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QCD: the theory of strong interactions

S =

∫
dx4

 1
4g2 FµνFµν +

Nf∑
i=1

ψ̄i(γµDµ + mi)ψi


I Only Nf + 1 free parameters: g2,mi
I Incredibly rich phenomena: full hadron spectrum

Very simple theory
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I At high energies g2(µ)→ 0: perturbation theory is reliable
I At low energies α(µ) ≡ g2(µ)/(12π) ≈ 1: perturbation theory breaks down
I We need “non-perturbative framework” to describe low energy physics

Difficult theory: “free” at high eneries, strongly coupled at low energies
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Computing path integrals: Lattice field theory

I Discretize space-time in an hyper-cubic lattice (spacing a)
I Path integral −→multiple integral (one variable for each field at

each point)
I Compute the integral numerically→Monte Carlo sampling.

〈O〉 =
1

Nconf

Nconf∑
i=1

O(Ui) +O(1/
√

Nconf)

Observable computed averaging over samples
I This works both in the perturbative and non-perturbative regimes!

Non Perturbative definition of QFT
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∫
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Lattice QCD Timeline

1974 First formulation of a non-Abelian gauge theory on a space-time lattice [Wilson. Phys.Rev D10
(1974)].

1980 First lattice simulation: Pure SU(2) gauge theory in a lattice up to 104. [Creutz. Phys.Rev D21
(1980)].

1985 Firsts unquenched simulations: 2× 43 to 4× 83 lattices. [Duane, Kogut. Phys.Rev.Lett. 55 (1985)].
’90s Quenched lattice QCD reign. Formally large Nc limit of QCD. Error ∼ 1/Nc ≈ 30%→

Uncontrolled systematics.
’00s Unquenched simulation at “large” volumes comes up. Many Nf = 2 simulations. Large

quark masses (Mπ ≈ 600 MeV)→ uncontrolled chiral extrapolation
’10s Reaching the physical point.

Present Precision lattice QCD era: Large volumes, physical quark masses, QED (partially!), etc. . .
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Reaching the physical point: The fall of the Berlin wall
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Reaching the physical point: The fall of the Berlin wall

I Schwartz-preconditioned Hybrid MC [Lüscher ’03-’04;
PACS-CS ’08]

I Multiple time scale integration [Hasenbusch ’01;BMW ’07]
I Mass preconditioning [Urbach ’06; BMW ’07]
I Deflation acceleration [Lüscher ’07]
I Better understanding of the simulations ⇒ more

intelligent choice of simulation parameters.

Algorithmic improvements

Figure: LUMI Supercomputer (EuroHPC/Finland)

Moore’s law

Computing power
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Systematic in Lattice QCD
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I At non-zero lattice spacing =⇒ Continuum extrapolation
I In finite volume =⇒ Infinite volume extrapolation
I At non-physical values of quark masses =⇒ Chiral dependence

Lattice QCD simulations are performed

I Some observables require renormalization =⇒ NPT/PT
I Heavy quarks (i.e. is amh � 1??) ⇐= EFT
I Multi-hadron states(?), QED, . . .

Lattice QCD needs to understand
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Lattice QCD state of the art

I Key input for flavor physics. FLAG is your friend! [http://flag.unibe.ch/2021/]
I “Very Easy”: meson decay constants

u

d

W+

π+

νl

l+

I “Easy”: semileptonic decays

d
u

s
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I “Very hard”: K → ππ and ε′/ε

d
π−

K0

π+

u, c, t

W+

u

s d

γ, Z

I Still need to understand how to many things!: QED corrections to hadronic processes!
I Enormous progress in determination of PDF’s: Soon useful information for some kinematics!
I Large activities understanding multi-particle systems and resonances

Not all results are on an equal footing!
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Advances in lattice QCD

I New ideas (based on QFT)
I New computational strategies
I Phenomenological relevant results (largish collaborations)
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Topology freezing
David Albandea [Eur.Phys.J.C 81 (2021) 10, 873],

I Preferred algorithm in Lattice QCD (HMC) is a
continuous transformation of the (lattice) fields

I As one approaches the continuum, Topology is
difficult to change

I Might compromise correctness of the algorithm
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Figure: Topology freezing in U(1) gauge theories
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Dependence of observables with action parameters
Guilherme Telo [2307.15406]

I Perturbation theory on top of non-perturbative
bweckgrounds
I QCD+QED
I θ vacuum dependence on observables
I Application to the quantum rotor [D. Albandea, G.

Telo]

I Potential for large gains in statistical precision

Figure: Dependence of the energy levels in the Quamtum rotor
on θ
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Understanding Multi-particle states
Jorge Baeza [JHEP 06 (2022) 049]

I Phase shift using Lüscher formalism
I shed some light to ∆I = 1/2 rule
I Anticorrelation of the leading O(1/Nc) and

O(Nf /N2
c )) corrections in A0,A2

ππ Scattering at large Nc
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The determination of αs
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Figure: Source: FLAG

Lattice determinations
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Pheno determinations
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Why is so difficult? Systematic uncertainties related with PT

O(Q)
Q→∞∼ αs(Q) +

∑
n=2

cnαn
s (Q) +O(αN+1

s (Q)) +O
(

Λp

Qp

)
+ . . .

I Difficult to compute (NP physics is difficult!)
I Better use smaller α =⇒ (larger Q)

Non-perturbative corrections

I Difficult to estimate (i.e. scale variation might fail)
I Main source of uncertainty in most lattice QCD extractions of αs

I Better use smaller α =⇒ (exponentially larger Q)

Perturbative corrections
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The problem: αs extractions are a multi-scale problem

O(Q)
Q→∞∼ αs(Q) +

∑
n=2

cnαn
s (Q) +O(αN+1

s (Q)) +O
(

Λp

Qp

)
+ . . .

Experimentalist: At large Q the effect you are trying to measure is “weak” =⇒ Larger uncertainties
Latticero: In all simulations a−1 � Q� L−1. You need mπL ≈ 4, so with current computers

(L/a ≈ 128) we have Q� 4 GeV. In fact:
I Computer cost ∝ (L/a)7

I Non-perturbative uncertainties ∝ (a/L)p

I Perturbative uncertainties ∝ 1/ log(L/a)

Why not just use larger Q?
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The soution: Finite size scaling [Lüscher, Weisz, Wolff ’91]
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I Coupling α(Q) depends on no other scale but L (Notation: α(L), α(1/L)).
I Small L =⇒ small α(L)

I a� 1/Q easily achieved: L/a ∼ 10− 40
I Step scaling function: How much changes the coupling when we change the renormalization scale:

σ(u) = g2(Q/2)
∣∣∣
g2(Q)=u

achieved by simple changing L/a→ 2L/a!

Finite volume renormalization schemes: fix QL = constant
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Results for αs(MZ) [ALPHA ’17. Phys.Rev.Lett (2017) 119. [arXiv:1706.03821]]
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I Non-perturbative running from 200 MeV to 140
GeV

I Very precise result

αs(MZ) = 0.11852(84) [0.7%] .

Still dominated by statistics!
I Many technical improvements:

I Gradient flow coupling [P. Fritzsch, AR. ’13]
I Symanzik analysis of cutoff effects [AR, S. Sint ’16]
I . . .

QCD in a small universe to determine the running coupling!

Many simulations of the femto-universe
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3M: universe with 3 heavy quarksM � Λ

Sfund[Aµ, ψ, ψ̄] =

∫
d4x

{
− 1

2g2 Tr (FµνFµν) +
3∑

i=1
ψ̄i(γµDµ + M)ψi

}Alice uses fundamental theory

Seff [Aµ] = − 1
2g2

eff

∫
d4x {Tr (FµνFµν)}

���
���

���
��

+
1
M2

∑
k
ωk

∫
d4xL(6)k + . . .

Bob uses effective theory

I Dimensionless “low energy quantities”√
t0/r0,w0/

√
8t0, r0/w0, . . . from effective theory

µfund
1 (M)

µfund
2 (M)

=
µeff

1
µeff

2
+O

(
µ2

M2

)

Decoupling

Λ(3) = lim
M→∞

µdec(M)× Λ(0)

µ′dec
× 1

P(Λ/M)

We need
I Running in pure gauge: Λ(0)/µ′dec
I A scale in a world with degenerate massive

quarks: µdec(M) in fm/MeV.

Strong coupling from pure gauge!

17/19



LatticeQCD Computers Hadrons αs Conclusions

αs from decoupling [ALPHA: Phys.Lett.B 807 (2020) 135571, Eur.Phys.J.C 82 (2022) 12, 1092]

I Use NP coupling as matching condition
({Nf = 3,M} ↔ {Nf = 0})

ḡ2(µdec(M))
∣∣∣
Nf=3,M,T=2L

= ḡ2(µdec)
∣∣∣
Nf=0,T=2L

.

I Simulate quark masses M ≈ 2− 10 GeV
I Precise result

αs(mZ) = 0.11823(84) [0.7%] .

I Dominated by statistics
I Can (will!) be improved with new pure gauge

computations
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Conclusions

I Lattice QCD activities at IFIC
I Development of new methods (toy models, small groups)

I Fighting topology freezing
I Using Machine Learning approaches
I Computation of electromagnetic corrections

I Results in QCD of phenomenological relevance
I Determination of αs (currently dominate world average)
I Applications in multi-scale problems:

I Determination of quark masses
I Heavy quarks

I Well connected internationally
I ALPHA collaboration: Madrid, DESY, Wuppertal,. . .
I Seattle, Edinburgh, . . .

Keep up with the high level brought by the PhD students!

Challenge
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Conclusions

I Lattice QCD activities at IFIC
I Development of new methods (toy models, small groups)

I Fighting topology freezing
I Using Machine Learning approaches
I Computation of electromagnetic corrections

I Results in QCD of phenomenological relevance
I Determination of αs (currently dominate world average)
I Applications in multi-scale problems:

I Determination of quark masses
I Heavy quarks

I Well connected internationally
I ALPHA collaboration: Madrid, DESY, Wuppertal,. . .
I Seattle, Edinburgh, . . .

Keep up with the high level brought by the PhD students!

Challenge

Many thanks
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