

CP Violation in hadronic two-body charm-meson decays

Luiz VALE SILVA

*In collaboration with Antonio Pich and Eleftheria Solomonidi (IFIC, UV – CSIC)
based on 2305.11951 (PRD 108 (2023) 3, 036026), and upcoming work*

“Flavour and Quark Matter” (L3) 2024, 09/01 – Valencia, Spain

CSIC
CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS

UNIVERSITAT
DE VALÈNCIA

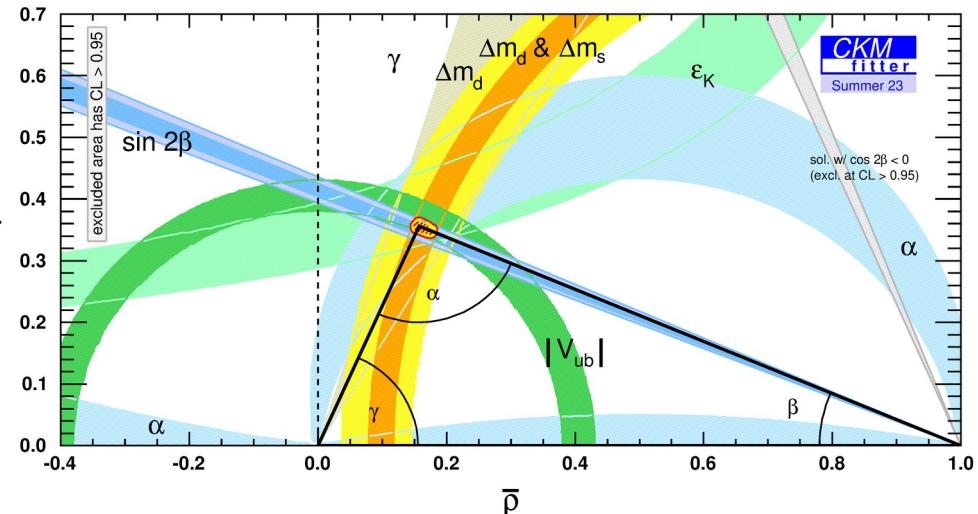
Charm-flavour physics

1

- Flavour physics of the **up-type**: complementary, but less well known than **down-type** **strange** and **bottom** sectors
 - QCD @ intermediate regime $M_K \ll m_c \ll m_b$ [consolidated theoretical tools for the two extrema, **XPT**₃ and **HQET**; slower behaviour of the $1/m_c$ perturbative series]
 - EW sector largely uncharted; more effective GIM mechanism: potential to identify BSM
- CKM: a single CP-odd phase responsible for **CPV phenomena** in all quark flavour sectors of the SM

: $|V_{ub}|$, α , β , γ ,
 Δm_d , Δm_s

: ε_K



Measurement of direct CPV

2

- Major discovery by LHCb in 2019:

$$\Delta A_{\text{CP}} = A_{\text{CP}}(K^-K^+) - A_{\text{CP}}(\pi^-\pi^+) \neq 0$$

D^0 to K^-K^+ asym. D^0 to $\pi^-\pi^+$ asym.

[I will neglect indirect CPV throughout this talk]

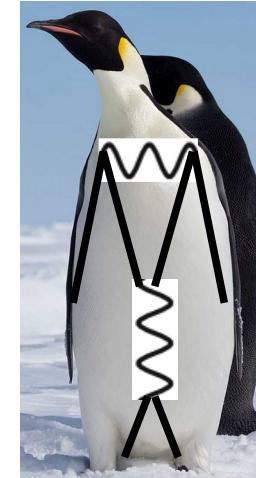
- Bounds in many other cases: $\pi^+\pi^-$ and K^+K^- (individually), $\pi^0\pi^0$, $\pi^+\pi^0$, $K_S K_S$, K^+K_S , etc.

[LHCb '22]

[LHCb, BABAR, Belle, ...]

- Much progress is expected in this decade:
LHCb Upgrade I and Belle II; about 3-fold better sensitivity to CPV in ΔA_{CP}

Direct CPV from “penguin topologies”



LHCb UI

LHCb UII

Future exp.
sensitivity to
penguins

Present exp.
sensitivity to
penguins

SM description of direct CPV

- Theory has to match experimental progress

$$A_{CP}^{i \rightarrow f} \equiv \frac{|\langle f | T | i \rangle|^2 - |\langle \bar{f} | T | \bar{i} \rangle|^2}{|\langle f | T | i \rangle|^2 + |\langle \bar{f} | T | \bar{i} \rangle|^2} \approx -2 \frac{B}{A} \sin(\delta_1 - \delta_2) \sin(\phi_1 - \phi_2)$$

amplitude moduli (schematic)

$$\mathcal{H}_{\text{eff}} = \frac{G_F}{\sqrt{2}} \left[\sum_{i=1}^2 \underbrace{C_i(\mu) (\lambda_d Q_i^d + \lambda_s Q_i^s)}_{\text{current-current operators}} - \lambda_b \sum_{i=3}^6 \underbrace{C_i(\mu) Q_i}_{\text{penguin operators}} \right] + h.c.$$

[Buchalla, Buras, Lautenbacher '95]

$\lambda_q = V_{cq}^* V_{uq}$
(CKM factors)

$\mu \sim 2 \text{ GeV}$ for charm

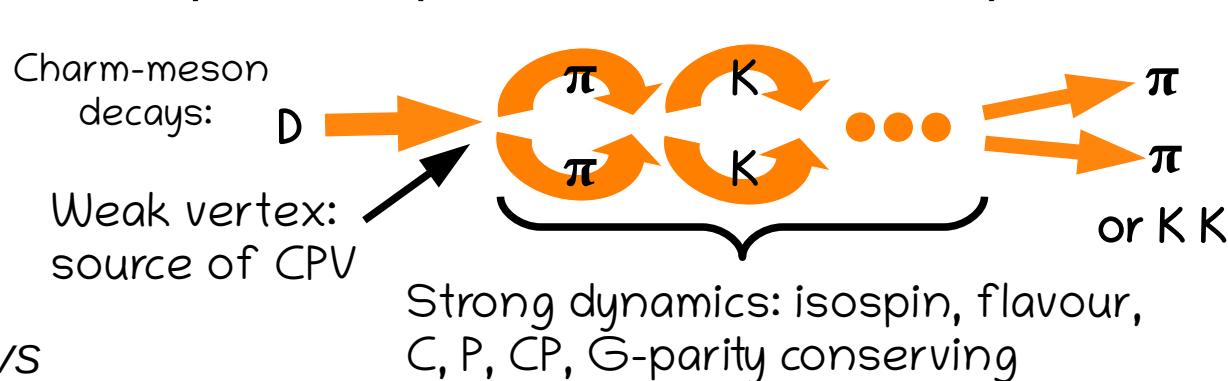
- We need both **strong-phase** ($=\delta$) and **weak-phase** ($=\phi$) differences
- Strong-phases enhance A_{CP} , but also make its description more challenging
- HERE:** discussion of **non-perturbative QCD effects**, their extraction from data, and physical impact on direct CPV in the charm sector

Rescattering in weak decays

- Rescattering among stable on-shell particles **produces a CP-even (strong) phase**; elastic limit: Watson theorem

phase of the π FF = (phase-shift $\pi\pi \rightarrow \pi\pi$) mod 180° , @ elastic region above $\pi\pi$ threshold

- Strong and weak dynamics are factorized; final-state rescattering in transition amplitude encoded in process-independent Ω
- Relate **dispersive and absorptive parts** based on **analyticity** of the amplitudes (Mandelstam variables)



(dispersive) $\text{Re}[\Omega(s)] = \frac{1}{\pi} \int_{4M_\pi^2}^{\infty} \frac{\text{Im}[\Omega(s')]}{s' - s} ds'$ (absorptive)

Dispersion Relation (DR) for Ω entering the transition amplitude

Omnes factor

- Elastic limit, explicit solution of the integral equation:

[Muskhelishvili '46; Omnes '58]

Explicit solution to the DR
(isospin=I, total angular mom.=J),
once-subtracted @ s_0 :

$$A_J^I(s) = \overline{A}_J^I(s) \underbrace{\exp \{i \delta_J^I(s)\}}_{\substack{\text{Watson theorem} \\ \text{polynomial ambiguity} \\ = \text{subtraction constant}}} \underbrace{\exp \left\{ \frac{s - s_0}{\pi} \int_{4M_\pi^2}^\infty \frac{dz}{z - s_0} \frac{\delta_J^I(z)}{z - s} \right\}}_{\substack{\text{Omnes factor } |\Omega|: \\ \text{behaviour dictated by } \delta}}$$

- **IR**: **phase-shift** and **Omnes factor** embody the effects of rescattering in the amplitudes of weak decays
- **UV**: **polynomial ambiguity** (analytical properties of Ω unchanged), requires some physical input [e.g., in K to $\pi\pi$, employ χPT_3]

[Pallante, Pich '99 '00; Pallante, Pich, Scimemi '01; Gisbert, Pich '17]

Two-channel analysis of rescattering

6

- **Inelastic case**: set of integral equations (DRs) related by **unitarity**; no explicit solution known; DRs have to be solved numerically

[Moussallam '00; Descotes-Genon '03]

- Neglect the effect of further channels
- **Experimental input** for $(\pi\pi, KK)$ **phase-shifts** and **inelasticity** ($\pi\pi \leftrightarrow KK$) in **isospin=0** available

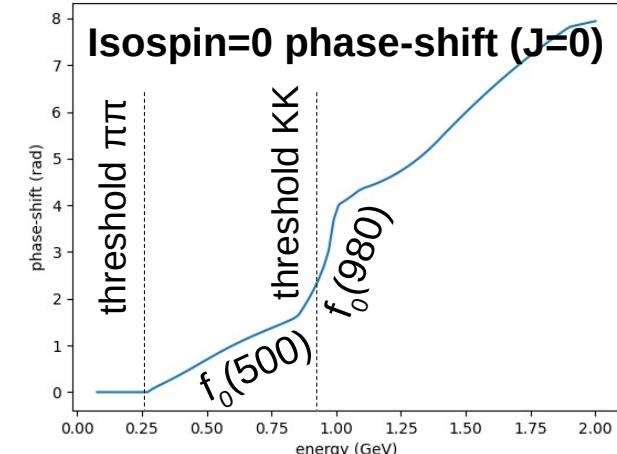
[Garcia-Martin, Kaminski, Pelaez, Ruiz de Elvira, Yndurain '11; Pelaez, Rodas, Ruiz De Elvira '19; Pelaez, Rodas '20][Buettiker, Descotes-Genon, Moussallam '04]

$$R(s) = R(s_0) + \frac{s - s_0}{\pi} \int_{4M_\pi^2}^{\infty} ds' \frac{1}{s' - s} \frac{X(s')R(s')}{s' - s_0}$$

R: real part of amplitudes

X: **2-by-2 rescattering matrix**

[X = $\tan(\delta)$ in the elastic limit]



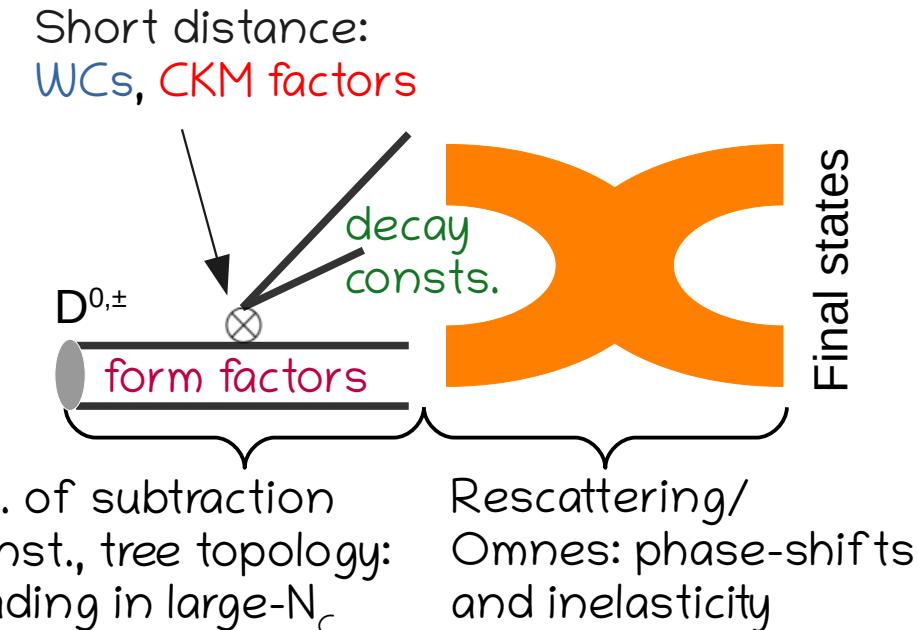
Further physical inputs

7

- Subtraction constant of DRs taken from large- N_c ; improvement given by **rescattering** (sub-leading in large- N_c)
- **Decay constants** and **form factors** (independent sub-leading large- N_c effects)
- Large perturbative QCD effects $\alpha_s(\mu)^* \log(\mu/M_W)$ are included in **Wilson Coefficients** (RGE improvement)

[Buras, Gerard, Rueckl '85; Bauer, Stech, Wirbel '86;
Buras, Silvestrini '00; Mueller, Nierste, Schacht '15]

- **Isospin analysis:** information from D^+ to $\pi^+\pi^0$, K^+K_S branching ratios into D^0 decays; phase-shifts of final states with isospin=1 and =2 undetermined



CP-even amplitudes and BRs

WCs , DCs , FFs , rescattering factors

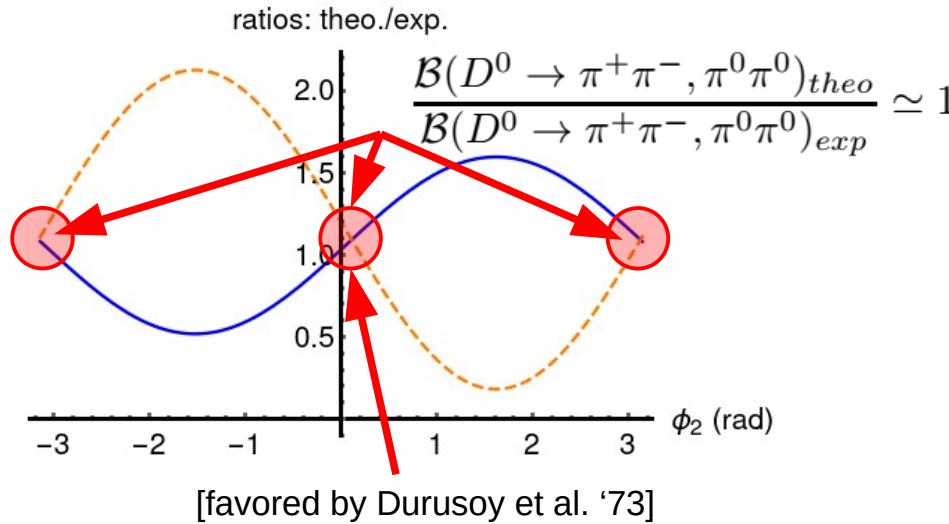
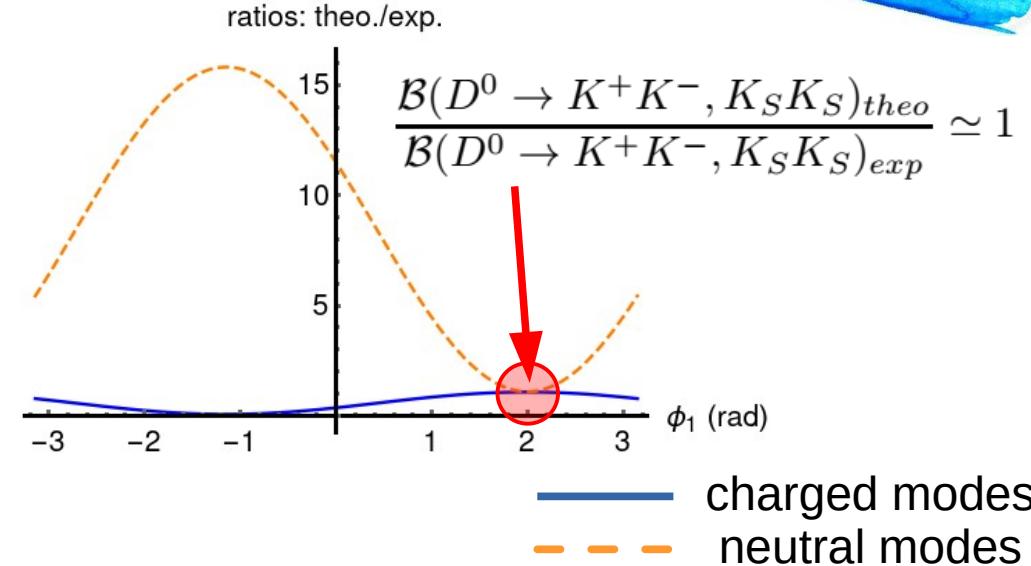
isospin decomposition: A_0^π , A_2^π , A_0^K , A_{11}^K , A_{13}^K

$$\mathcal{B}(D^0 \rightarrow \pi^+ \pi^-, \pi^0 \pi^0)_{theo}$$

$$\mathcal{B}(D^0 \rightarrow K^+ K^-, K_S K_S)_{theo}$$

- **BR_{theo}~BR_{exp}** can be found; however, large uncertainties are present
- **Inelasticity** is the main source of uncertainties
- Use BRs to control uncs. of dispersive inputs: better prediction for A_{CP}

CP-even amplitudes and BRs



- Phase-shifts of final states with **isospin=2** and **=1** adjusted
- **Isospin=0**: source of **breaking of symmetry between pions and kaons**, of size similar to f_K/f_π & $F^{DK}/F^{D\pi}$
- Other sources of breaking: **I=2** (from D^+ to $\pi^+\pi^0$), **I=1** (from D^+ to K^+K_S)

Mechanisms of CPV

10

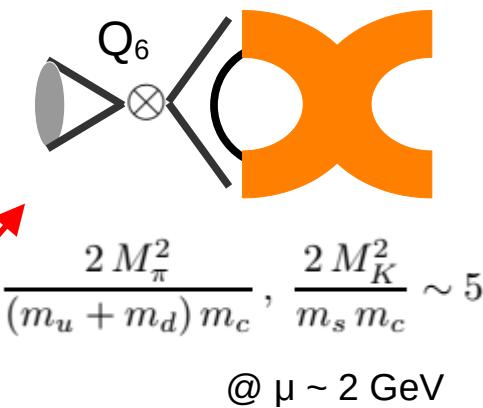
Isospin=0:

rescattering factors

$$\begin{pmatrix} A_0^\pi + i B_0^\pi \\ A_0^K + i B_0^K \end{pmatrix} = \underbrace{\Omega(M_D^2)}_{\text{CKM factors, WCs, DCs, FFs}} \begin{pmatrix} \lambda_d T_{\pi\pi}^{CC} - \lambda_b T_{\pi\pi}^P \\ \lambda_s T_{KK}^{CC} - \lambda_b T_{KK}^P \end{pmatrix}$$

similar expressions for **I=2 (pions)** and **I=1 (kaons)**, which are treated elastically

- CPV from **different interference terms between amplitudes**
- **I=0/I=0**: possible due to rescattering;
correlation in pions and kaons: **CPV[$\pi\pi$]+CPV[KK]=0**
- **I=0** interference with exotic states: **I=2 (pions), I=1 (kaons)**
- scalar+/-pseudoscalar structure: small WC, but enhanced



CP-odd amplitudes and CP asym.

WCs , DCs , FFs , rescattering factors

isospin decomposition: $A_0^\pi, B_0^\pi, A_2^\pi, B_2^\pi, A_0^K, B_0^K, A_{11}^K, B_{11}^K, A_{13}^K, B_{13}^K$

$$\Delta A_{CP}^{theo} \approx -2 \sum_{i=K,\pi} \frac{B_i}{A_i} \sin(\delta_1 - \delta_2) \times \frac{\text{Jarlskog}}{|\lambda_d|^2} \sim -4 \times 10^{-4} \ll \Delta A_{CP}^{exp} \simeq -2 \times 10^{-3}$$

A_i, B_i : full amplitude moduli (schematic)

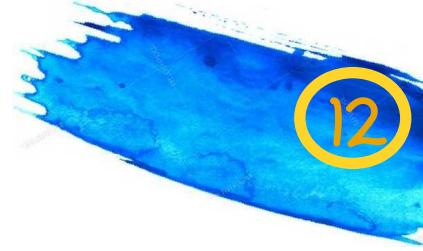
$\frac{B_i}{A_i} \sin(\delta_1 - \delta_2)$ is rescattering $\mathcal{O}(0.1)$

$\frac{\text{Jarlskog}}{|\lambda_d|^2} = 6.2 \times 10^{-3}$

↑ mainly from D^0 to $\pi^+ \pi^-$ [LHCb '22]

- **Weak-phase**: rephasing-invariant Jarlskog/ $|\lambda_d|^2$ from bottom & strange
- Small CPV: rescattering effects not large enough
- **It seems difficult to explain the measured CPV based on this approach**

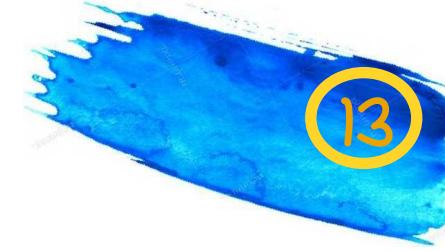
Summary



12

- **Data-driven approach:** isospin=0 rescattering effects through DRs; isospin=2 & isospin=1 rescattering effects from D^+ to $\pi^+\pi^0$, K^+K_S BRs
subtraction constants given by large- N_c
- Exp. values of $\pi^+\pi^-$, $\pi^0\pi^0$ and K^+K^- , $K_S K_S$ BRs used to control uncertainties
- Predicted CP asymmetries are too small

Outlook



13

- Constrain ΔA_{CP} based on unitarity, CPT and DRs
[Pich, Solomonidi, LVS, in progress]
- Test use of DRs in Cabibbo allowed and doubly Cabibbo suppressed modes
[Camarasa Domene, LVS, in progress]
- Complementary signs of CPV: look into decay modes with higher multiplicity
- Apply DRs in the description of rare decay modes
[see Fajfer, Solomonidi, LVS, 2312.07501]

Many thanks!, ¡Gracias!

Fit of isospin amplitudes

App 1

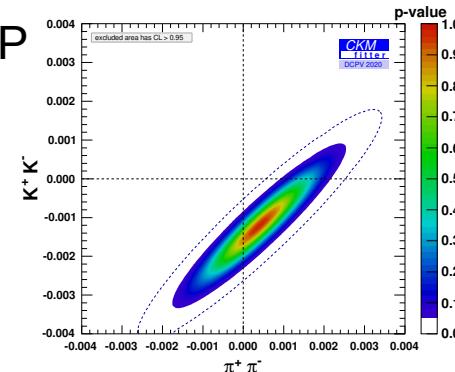
[not including LHCb '22]

isospin decomposition: $A_0^\pi, B_0^\pi, A_2^\pi, A_0^K, B_0^K, A_{11}^K, B_{11}^K, A_{13}^K$ [Franco, Mishima, Silvestrini '12]

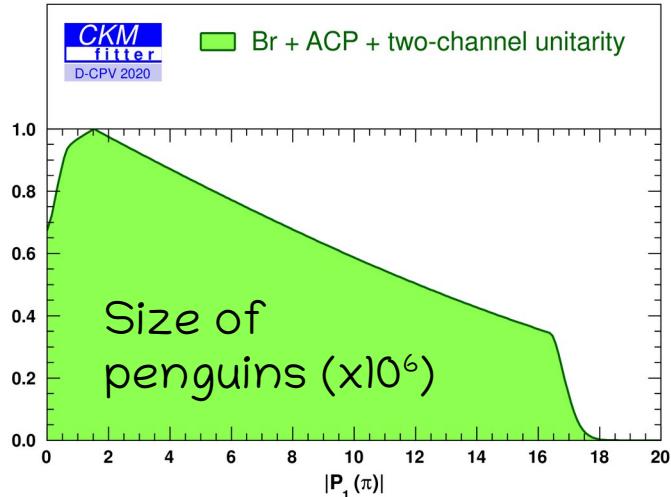
- Incorporate unitarity @ m_D only
- Amplitudes satisfy relations involving phase-shifts and inelasticity, that can be implemented in the isospin fit
- Fit includes also BRs and CP asymms.

Results for the CP asymmetries in charged modes

[for inclusion of phase-shifts and inelasticity @ m_D see also: Bediaga, Frederico, Magalhaes '22]



Global fit combination of D to $\pi\pi$ and D to KK branching ratios & CP asymmetries



Penguin still largely unconstrained

Operator basis and CPV

- One effect of CPV comes from non-unitarity of the 2-by-2 CKM sub-matrix; CP-odd contribution comes from loop topologies with insertions of current-current operators (light flavours in the loop, i.e., long-distance effect)
- WCs of penguin operators are tiny (aka GIM mechanism), but their contribution may be enhanced
- The quantity Q_{udcs} is rephasing-invariant and has an imaginary part, namely, the Jarlskog

μ	C_1	C_2	C_3	C_4	C_5	C_6
m_c	1.22	-0.40	0.021	-0.055	0.0088	-0.060
2 GeV	1.18	-0.32	0.011	-0.031	0.0068	-0.032

[Buchalla, Buras,
Lautenbacher '95]

$$\lambda_d \lambda_s^* = V_{ud} V_{cs} V_{us}^* V_{cd}^* = Q_{udcs}$$

Implications of a Large Phase Shift

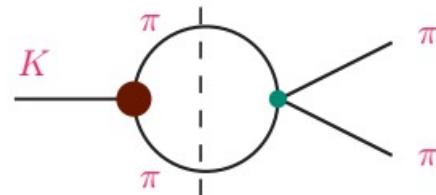
App 3

Slide from Antonio Pich,
"Kaon decays & CP
Violation", FPCP 2020
(virtual)

$$\mathcal{A}_I \equiv A_I e^{i\delta_I} = \text{Dis}(\mathcal{A}_I) + i \text{Abs}(\mathcal{A}_I)$$

Important difference with charm physics:
analogous kaon process is elastic;
moreover, in charm, e.g.:
 $\arg(\mathcal{A}_2^\pi/\mathcal{A}_0^\pi) \sim \pm 90^\circ$

① **Unitarity:** $\delta_0(M_K) = (39.2 \pm 1.5)^\circ \rightarrow \mathcal{A}_0 \approx 1.3 \times \text{Dis}(\mathcal{A}_0)$



$$\tan \delta_I = \frac{\text{Abs}(\mathcal{A}_I)}{\text{Dis}(\mathcal{A}_I)}$$

$$\mathcal{A}_I = \text{Dis}(\mathcal{A}_I) \sqrt{1 + \tan^2 \delta_I}$$

② **Analyticity:** $\Delta \text{Dis}(\mathcal{A}_I)[s] = \frac{1}{\pi} \int dt \frac{\text{Abs}(\mathcal{A}_I)[t]}{t - s - i\epsilon} + \text{subtractions}$

Large $\delta_0 \rightarrow \text{Large } \text{Abs}(\mathcal{A}_0) \rightarrow \text{Large correction to } \text{Dis}(\mathcal{A}_0)$