GVV170817, (e.g., $H_0...$),

- θ Cosmological parameters
- (e.g., m_0 ...), (e.g. m_1 , m_2 ...),
- α Nuisance parameters M Model

- (e.g. Λ CDM).
- Some marginal statistics (e.g. marginal means, posteriors...) are easy to compute.
- More machinery is needed for e.g. nuisance marginalised likelihoods and marginal KL divergences D_{KL}.





Nuisance marginalised likelihoods: Theory [2207.11457]

Bayes theorem

$$\mathcal{L}(\theta, \alpha) \times \pi(\theta, \alpha) = \mathcal{P}(\theta, \alpha) \times \mathcal{Z}$$
 (1 Likelihood × Prior = Posterior × Evidence

 α : nuisance parameters, θ : cosmo parameters.

Marginal Bayes theorem

$$\mathcal{L}(\theta) \times \pi(\theta) = \mathcal{P}(\theta) \times \mathcal{Z} \tag{2}$$

Non-trivially gives nuisance-free likelihood

$$\mathcal{L}(\theta) = \frac{\mathcal{P}(\theta)\mathcal{Z}}{\pi(\theta)} = \frac{\int \mathcal{L}(\theta, \alpha)\pi(\theta, \alpha)d\alpha}{\int \pi(\theta, \alpha)d\alpha}$$
(3)

Key properties

- Given datasets A and B, each with own nuisance parameters α_A and α_B :
- (1) If you use $\mathcal{L}_A(\theta)$, you get the same (marginal) posterior and evidence if you had run with nuisance parameters α_A (ditto B).
 - If you run inference on $\mathcal{L}_A(\theta) \times \mathcal{L}_B(\theta)$, you get the same (marginal) posterior and evidence if you had run with all nuisance parameters α_A , α_B on.

(weak marginal consistency requirements on joint $\pi(\theta, \alpha_A, \alpha_B)$ and marginal priors)

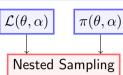
- ▶ To compute the nuisance marginalised likelihood, need: 1. Bayesian evidence Z

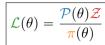
- $\mathcal{L}(\theta, \alpha)$
 - $\pi(\theta, \alpha)$

- 2. Marginal prior and posterior densities
- Bayesian evidence \mathcal{Z} : g
 - Nested sampling
 - Parallel tempering (pocomc, ptmcmc)
 - Sequential Monte Carlo (SMC)
 - MCFvidence
- 2. Marginal prior $\pi(\theta)$ and posterior $\mathcal{P}(\theta)$ densities:
 - Histograms of samples
 - Kernel density estimation
 - Normalising flows / Diffusion models
 - •
 - Emulators usually much faster than original likelihoods
 - margarine: PyPI, github.com/htjb/margarine

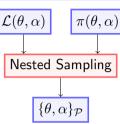
$$\mathcal{L}(\theta) = \frac{\mathcal{P}(\theta)\mathcal{Z}}{\pi(\theta)}$$

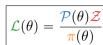
- ▶ To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence Z
 - 2. Marginal prior and posterior densities
- Bayesian evidence \mathcal{Z} : g
 - Nested sampling
 - Parallel tempering (pocomc, ptmcmc)
 - Sequential Monte Carlo (SMC)
 - MCFvidence
- 2. Marginal prior $\pi(\theta)$ and posterior $\mathcal{P}(\theta)$ densities:
 - Histograms of samples
 - Kernel density estimation
 - Normalising flows / Diffusion models
 - •
 - Emulators usually much faster than original likelihoods
 - margarine: PyPI, github.com/htjb/margarine



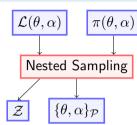


- ▶ To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence Z
 - 2. Marginal prior and posterior densities
- Bayesian evidence \mathcal{Z} : g
 - Nested sampling
 - Parallel tempering (pocomc, ptmcmc)
 - Sequential Monte Carlo (SMC)
 - MCEvidence
- 2. Marginal prior $\pi(\theta)$ and posterior $\mathcal{P}(\theta)$ densities:
 - Histograms of samples
 - Kernel density estimation
 - Normalising flows / Diffusion models
 - •
 - Emulators usually much faster than original likelihoods
 - margarine: PyPI, github.com/htjb/margarine

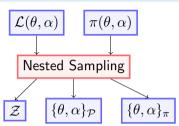




- ▶ To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence Z
 - 2. Marginal prior and posterior densities
- Bayesian evidence \mathcal{Z} : g
 - Nested sampling
 - Parallel tempering (pocomc, ptmcmc)
 - Sequential Monte Carlo (SMC)
 - MCEvidence
- 2. Marginal prior $\pi(\theta)$ and posterior $\mathcal{P}(\theta)$ densities:
 - Histograms of samples
 - Kernel density estimation
 - Normalising flows / Diffusion models
 - •
 - Emulators usually much faster than original likelihoods
 - margarine: PyPI, github.com/htjb/margarine



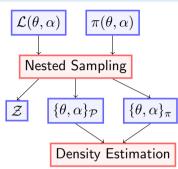
- ▶ To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence Z
 - 2. Marginal prior and posterior densities
- Bayesian evidence \mathcal{Z} : g
 - Nested sampling
 - Parallel tempering (pocomc, ptmcmc)
 - Sequential Monte Carlo (SMC)
 - MCEvidence
- 2. Marginal prior $\pi(\theta)$ and posterior $\mathcal{P}(\theta)$ densities:
 - Histograms of samples
 - Kernel density estimation
 - Normalising flows / Diffusion models
 - **...**
 - Emulators usually much faster than original likelihoods
 - margarine: PyPI, github.com/htjb/margarine



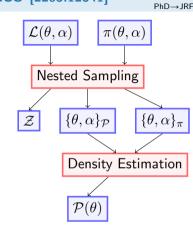
Harry Bevins

PhD→ IRE

- ▶ To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence Z
 - 2. Marginal prior and posterior densities
- Bayesian evidence \mathcal{Z} : g
 - Nested sampling
 - Parallel tempering (pocomc, ptmcmc)
 - Sequential Monte Carlo (SMC)
 - MCFvidence
- 2. Marginal prior $\pi(\theta)$ and posterior $\mathcal{P}(\theta)$ densities:
 - Histograms of samples
 - Kernel density estimation
 - Normalising flows / Diffusion models
 - **...**
 - Emulators usually much faster than original likelihoods
 - margarine: PyPI, github.com/htjb/margarine



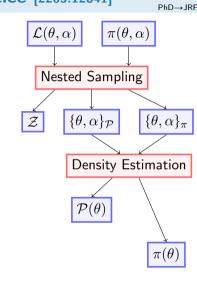
- ▶ To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence Z
 - 2. Marginal prior and posterior densities
- Bayesian evidence \mathcal{Z} : g
 - Nested sampling
 - Parallel tempering (pocomc, ptmcmc)
 - Sequential Monte Carlo (SMC)
 - MCFvidence
- 2. Marginal prior $\pi(\theta)$ and posterior $\mathcal{P}(\theta)$ densities:
 - Histograms of samples
 - Kernel density estimation
 - Normalising flows / Diffusion models
 - **...**
 - Emulators usually much faster than original likelihoods
 - margarine: PyPI, github.com/htjb/margarine



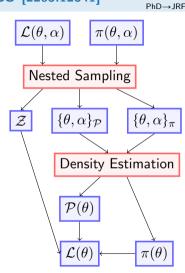
Harry Bevins

- ▶ To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence Z
 - 2. Marginal prior and posterior densities
- Bayesian evidence \mathcal{Z} : g
 - Nested sampling
 - Parallel tempering (pocomc, ptmcmc)
 - Sequential Monte Carlo (SMC)
 - MCFvidence
- 2. Marginal prior $\pi(\theta)$ and posterior $\mathcal{P}(\theta)$ densities:
 - Histograms of samples
 - Kernel density estimation
 - Normalising flows / Diffusion models
 - •
 - Emulators usually much faster than original likelihoods

margarine: PyPI, github.com/htjb/margarine



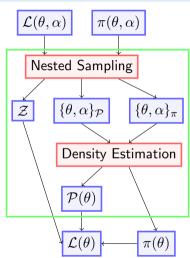
- ▶ To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence Z
 - 2. Marginal prior and posterior densities
- Bayesian evidence \mathcal{Z} : g
 - Nested sampling
 - Parallel tempering (pocomc, ptmcmc)
 - Sequential Monte Carlo (SMC)
 - MCFvidence
- 2. Marginal prior $\pi(\theta)$ and posterior $\mathcal{P}(\theta)$ densities:
 - Histograms of samples
 - Kernel density estimation
 - Normalising flows / Diffusion models
 - •
 - Emulators usually much faster than original likelihoods
 - margarine: PyPI, github.com/htjb/margarine



Harry Bevins

PhD→ IRE

- ▶ To compute the nuisance marginalised likelihood, need:
 - 1. Bayesian evidence Z
 - 2. Marginal prior and posterior densities
- Bayesian evidence \mathcal{Z} : g
 - Nested sampling
 - Parallel tempering (pocomc, ptmcmc)
 - Sequential Monte Carlo (SMC)
 - MCFvidence
- 2. Marginal prior $\pi(\theta)$ and posterior $\mathcal{P}(\theta)$ densities:
 - Histograms of samples
 - Kernel density estimation
 - Normalising flows / Diffusion models
 - •
- Emulators usually much faster than original likelihoods
- margarine: PyPI, github.com/htjb/margarine



Nuisance marginalised likelihoods: Example uses

- Library of pre-trained bijectors to be used as priors/emulators/nuisance marginalised likelihoods (DiRAC allocation unimpeded)
- e.g. easy to apply a *Planck*/DES/HERA/JWST prior or likelihood to your existing MCMC chains without needing to install the whole cosmology machinery.
- Hierarchical modelling:
 - ▶ Usually, have N objects, each with nuisance parameters α_i , and shared parameters of interest θ .
 - Likelihood $\mathcal{L}(\{D_i\}|\theta,\{\alpha_i\}) = \prod_{i=1}^{N} \mathcal{L}_i(D_i|\theta,\alpha_i)$ has $N \times \text{len}(\alpha_i) + \text{len}(\theta)$ parameters
 - Instead, break problem down into N runs on $len(\theta) + len(\alpha_i)$ parameters, and one final one on $len(\theta)$ parameters, using nuisance marginal likelihoods $\mathcal{L}_i(\theta)$.
 - In addition to computational tractability, also can perform model comparison with nuisance marginalised likelihoods.

The scaling frontier of nested sampling

How fast in nested sampling?

$$T = T_{\mathcal{L}} imes n_{\mathsf{live}} imes \mathcal{D}_{\mathsf{KL}} imes f_{\mathsf{sampler}}$$

How accurate is nested sampling?

$$\sigma(\log Z) pprox \sqrt{\mathcal{D}_{\mathsf{KL}}/\mathit{n}_{\mathsf{live}}}$$

in d dimensional parameter space:

$$\mathcal{L}$$
: likelihood eval time $\sim \mathcal{O}(a)$

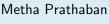
$$n_{\text{live}}$$
: number of live points $\sim \mathcal{O}(d)$

$$\mathcal{D}_{\mathsf{KL}}$$
: KL divergence from prior to posterior $\approx \log V_{\pi}/V_{\mathcal{P}} \sim \mathcal{O}(d)$

$$f_{\text{sampler}}$$
: efficiency of point generation region $\sim \mathcal{O}(e^{d/d_0})$ or path $\sim \mathcal{O}(d)$

- $T_{\mathcal{L}}$: likelihood eval time $\sim \mathcal{O}(d)$ Algorithmically improving f_{sampler} is only a fraction of the story!
 - $\triangleright \mathcal{D}_{KI}$ appears twice, so improvements here are quadratically important.
 - Gradients give you d more information.

 $ightharpoonup T \sim \mathcal{O}(d^4)$ whilst polynomial is far from ideal, athough progress can be made on all fronts.



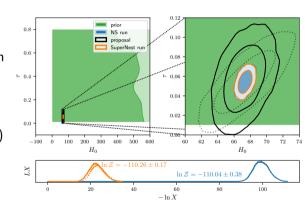
For constant "run quality" σ ,

$$T = T_{\mathcal{L}} \times n_{\text{live}} \times \mathcal{D}_{\text{KL}} \times f_{\text{sampler}}, \quad \sigma \approx \sqrt{\mathcal{D}_{\text{KL}} / n_{\text{live}}}$$

$$\Rightarrow \boxed{T = T_{\mathcal{L}} \times \sigma \times \mathcal{D}_{\text{KL}}^2 \times f_{\text{sampler}}}$$

so if you can reduce the KL divergence, then quadratic gains to be made

- This can be crudely achieved by choosing a narrower prior π^* and then correcting the evidence $\mathcal{Z} = \mathcal{Z}^* \frac{V_\pi^*}{V_\pi}$ (REACH [2210.07409])
- This can be made more sophisticated with SuperNest [2212.01760] & posterior repartitioning
- Recent application to gravitational waves by Metha Prathaban Ongoing work



Jax-based nested samplers

- very recent work over the past month
- ► Have implemented a nested slice sampler in blackjax [#755]
- 1 pip install git+https://github.com/handley-lab/blackjax@nested_sampling 2 import blackjax.ns.adaptive
- parallelised over vmapped likelihood & prior evaluations
- ▶ Plugs into jim [kazewong/jim] and ripple [2302.05329]
- interested in finding use-cases for such a sampler this week
- Also interested in understanding current limitations/strengths of jax/GPU GW programming

Conclusions

github.com/handley-lab

- ▶ **Next-generation inference:** Addressing challenges in astrophysical analysis, whether likelihoods are available or not.
- ▶ **Simulation-based inference (SBI):** Leveraging simulations and machine learning for posterior estimation and model comparison when only a forward model exists. Advantages include speed, implicit covariance handling, and ease of incorporating systematics.
- Marginal statistics: Efficient computation of nuisance-marginalised likelihoods using margarine. Applications to hierarchical modeling and building prior/likelihood libraries.
- ► Accelerated nested sampling: Improving the scaling of nested sampling with techniques like beta flows, posterior repartitioning, and SuperNest.
- ▶ Jax-based nested samplers: Introducing recent work on parallel nested sampling implementations in Jax for increased performance.

SGW relevant portions

- Marginal inference
 - ▶ Earth term/pulsar term from Stas Babak is ripe for a margarine based approach.
 - Linked to the SBI approach for GWB global fit that Bryan Zaldivar is working on.
- Nested sampling is an (underused) alternative for computing Bayes factors in the PTA community
 - current approaches are often Savage-Dicke density ratio/PTMCMC parallel tempering.
- Global fitting could benefit from accelerated approaches
 - jax-based GW codes are currently in development.
 - ▶ ML offers many opportunities for acceleration (emulation, proposals, . . .)