High Resolution PET detector based on Continuous Crystal and SiPMs
Index

- Introduction
- Materials
 - Detectors (C. C. +SiPM)
 - Prototype PET scanner
- Characterization of detectors
 - Energy resolution
 - Time resolution
 - Image reconstruction
- Monte Carlo simulations
 - GATE simulation toolkit
 - Simulation of the prototype
 - Validation and extension of the MC to other studies
 - Simulation of the detector with optical photons
 - Position determination measurements for the validation of M.C
- Conclusions and Future work
Introduction

- Physical base of detection

- Type of coincidence events
 - True \((T)\)
 - Scatter \((S)\)
 - Random \((R)\)

- Other degradation effects
 - Acolinearity, positron Range, Detector intrinsic resolution
 - Depth of Interaction (DOI) uncertainty
Introduction

Why Continuous Crystal and SiPM as photodetector?

- Sensitivity
 - Higher efficiency than pixellated at lower cost

- DOI (Depth of Interaction)
 - Some methods provide information of DOI
 - reduce parallax effects near the edges of FOV

- Spatial resolution
 - Accurate position determination methods
 - It is not easy (Work in progress)

- SiPM pixels small
Scintillation Crystal

Properties
- Material: LYSO (Ce)
- Continuous Crystal
- Thickness = 5, 10 mm
- White painted

<table>
<thead>
<tr>
<th></th>
<th>NaI(Tl)</th>
<th>BGO</th>
<th>LYSO(Ce)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{eff}</td>
<td>50.6</td>
<td>75</td>
<td>63</td>
</tr>
<tr>
<td>ρ (g/cm3)</td>
<td>3.67</td>
<td>7.13</td>
<td>7.1</td>
</tr>
<tr>
<td>τ (ns)</td>
<td>230</td>
<td>300</td>
<td>40</td>
</tr>
<tr>
<td>L_m(ph/MeV)</td>
<td>45000</td>
<td>8200</td>
<td>30000</td>
</tr>
</tbody>
</table>

- Continuous Crystals vs pixellated Crystals
 - Higher Efficiency
 - More difficult position determination

Quick decay
High luminosity
Materials

- Photodetector: Silicon Photomultiplier (SiPM)
 - Properties
 - High gain
 - Compactness
 - Insensitivity to magnetic fields
 - Fast response properties
 - Description of the SiPM matrix
 - 8x8 pixels (SiPMs)
 - Each pixel
 - size is 1.5 by 1.4 mm
 - 840 microcells (G.M. APD)
 - Signal α deposited energy
 - Readout on two sides

Ane Etxebeste Barrena
Materials

- PET Detector (C. C. + SiPMs)
 - Printed Circuit Board (PCB)
 - Support
 - Bias
 - Connect pixels to channels of the readout electronic board
 - Scintillator Crystal
 - SiPMs matrix

- Bias

- 64 channels
Materials

- PET Tomograph prototype
 - 2 Head detectors
 - 6 steps, 30°/step
 - FOV (12x12x12 mm³)
 - Parameters
 - Coincidence Window: 25ns
 - Dead time: 80μs (due to the readout)

![Diagram of PET Tomograph prototype](image)

- Radioactive Source holder
- Methacrylate frame

- 45.8 mm
Characterization of the detectors

- Energy Resolution

\[R(\%) = \frac{FWHM}{\text{centroide}} \times 100 \]

\[R(\%) = (21.2 \pm 0.2)\% \]

Energy resolution: 21% FWHM at 511keV
Characterization of the detectors

Time Resolution

FWHM = (12.82 ± 0.22) ns

Timing resolution relatively poor
Trigger given by OR of all channels

Set up

Ane Etxebeste Barrena

High Performance PET detector based on Continuous Crystal and SiPM
Charaterization of the detectors

- Tomographic Reconstruction of Real data
 - Two source (d=1mm)

 ![Sagittal](image1.png) ![Transaxial](image2.png)

- Sub-millimeter point-source Resolution
Monte Carlo Simulations

- **GATE** (Geant4 Application for Emission Tomography)

 - GATE is a Monte Carlo simulation toolkit
 - Dedicated to Medical imaging and radiotherapy
 - Based on Geant4 libraries

 - Advantages
 - User-friendly scripted interface
 - Management of time dependent phenomena
 - Movements of volumes (rotation of head detector)
 - Acquisition time
 - Decay of radioactive source

 - Disadvantages
 - less flexible than GEANT4
Monte Carlo Simulations

- Simulation of the prototype
 - Detector head
 - LYSO crystal (12x12x5 mm3)
 - Rotation (30°/step)
 - Source
 - 511keV gamma
 - Back-to-back
 - Electronic chain
 - Energy blurring (21%)
 - Time resolution (12.82ns)
 - Coincidence chain
 - Window (25 ns)
 - Dead time (80 us)
 - Acquisition time
 - Time step=1h
Monte Carlo Simulations

Verification of M. C. simulation of the prototype

- Superposition of the energy spectrum and the time resolution

\[R_{\text{simulated}} = (21.15 \pm 0.12)\% \]
\[R_{\text{experimental}} = (21.2 \pm 0.2)\% \]
\[\text{FWHM}_{\text{simulated}} = (12.82\pm0.03)\text{ns} \]
\[\text{FWHM}_{\text{experimental}} = (12.82 \pm 0.22)\text{ns} \]
High Performance PET detector based on Continuous Crystal and SiPM

Ane Etxebeste Barrena

Monte Carlo Simulations

Verification of M. C. simulation of the prototype

- Reconstruction

Pixel size 0.5mm
- $D_{\text{source}} = 1\text{mm}$
- $\Delta E = (360-660) \text{ keV}$

FWHM$_{\text{tot}} = (1.0696 \pm 0.0008) \text{ mm}$

FWHM$_{\text{transversal}} = (0.6176 \pm 0.0005) \text{ mm}$

FWHM$_{\text{coronal}} = (0.734 \pm 0.004) \text{ mm}$

19% FWHM larger off centre source
Monte Carlo Simulations

Random study in Continuous and Pixelated Crystals

- Simulations with different type of crystals

Continuous

LET=400 keV

Pixelated

LET=400 keV

Two detector heads in coincidence

Random estimation methods

- Single Rate (SR) method
 \[R^{SR} = 2 \tau S_1 S_2, \]
 \(\tau = \text{coincidence window, } S = \text{singles rate in detector i} \)

- Delayed Coincidence Window (DW) method
 - Second coincidence window in parallel, shifted in time
 - Time offset = 800ns \(\tau = 25 \text{ns} \)
Monte Carlo Simulations

Both methods overestimate random rate
DW better than SR
SR worse applied to C.C.

Objective: Improve SR method
working on a theoretical model to understand
Simulation of the detector with optical photons

- More Realistic simulation of detector performance

 - Physical processes

 - Interaction of annihilation photons within the crystal
 - Scintillation process
 - Transport of scintillation photons through the crystal
 - Reflection of scintillation photons at boundaries
 - Optical absorption of the photons in Silicon SiPM
Simulation of the detector with optical photons

- Geometry for 5mm crystal thickness

![Diagram of detector geometry]

- Air
- LYSO(Ce)
- Meltmount
- Epoxy coating
- SiPM matrix
- Pixel (Silicon)
- 5 mm
- 12 mm
- d
- 0.05 mm
- 0.24 mm
- 0.4 mm
Simulation of the detector with optical photons

- M. C. simulations with optical photons
 - Unified model to modelate reflection of photons between to dielectric media
 - Type of Surfaces employed
 - dielectric-dielectric
 - dielectric-metal (pixel-SiPM)
 - Materials

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (g/cm3)</th>
<th>Refractive Index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>1.29</td>
<td>1.00028</td>
</tr>
<tr>
<td>LYSO(Ce)</td>
<td>7.10</td>
<td>1.82</td>
</tr>
<tr>
<td>Meltmount</td>
<td>1.036</td>
<td>1.704</td>
</tr>
<tr>
<td>Epoxy</td>
<td>1.0</td>
<td>1.67</td>
</tr>
</tbody>
</table>
Simulation of the detector with optical photons

- Position determination measurements for the validation M.C
- Set up

Detector in coincidence with a 1mm x 1mm x 10mm crystal coupled to 1 MPPC
High Performance PET detector based on Continuous Crystal and SiPM

Simulation of the detector with optical photons

- Flood map of the detector
- 8 Dead pixels in the detector
Simulation of the detector with optical photons

Monte Carlo simulations vs Real data \textit{WS_5mm}

- Point1 (-1.4,0.8) mm, Point3 (-3.75,3-75) mm
- Red lines (Real data), Black lines (simulation) (in progress)
Simulation of the detector with optical photons

- Monte Carlo simulations vs Real data

Real Data
- Sub-millimeter resolution
- (0.7 mm FWHM)

Simulation
Simulation of the detector with optical photons

- Monte Carlo simulations vs Real data WS_10mm

- Point1 (-1.4,0.8) mm
- Red lines (Real data)
 Black lines (simulation)

(in progress)
Conclusions and Future work

Conclusion

- Fully functioning of C.C./ SiPM detector
 - DOI estimation (in progress)
 - Sub-millimeter point-source spatial resolution

Future work

- Optimize simulation parameters
- Improve DOI estimation
- Development of a full ring prototype
¡¡Thank you for your attention!!