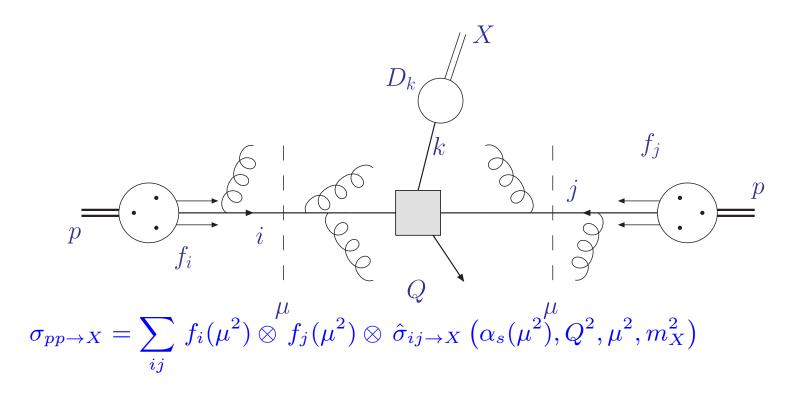
# Including Coulomb corrections $t\bar{t}$ production

**Sven-Olaf Moch** 

Universität Hamburg

## **Plan**


#### Coulomb corrections

Top-quark pair production near threshold at LHC
 Y. Kiyo, J. H. Kühn, S. M., M. Steinhauser and P. Uwer arxiv:0812.0919

## Phenomenology update

Work in progress
 M.V. Garzelli, G. Limatola, S. M., M. Steinhauser and S. Zenaiev

## **QCD** factorization



- Factorization at scale  $\mu$ 
  - separation of sensitivity to dynamics from long and short distances
- Hard parton cross section  $\hat{\sigma}_{ij\to X}$  calculable in perturbation theory
  - ullet cross section  $\hat{\sigma}_{ij o k}$  for parton types  $i,\,j$  and hadronic final state X
- Non-perturbative parameters: parton distribution functions  $f_i$ , strong coupling  $\alpha_s$ , particle masses  $m_X$ 
  - known from global fits to exp. data, lattice computations, . . .

## Progress in theory

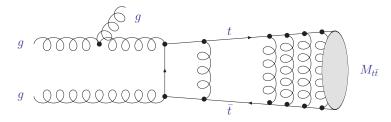
## Challenge

- Improve theory predictions and reduce theoretical uncertainty
  - hard scattering cross section  $\hat{\sigma}_{ij\to X}$
- Beyond (N)NLO focus on kinematical limits
  - high energy (boosted) regime
  - soft and collinear kinematics
  - Coulomb corrections

### Threshold logarithms

- Sudakov logarithms in velocity  $eta_{tar{t}} = \sqrt{1 4m^2/s}$  of heavy quarks
  - all order resummation of large logarithms  $\alpha_s^n \ln^{2n}(\beta) \longleftrightarrow \alpha_s^n \ln^{2n}(N)$  in Mellin space (renormalization group equation) Kidonakis, Sterman '97; Bonciani, Catani, Mangano, Nason '98; Kidonakis, Laenen, S.M., Vogt '01; ...

#### Coulomb corrections

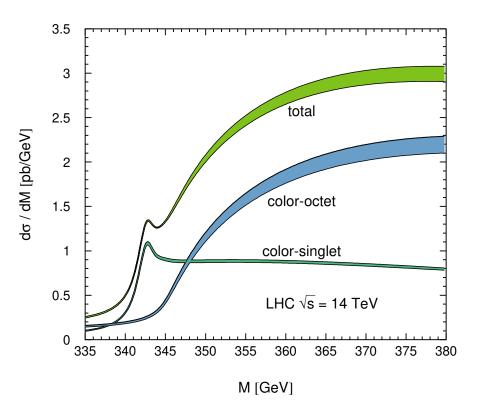

• Singular contributions in  $(\alpha_s/\beta_{t\bar{t}})^n$  at n-loops

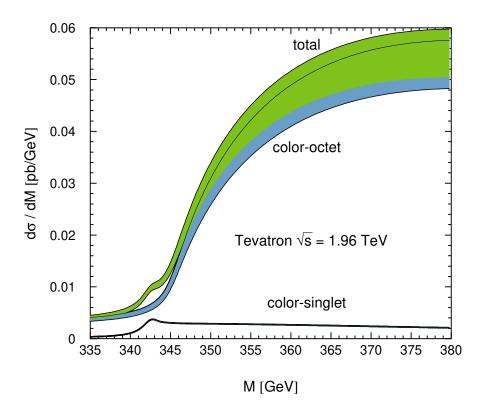
## Coulomb corrections

- Heavy quark production very close to threshold
  - resummation of Coulomb corrections  $\sim 1/eta_{t\bar{t}}$  to all orders
  - factorization in non-relativistic QCD Bodwin, Braaten, Lepage '95
- ILC: much work (theory and phenomenology)

[many people]

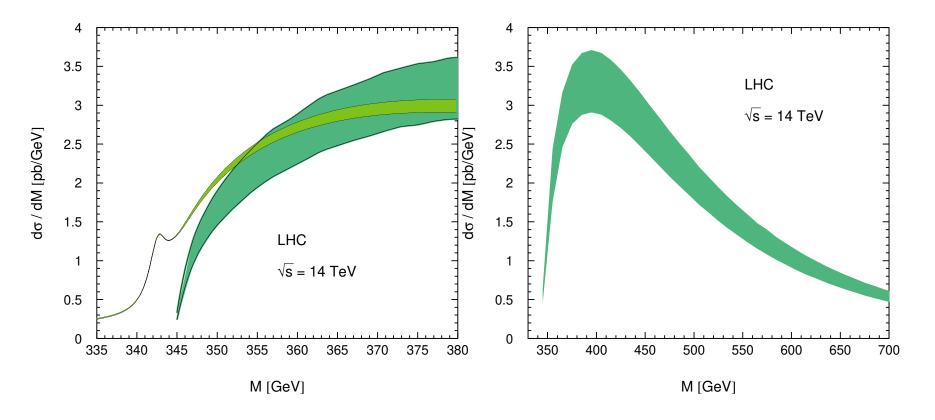
- fixed center-of-mass energy S allows threshold scan at  $\sqrt{S} \sim 2m_t$
- ullet dominant color-singlet production  $o tar t \left( {}^3S_1^{[1]} 
  ight)$
- LHC: effects on top-mass measurement Hagiwara, Sumino, Yokoya '08
  - complete NLO NRQCD result Petrelli, Cacciari, Greco, Maltoni, Mangano '97 (corrections by Hagiwara, Sumino, Yokoya '08)
  - NLL resummation Cacciari '99
  - detailed study in NRQCD assembling existing knowledge at NLO/NLL Kiyo, Kühn, S.M., Steinhauser, Uwer '08
  - bound-state effects on kinematical distributions Sumino, Yokoya '10





#### Coulomb corrections

- Recall master equation  $\sigma_{pp o tar t} = \sum_{ij} f_i \otimes f_j \otimes \hat{\sigma}_{ij o tar t}$
- Convolution with PDFs  $f_i \otimes f_j$ 
  - top-quark pairs produced as color-singlets and color-octets  $o tar t\left({}^{2s+1}S_J^{[1,8]}
    ight)$
  - threshold at  $M_{t\bar{t}}\sim 2m_t$  with  $M_{t\bar{t}}=(p_t+p_{\bar{t}})^2$
- NRQCD factorization of partonic cross section into  $\hat{\sigma}_{ij \to t\bar{t}} = F_{ij \to T} \otimes G(M_{t\bar{t}})$ 
  - free  $t\bar{t}$  production rate F
  - ullet evolution factor into "boundstate" (Green's function) G
- Differential kinematics  $\frac{d\hat{\sigma}_{ij o tar{t}}}{dM_{tar{t}}^2} = F_{ij o T} imes \Im G^{[1,8]}(M_{tar{t}})$ 
  - factorization of soft-collinear dynamics (real emission radiation)
  - matching at NLO and NLL resummation
- Effective theory formulation Beneke, Falgari, Schwinn '09; Beneke, Kiyo, Schuller '13

#### Invariant mass distristribution


- $d\sigma/dM_{t\bar{t}}$  at LHC driven by large gluon luminosity
  - $gg o t ar t \left( {}^1S_0^{[1]} 
    ight)$  dominates
- $d\sigma/dM_{t\bar{t}}$  at Tevatron with small bound state effects
  - $q\bar{q}$ -channel large with only color-octet configurations only
- Validity of Coulomb resummation restricted to  $dM_{t\bar{t}} \geq 335$  GeV





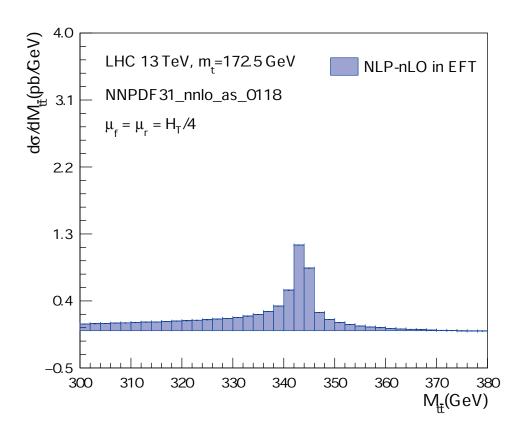
### Matching to fixed order

- $d\sigma/dM_{t\bar{t}}$  with at LHC
  - compare NLL resummed result in NRQCD with (plain vanilla) NLO (use HVQMNR Mangano, Nason, Ridolfi '92 for matching)
  - consistency check OK
- Resolution of bound state effects in  $d\sigma/dM_{t\bar{t}}$  at LHC difficult (requires rather fine binning)



## Recent phenomenology

- Resummation (small  $\beta_{t\bar{t}}$ ) in SCET


  Wan-Li Ju, Guoxing Wang, Xing Wang, Xiaofeng Xu, Yongqi Xu,Li Lin Yang '20
  - ullet double-differential distribution in  $M_{tar t}$  and  $y_{tar t}$
- Signatures of toponium formation
   Fuks, Hagiwara, Kai Ma, Ya-Juan Zheng '21
  - ullet color-singlet spin- $oldsymbol{0}$  toponium bound state  $\eta_t$  of  $tar{t}$
  - di-lepton decay  $gg o \eta_t o lar l bar b 
    u ar 
    u$

#### Comment on 2004.03088

• Resummation effects in top quark mass determination with claimed shift of  $m_t \sim 1.4 \; {\rm GeV}$ 

Wan-Li Ju, Guoxing Wang, Xing Wang, Xiaofeng Xu, Yongqi Xu, Li Lin Yang '20

• Contributions from resummation in region  $300 \text{ GeV} \leq M_{t\bar{t}} \leq 380 \text{ GeV}$  at the 13 TeV LHC



#### Comment on 2102.11281

• Signatures of spin-0 toponium bound state  $\eta_t$  decay

Fuks, Hagiwara, Kai Ma, Ya-Juan Zheng '21

- theory estimate based on Sumino, Yokoya '10
- di-lepton decay  $gg o \eta_t o l \bar{l} b \bar{b} \nu \bar{\nu}$
- Short-comings
  - toponium cross section essentially as integral over  $M_{t\bar{t}}$  GeV (way too large range in  $M_{t\bar{t}}$  GeV for application of NRQCD)
  - neglect color-octet configurations (no enhancement)
- Published ratios for toponium cross sections  $\sigma_{\eta_t}$  vs.  $\sigma_{t\bar{t}}$  not suitable for re-weighting of MC event samples in experimental analysis

## **Summary**

- Coulomb corrections and their resummation for  $t\bar{t} + X$  production
  - update of resummation studies at NLL for upcoming analyses
- Combination with QCD perturbation theory to NNLO for  $t\bar{t} + X$  production
  - bin-wise matching