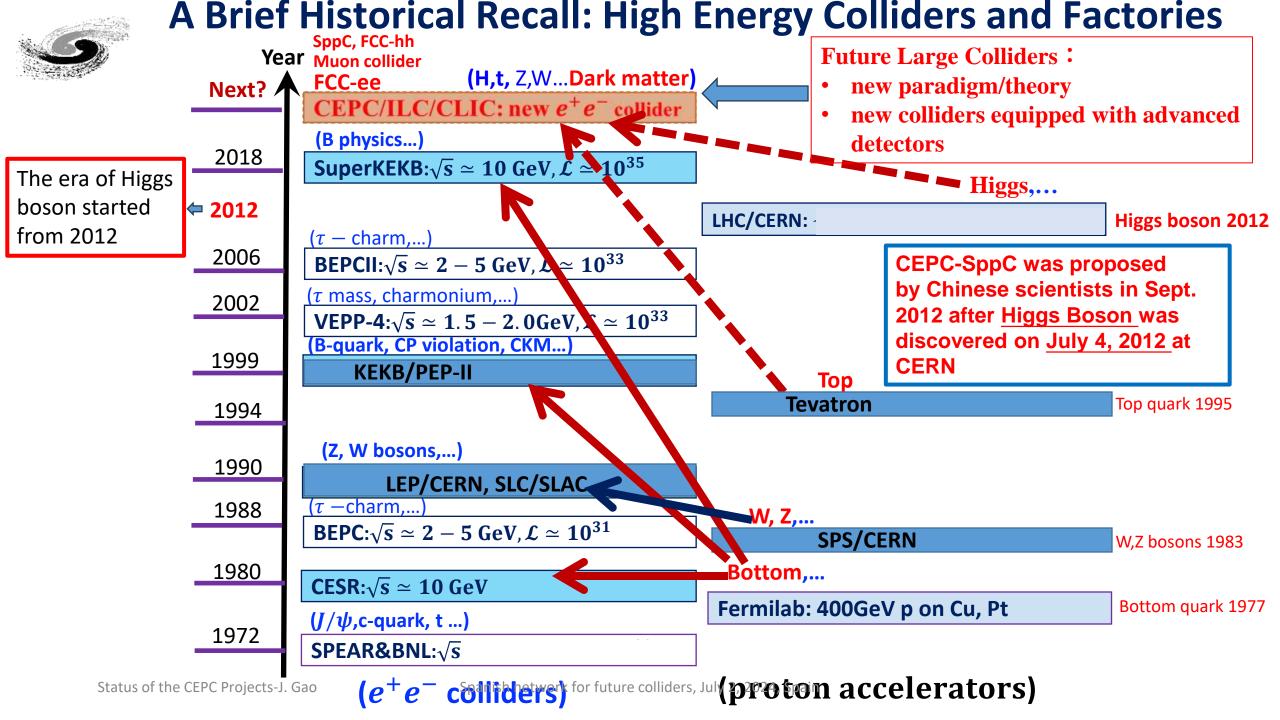
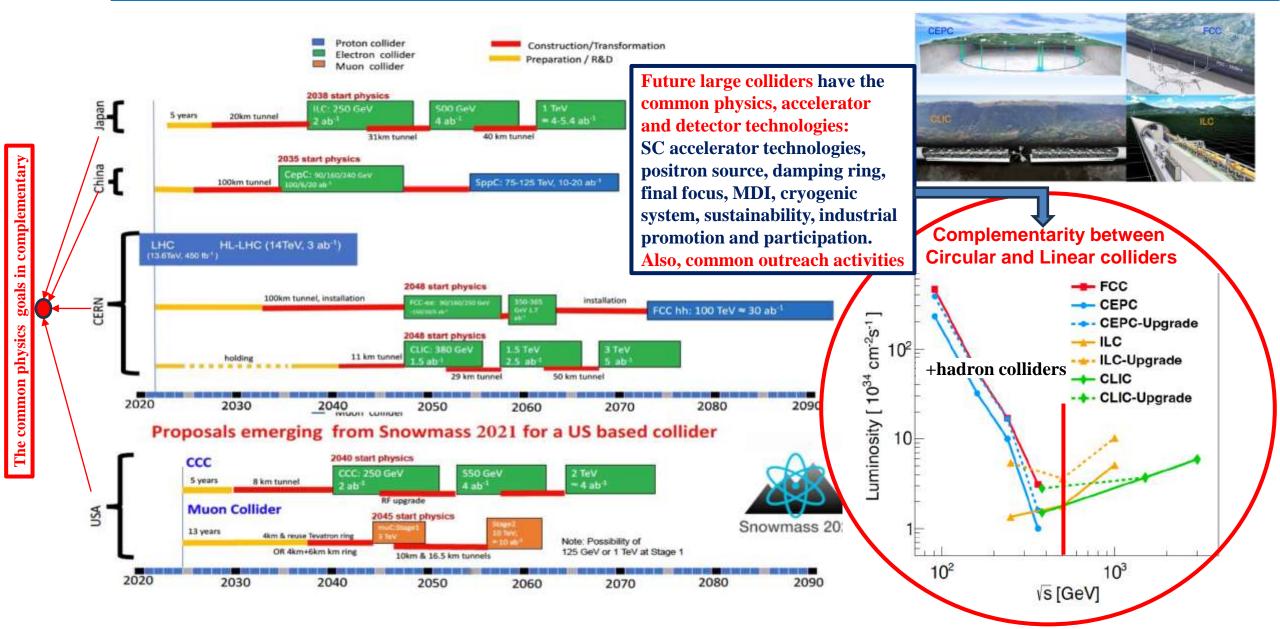


Status of the CEPC Project

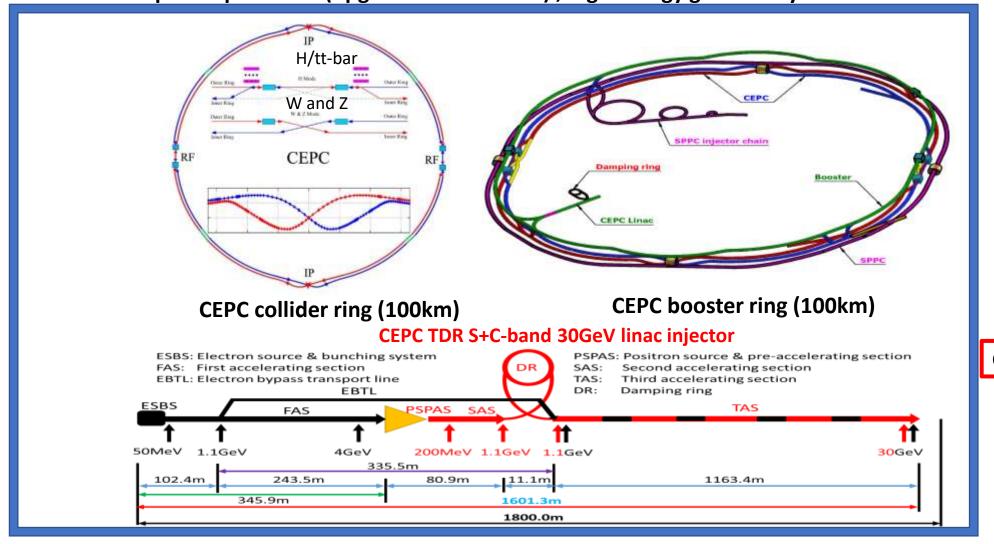
-Towards construction through EDR Phase

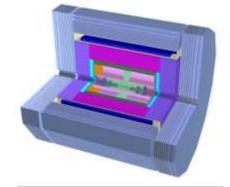
Jie Gao

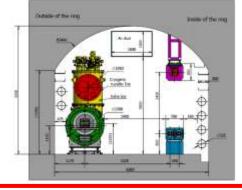

IHEP


Contents

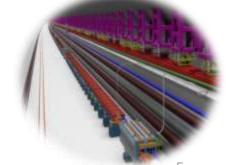
- Introduction
- CEPC accelerator EDR progress status based on TDR completion
- CEPC EDR goals, plans and development towards construction
- CEPC Detector R&D status
- CEPC and SppC compatibility
- CEPC industrial preparation and international collaborations
- Summary


Worldwide High Energy Physics Goal Timelines and Common Efforts

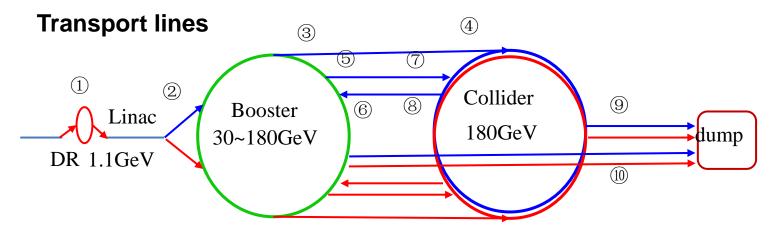




CEPC Higgs Factory and SppC Layout in EDR


CEPC as a Higgs Factory: H, W, Z, upgradable to ttbar, followed by a SppC (a Hadron collider) ~125TeV 30MW SR power per beam (upgradable to 50MW), high energy gamma ray 100Kev~100MeV

CEPC/SppC in the same tunnel


CEPC Accelerator System Parameters in TDR

Linac Booster Collider

Parameter	Symbol	Unit	Baseline
Energy	E_e / E_{e+}	GeV	30
Repetition rate	f_{rep}	Hz	100
Bunch number per pulse			1 or 2
Bunch charge		пС	1.5 (3)
Energy spread	σ_E		1.5×10 ⁻³
Emittance	\mathcal{E}_r	nm	6.5

		tt	H	I	W		Z		
		Off axis injection	Off axis injection	On axis injection	Off axis injection	Off axis	injection		
Circumfer.	km		-	-	100	-			
Injection energy	GeV		30						
Extraction energy	GeV	180	12	0.	80	45.5			
Bunch number		35	268	261+7	1297	3978	5967		
Maximum bunch charge	nC	0.99	0.7	20.3	0.73	0.8	0.81		
Beam current	mA	0.11	0.94	0.98	2.85	9.5	14.4		
SR power	MW	0.93	0.94	1.66	0.94	0.323	0.49		
Emittance	nm	2.83	1.2	26	0.56	0	.19		
RF frequency	GHz				1.3				
RF voltage	GV	9.7	2.1	17	0.87	0	.46		
Full injection from empty	h	0.1	0.14	0.16	0.27	1.8	0.8		

	Higgs	Z	W	$tar{t}$			
Number of IPs		2	2				
Circumference (km)		10	0.0				
SR power per beam (MW)	30						
Energy (GeV)	120	45.5	80	180			
Bunch number	268	11934	1297	35			
Emittance $\varepsilon_x/\varepsilon_y$ (nm/pm)	0.64/1.3	0.27/1.4	0.87/1.7	1.4/4.7			
Beam size at IP σ_x/σ_y (um/nm)	14/36	6/35	13/42	39/113			
Bunch length (natural/total) (mm)	2.3/4.1	2.5/8.7	2.5/4.9	2.2/2.9			
Beam-beam parameters ξ_x/ξ_y	0.015/0.11	0.004/0.127	0.012/0.113	0.071/0.1			
RF frequency (MHz)	650						
Luminosity per IP (10 ³⁴ cm ⁻² s ⁻¹)	5.0	115	16	0.5			

CEPC Technical Design Report (TDR) includes:

- 1) CEPC Accelerator TDR
- 2) CEPC Detector TDRrd (rd=reference design) will be released by June 2025

CEPC Operation Plan and Goals in TDR

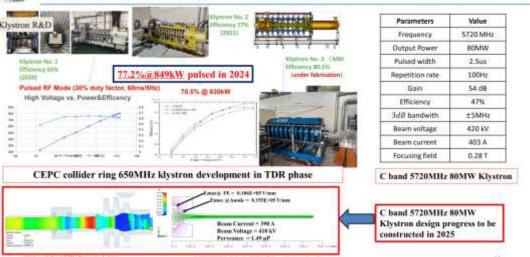
Particle	E _{c.m.} (GeV)	Years	SR Power (MW)	Lumi. per IP (10 ³⁴ cm ⁻² s ⁻¹)	Integrated Lumi. per year (ab ⁻¹ , 2 IPs)	Total Integrated L (ab ⁻¹ , 2 IPs)	Total no. of events
H*	240	10	50	8.3	2.2	21.6	4.3×10^6
			30	5	1.3	13	2.6×10^{6}
Z	91	2	50	192**	50	100	4.1×10^{12}
	91	۷	30	115**	30	60	2.5×10^{12}
W	160	1	50	26.7	6.9	6.9	2.1×10^{8}
	160	1	30	16	4.2	4.2	1.3 × 10 ⁸
$t \bar{t}$	360	5	50	0.8	0.2	1.0	0.6×10^6
			30	0.5	0.13	0.65	0.4×10^6

^{*} Higgs is the top priority. The CEPC will commence its operation with a focus on Higgs.

^{**} Detector solenoid field is 2 Tesla during Z operation, 3Tesla for all other energies.

^{***} Calculated using 3,600 hours per year for data collection.

CEPC Key Technology R&D Status in TDR



CEPC Key Technology R&D Status in TDR

CEPC Accelerator Main EDR Development: Klystrons

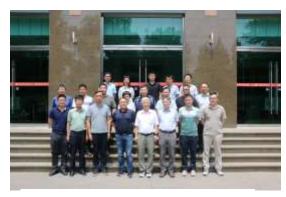
CEPC Booster 1.3 GHz 8 x 9-cell High Q Cryomodule

CEPC booster 1.3 GHz SRF R&D and industrialization in synergy with CW FEL projects.

Parameters	Horizontal test results	CEPC Booster Higgs Spec	LCLS-II, SHINE Spor	LCLS-II-HE Spec
Average usable CW E _{sec} (MV/m)	23.1	3.0×10 ¹⁶ @	2.7×10 ¹⁰ @	2.7×10 ^m @
Average Q ₀ @ 21.8 MV/m	3.4×10 ¹⁰	21.8 MV/m	16 MV/m	20.8 MV/m

Power Consumption of CEPC @ Higgs

		Higgs 30MW			Higgs 50MW										
SN	System	Collider	Booster	Linac	BTL	R	Surface building	Total	Collider	Booster	Linac	BTL	IR	Surface building	Total
17	RF Power Source	96.90	1.40	11.10				109.40	161.60	1.73	14.50			1	177.40
2	Crygenic system	9.72	1.71			0.14		11.57	9.17	1.77			0.14		11.08
3	Vacuum System	5.40	4.20	0.60				10.20	5.40	4.20	0.60				10.20
4	Magnet Power Supplies	44.50	9.80	2.50	1.10	0.30		58.20	44.50	9.80	2.50	1.10	0.30		58.20
5	Instrumentation	1.30	0.70	0.20				2.20	1.30	0.70	0.20				2.20
6	Radiation Protection	0.39		0.10				0.40	0.30		0.10				0.40
7	Control System	1.00	0.60	0.20				1.60	1.00	0.80	0.20				1.00
8	Experimental devices					4.00		4.00					4.00		4.00
9	Utilities	37.80	3.20	1.80	0.60	1.20		44.60	45.40	3.80	2.50	0.60	1.20		54.50
10	General services	7.20		0.30	0.20	0.20	12.00	19.90	7.20		0.30	0.20	0.20	12.00	19.90
	Total	204.12	21.61	16.80	1.90	5.84	12.00	262.27	276.87	22.60	20.50	1.90	5.84	12.00	339.71

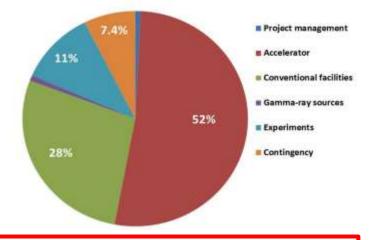

Various measures will be studied and implemented towards a green collider, as discussed in the Mini workshop of accelerator, Jan. 18-19, 2024, HKUST-IAS, Hong Kong https://indico.cem.ch/event/1335278/timetable/?view=standard

CEPC Accelerator International TDR Review and Cost Review June 12-16, and Sept. 11-15, 2023, in HKUST-IAS, Hong Kong

CEPC Accelerator TDR Review June 12-16, 2023, Hong Kong

Domestic Civil Engineering Cost Review, June 26, 2023, IHEP

CEPC Accelerator TDR Cost Review Sept. 11-15, 2023, Hong Kong



9th CEPC IAC 2023 Meeting Oct. 30-31, 2023, IHEP

Table 12.1.2: CEPC project cost breakdown, (Unit: 100,000,000 yuan)

Total	364	100%
Project management	3	0.8%
Accelerator	190	52%
Conventional facilities	101	28%
Gamma-ray beam lines	3	0.8%
Experiments	40	11%
Contingency (8%)	27	7.4%

Distribution of CEPC Project total TDR cost of 36.4B RMB(~5.2BUSD)

CEPC accelerator TDR has been completed and formally released on December 25, 2023:

http://english.ihep.cas.cn/nw/han/y23/202312/t20231229_654555.html

CEPC accelerator TDR has been published formally in Journal Radiation Detection Technology and Methods (RDTM) on June 3, 2024:

DOI: 10.1007/s41605-024-00463-y

https://doi.org/10.1007/s41605-024-00463-y

CEPC Engineering Design Report (EDR) Goal

2012.9 CEPC proposed

2015.3 Pre-CDR

2018.11 CDR

2023.10 TDR

CEPC Proposal
CEPC Detector
reference design

2025

2027 15th five year plan

EDR Start of construction

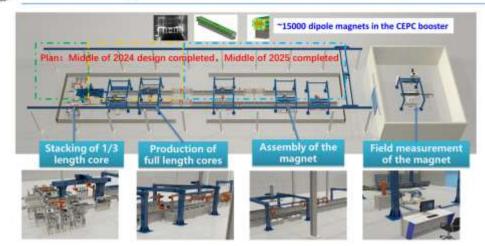
CEPC EDR Phase General Goal: 2024-2027

After completion CEPC accelerator TDR in 2023, CEPC accelerator will enter into the Engineering Design Report (EDR) phase (2024-2027), which is also the preparation phase with the aim for CEPC proposal to be presented to and selected by Chinese government around 2025 for the construction start during the "15th five year plan (2026-2030)" (for example, around 2027) and completion around 2035 (the end of the 16th five year plan).

CEPC EDR includes accelerator and detector (TDRrd)

CEPC detector TDR reference design (rd) will be released by June 30, 2025

CEPC Accelerator EDR goals, scope and the working plan (preliminary) of 35 WGs summarized in a documents of 20 pages, EDR progress be reviewed by IARC in Sept. 18-20, 2024

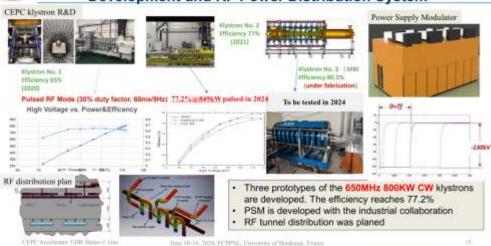


CEPC Accelerator Development in EDR-1

9

Production line of NES cooling, spraying

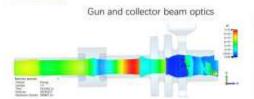
CEPC Magnet Automatic Production Line in EDR



AGV/Automatic Guided Vehicle) transport

Plan: Middle of 2024 design completed, Middle of 2025 to be completed

7-axis robot for assembling


CEPC 650MHz High Efficiency High Power Klystron Development and RF Power Distribution System Power Supply Media

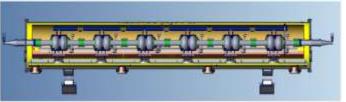
S CEPC 80MW C-band Klystron Development in EDR

Plan: Middle of 2024 design completed, March of 2025 high power test

Perameters	Value
Frequency	5712 MHz
Output Power	BOMW
Drive power	350W
Gain	54 dB
Efficiency	47%
3d8 bandwith	±10MHz
Beam voltage	420 kV
Beam current	403 A
Focusing field	-0.27 T maximum

Beam dynamic with CST code

Mechanical configuration



CEPC Accelerator Development in EDR-2

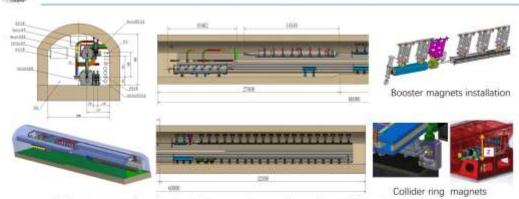
9

CEPC 650MHz SC Full Size Cryomodule Development in EDR

CEPC collider ring 650MHz 2*cell short test module has been completed in TDR phase

The collider Higgs mode for 30 MW SR power per beam will use 32 units of 11 m-long collider cryomodules will contain six 650 MHz 2-cell cavities, and therefore, a full size 650 MHz cryomodule will be developed in EDR

Plan: Middle of 2024 design completed, End of 2025 to be completed

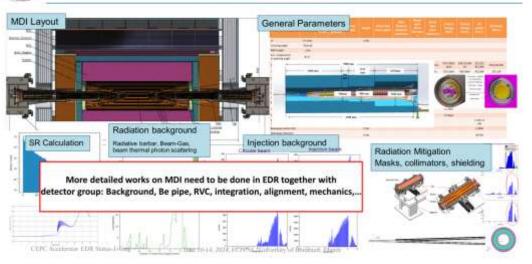

CEPC Accelerator EDH Status - J. Gao.

Lone 10 -14, 2024, FCFFFIC, University of Burdinius, Franci

- 13

9

CEPC Mockup Tunnel in EDR


A 60 m long tunnel mockup, including parts of arc section and part of RF section

To demonstrate the inside tunnel alignment and installation, especially for booster installation on the roof of the tunnel

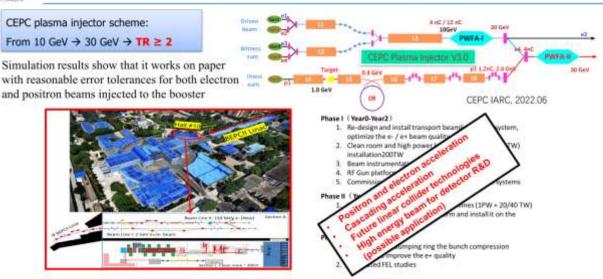
Plan: Middle of 2025 to be completed

9

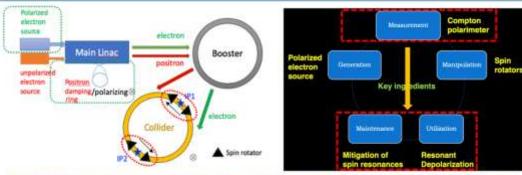
CEPC MDI in EDR

9

CEPC Alignment and Installation Plan in EDR


CEPC Accelerator Alternative Options

CEPC Plasma Injector (alternative option) and TF Plan.


CEPC Polarization Studies (alternative option)

PWFA/LWFA TF based on BEPC-II Linac and HPL has been founded by CAS 90M RMB in Sept. 2023

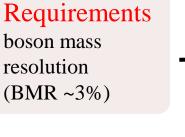
Plasma accelerator technology development towards CEPC injector and future e+e- linear colliders

Both the transverse and longitudinal polarization and Z, W, are feasible (Higgs under study)

- Implement the lattice design to accommodate polarized beams: spin rotator, wiggler, Compton polarimeters, dumping ring and booster design, etc.
- · R&D of Compton polarimeter, polarized electron sources, spin rotator, etc.
- · Simulate the process and effects of errors
- · Carry out experiments at BEPCII & HEPS booster

Status of the CEPC Projects-J. Goo

LCWS2024, July 8, 2024, Tokyo University, Japan



Polarization beam technology development towards precision physics experiments

CEPC Detector: Idea of the "4th Concept" towards Reference Design

CEPC
Detector
TDRrd
(rd=refe
rence
design)
will be
released
in June,
2025

→ μvqq (ud) Cleaned

→ vvgg Cleaned

100 120

m, (GeV)

80

140

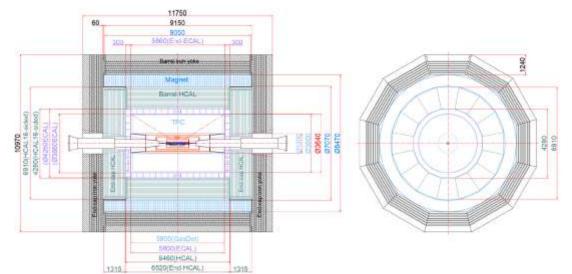
0.06

0.05

0.04

0.03

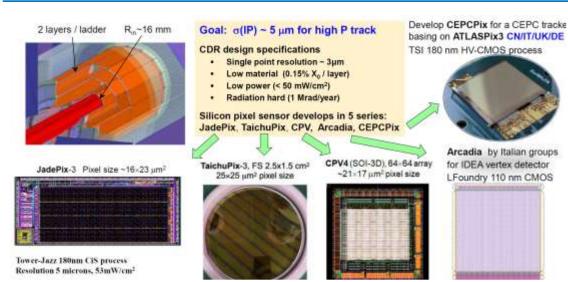
0.02

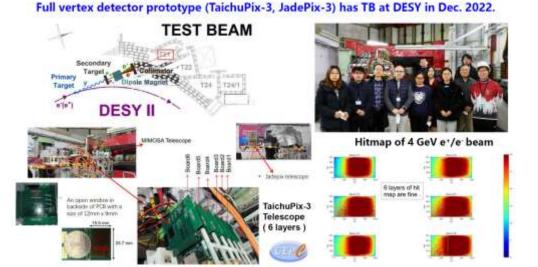

0.01

➤ Support Particle flow witl

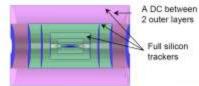
- ➤ High granularity
- ➤ High precision

Novel detector design based on PFA calorimeter to improve the BMR from 4% to 3%

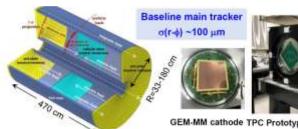


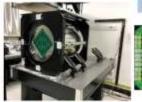

Detector	Key parameter	World level	4 th concept
PFA based EM calorimeter	EM shower E resolution	~20%/√E	$<3\%/\sqrt{E}$
PFA based Hadron calorimeter	Single hadron E resolution	~50%/√E	~40%/√E

- > Silicon combined with gaseous chamber as the tracker and PID
- > ECAL based on crystals with timing for 3D shower profile for PFA and EM energy
- Scintillation glass HCAL for better hadron sampling and energy resolution


CEPC Detector R&D: Vertex Detector and Tracker (examples)

- Cluster counting method, or dN/dx, measures the number of primary ionization
- Can be optimized specifically for PID: larger cell size, no stereo layers, different gas mixture.
- Garfield++ for simulation, realistic electronics, peak finding algorithm development.

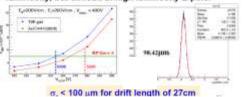



 Signal - Noise

Mamentum (GeV/c)

IHEP and Italian INFN groups have close collaboration and regular meetings. IHEP joined the TB (led by INFN group) in 2021 and 2022

Test of Prototype TPC



GEM-MM cathode TPC Prototype + UV laser beams

Low power FEE ASIC

Challenge: Ion backflow (IBF) affects the resolution. It can be corrected by a laser calibration at low luminosity, but difficult at high luminosity Z-pole.

SppC Collider Parameters in TDR

-Parameter list (updated Feb. 2022)

Main parameters

wan parameters		
Circumference	100	km
Beam energy	62.5	TeV
Lorentz gamma	66631	
Dipole field	20.00	T
Dipole curvature radius	10415.4	m
Arc filling factor	0.780	
Total dipole magnet length	65442.0	m
Arc length	83900	m
Total straight section length	16100	m
Energy gain factor in collider rings	19.53	
Injection energy	3.20	TeV
Number of IPs	2	
Revolution frequency	3.00	kHz
Revolution period	333.3	μs
Physics performance and beam param	eters	
Initial luminosity per IP	4.3E+34	$\mathrm{cm}^{-2}\mathrm{s}^{-1}$
Beta function at initial collision	0.5	m
Circulating beam current	0.19	A
Nominal beam-beam tune shift limit per	0.015	
Bunch separation	25	ns
Bunch filling factor	0.756	
Number of bunches	10080	
Bunch population	4.0E+10	
Accumulated particles per beam	4.0E+14	

Lattice of SPPC

SppC is compatible with CEPC in the same tunnel

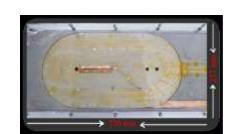
Ecm=125TeV with dipole field of 20T

Dynamic Aperture

sigma_x

400

IP


IBS Technology for High Field Magnets

R&D under way

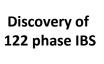
Z. Zhao IBS (T_c 55K)

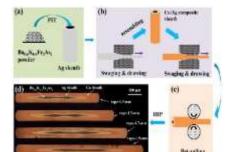
100-m 7-core IBS tape fabricated $J_e = 100 \text{ A/mm}^2$ @ 10 T, 4.2 K

IBS solenoid at 32 T
Racetrack at 10 T
1.3 kA transposed
cable $J_e > 450 \text{ A/mm}^2$ @ 10 T, 4.2 K

2008.04

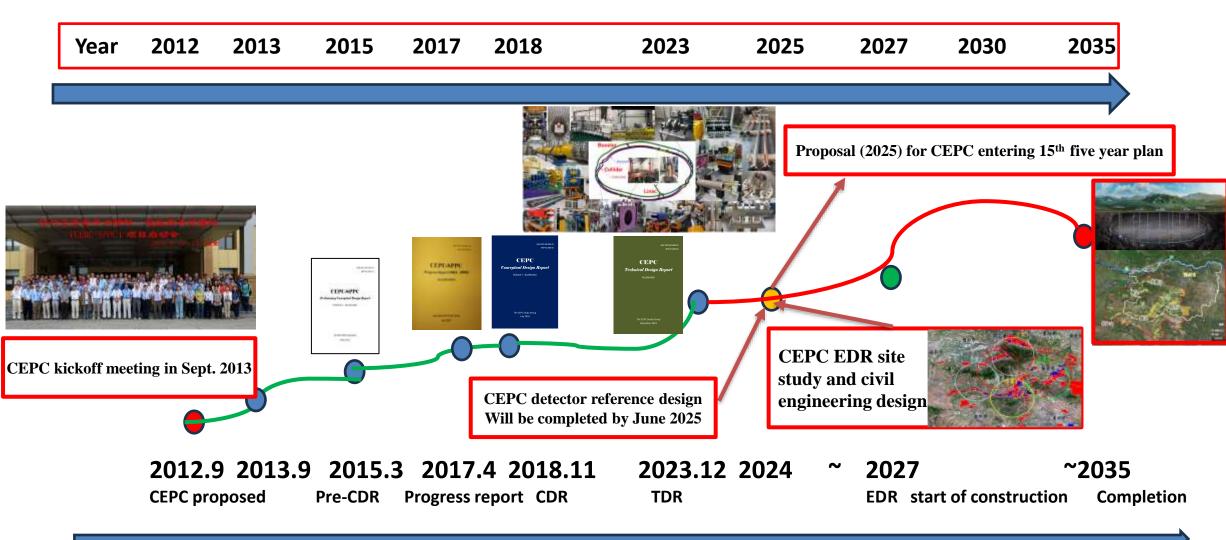
2008.09


2020

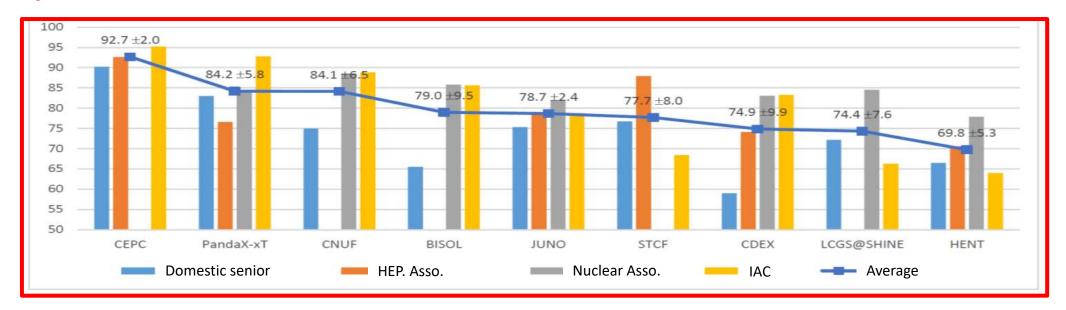


Discovery of IBS

H. Hosono IBS (T_c 26K)


IBS solenoid at 24 T Racetrack at 8 T $J_e = 300 \text{ A/mm}^2$ @ 10 T, 4.2 K

J_e of IBS expected to be similar as ReBCO in 2020s with better mechanical properties and lower cost, ready for mass applications in ultra high field magnets


CEPC Evolution Milestones and Timeline

CEPC Project Development towards construction

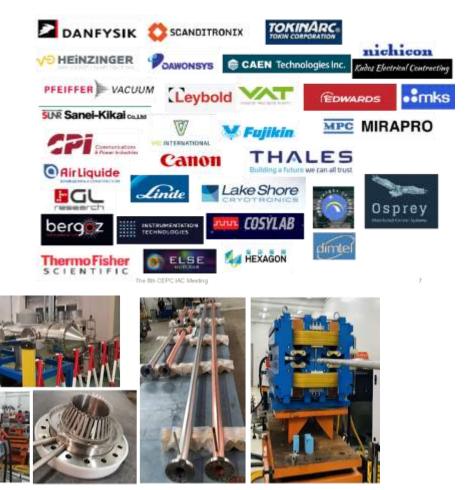
- TDR has been completed (review + revision) to be formally released on Dec. 25, 2023.
- CAS is planning for the 15th 5-years plan for large science projects, and a steering committee has been established, chaired by the president of CAS.
- High energy physics and nuclear physics, is one of the 8 groups (fields).
- CEPC is ranked No. 1, with the smallest uncertainties, by every evaluation committee both domestic and international one among all the collected proposals.
- A final report has been submitted to CAS for consideration.
- The above mentioned actual process is within CAS and the following national selection process will be decisive.

CEPC International Collaboration-1

CEPC attracts significant International participation and collaborations

Accelerator TDR report: 1114 authors from 278 institutes (including 159 International Institutes, 38 countries) arXiv: 2312.14363

- More than 20 MoUs have been signed with international institutions and universities
- CEPC International Workshop since 2014
- EU-US versions of CEPC WS since 2018
- Annual working month at HKUST-IAS (mini workshops and HEP conference) since 2015

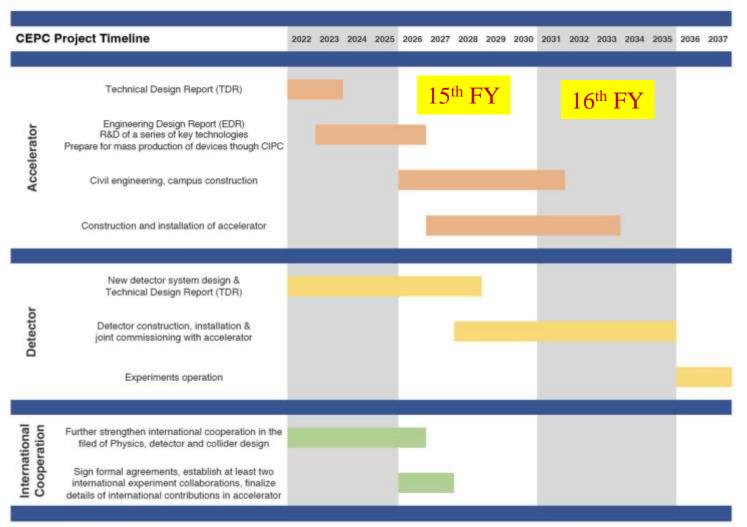

Participating and Potential Collaborating Companies in China and Worldwide

	System
1	Magnet
2	Power supplier
3	Vacuum
4	Mechanics
5	RF Power
6	SRF/ RF
7	Cryogenics
8	Instrumentation
9	Control
10	Survey and alignment
11	Radiation protection
12	e-e+Sources

CEPC Industrial Promotion Consortium (CIPC, established in Nov. 2017)

Potential international collaborating suppliers and partners worldwide

CEPC in Synergy with other Accelerator Projects in China


Project name	Machine type	Location	Cost (B RMB)	Completion time
CEPC	Higgs factory Upto ttar energy	Led by IHEP, China	36.4 (where accelerator 19)	Around 2035 (starting time around 2027)
BEPCII-U	e+e-collider 2.8GeV/beam	IHEP (Beijing)	0.15	2025
HEPS	4 th generation light source of 6GeV	IHEP (Huanrou)	5	2025
SAPS	4th generation light source of 3.5GeV	IHEP (Dongguan)	3	2031 (in R&D, to be approved)
HALF	4th generation light source of 2.2GeV	USTC (Hefei)	2.8	2028
SHINE	Hard XFEL of 8GeV	Shanghai-Tech Univ., SARI and SIOM of CAS (Shanghai)	10	2027
S3XFEL	S3XFEL of 2.5GeV	Shenzhen IASF	11.4	2031
DALS	FEL of 1GeV	Dalian DICP	-	(in R&D, to be approved,)
HIAF	High Intensity heavy ion Accelerator Facility	IMP, Huizhou	2.8	2025
CIADS	Nuclear waste transmutation	IMP, Huizhou	4	2027
CSNS-II	Spallation Neutron source proton injector of 300MeV	IHEP, Dongguan	2.9	2029

The total cost of the accelerator projects under construction:39B RMB more than CEPC cost of 36.4B RMB

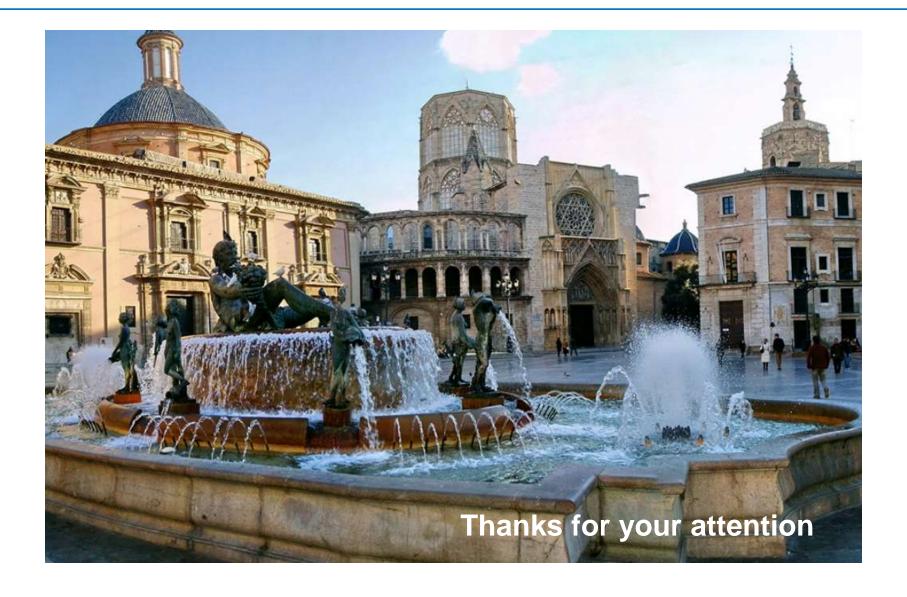
CEPC Planning, Schedule and Teams

TDR (2023), EDR(2027), start of construction (~2027)

CEPC team (domestic)

CEPC accelerator and detector/experiments/theory group is an highly experienced team with strong international collaboration experiences. It has demonstrated its expertise and achievements is the following related projects, both domestic and international ones, such as:

BEPC-BEPCII (BES-BESIII), BFELP, CSNS, ADS, HEPS, LEP, LHC, LHCb, ILC, EXFEL, HL-LHC, BELLE, BELLE-II, CLEO, Daya Bay, JUNO, etc.


CEPC international partners and collaborators

Summary

- CEPC addressed most pressing & critical science problems in particle physics
- Accelerator design and technology R&D are reaching maturity, TDR completed in 2023, ready for construction in 3-5 years
- Reference detector TDR under preparation, to be completed by 2025 for the proposal of the 15th 5-year plan
- A strong and experienced team, backed by IHEP and international teams
- Schedule will follow China's 15th 5-year plan, Call for collaboration and proposals once CEPC is (preliminary) approved
- Continue to work with government and funding agencies to get support
- International collaborations are mostly welcome.

