

Exotic spectroscopy and femtoscopy

Miguel Albaladejo (IFIC-CSIC)

IFIC Scientific Day
L3: Flavour and quark matter
Valencia, Jan. 8-9, 2024

- 1 Introduction: spectroscopy, exotics, QCD and EFTs
- 2 Open charm: spectroscopy and femtoscopy
- 3 Double charm: spectroscopy and femtoscopy
- 4 Conclusions

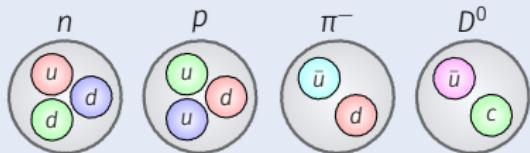
1 Introduction: spectroscopy, exotics, QCD and EFTs

2 Open charm: spectroscopy and femtoscopy

3 Double charm: spectroscopy and femtoscopy

4 Conclusions

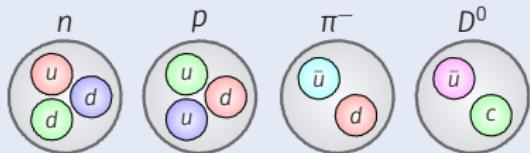
Spectroscopy (conventional and exotic). The recent LHCb T_{cc}^+ "tetraquark"



- Conventional hadrons:
 - ▶ Mesons: $q\bar{q}'$: $\pi^+ = u\bar{d}$, $D^0 = c\bar{u}$, ...
 - ▶ Baryons: $q_1q_2q_3$: $p = uud$, $n = udd$, ...

- Constituent **quark models** have successfully described most of (but not all!) the hadrons discovered so far.
- Only possibilities? No, the only requirement is to be **color singlets**. There can be tetraquarks ($q_1q_2q_3q_4$), pentaquarks ($\bar{q}_1q_2q_3q_4$), hybrids (\bar{q}_1q_2g), glueballs (gg), **hadronic molecules** (MM' , MB , BB'), ...

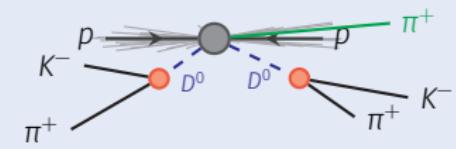
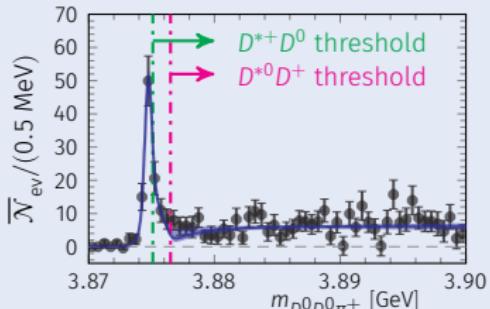
Spectroscopy (conventional and exotic). The recent LHCb T_{cc}^+ “tetraquark”



- Conventional hadrons:

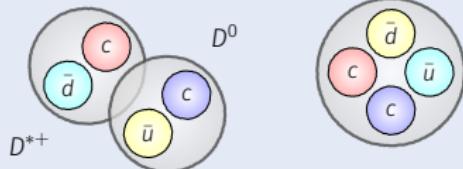
- Mesons: $q\bar{q}'$: $\pi^+ = u\bar{d}$, $D^0 = c\bar{u}$, ...
- Baryons: $q_1q_2q_3$: $p = uud$, $n = udd$, ...

[Nature Phys., 18, 751('22); Nature Com., 13, 3351('22)]



- Constituent quark models have successfully described most of (but not all!) the hadrons discovered so far.
- Only possibilities? No, the only requirement is to be color singlets. There can be tetraquarks ($q_1q_2q_3q_4$), pentaquarks ($\bar{q}_1q_2q_3q_4$), hybrids (\bar{q}_1q_2g), glueballs (gg), hadronic molecules (MM' , MB , BB'), ...

- In 2021, the LHCb collaboration discovers T_{cc}^+ , with quark content $cc\bar{u}\bar{d}$, and very close to $D^{*+}D^0$ threshold
- Even if something is explicitly exotic, you still have to understand how are quarks distributed inside the hadron.



- [MA, PLB829,137052('21); MA, Nieves, EPJC82,724('22)]
- Our analysis favours the molecular picture.
- Also, relevant to understand QCD confinement, and color combinations.

- QCD lagrangian built in terms of (degrees of freedom) quarks and gluons: $\mathcal{L}[q, \bar{q}, g]$
- Quarks are **confined** into colorless hadrons, which are ultimately the objects detected in experiments.
- EFTs: build QFT with hadrons ($\pi, K, \dots, D, B, \dots$) as degrees of freedom

Example 1: Chiral Perturbation Theory

- Light quarks are... light: $m_u \simeq m_d \simeq m_s \simeq 0$
- 8 Goldstone bosons SU(3): $\phi_i \rightarrow \pi, K, \eta$
- [Weinberg, PRL, 17, 616 ('66); Phys. A96, 327 ('79)]
[Gasser, Leutwyler, AP, 158, 142 ('84); NP, B250, 465 ('85)]
- LO lagrangians:

$$\mathcal{L}_2 = \frac{f^2}{4} \left\langle D_\mu U^\dagger D^\mu U \right\rangle + \frac{f^2}{4} \left\langle \chi^\dagger U + \chi U^\dagger \right\rangle$$

$$U[\phi] = \exp \left(i \sum_{i=1}^8 \phi_i \lambda_i \right)$$

$$\chi = 2B_0 \text{diag}(m_u, m_d, m_s)$$

$$\simeq \text{diag}(m_\pi^2, m_\pi^2, 2m_K^2 - m_\pi^2)$$

Symmetry 2022, 14, 1884. <https://doi.org/10.3390/sym14091884>

Article

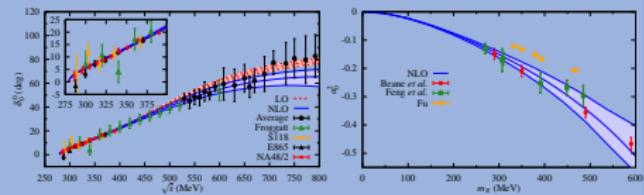
Weinberg's Compositeness [†]

Ubirajara van Kolck ^{1,2}

¹ Université Paris-Saclay, CNRS/IN2P3, IJCLab, 91405 Orsay, France; vankolck@ijclab.in2p3.fr

² Department of Physics, University of Arizona, Tucson, AZ 85721, USA

† Dedicated to the memory of Steven Weinberg, who always chose the right degrees of freedom.



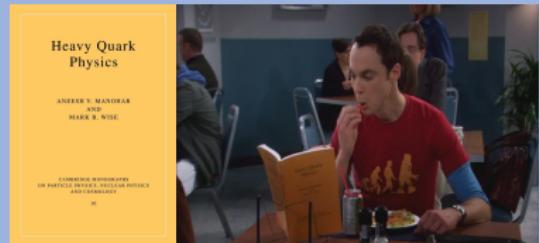
- QCD lagrangian built in terms of (degrees of freedom) quarks and gluons:
 $\mathcal{L}[q, \bar{q}, g]$
- Quarks are **confined** into colorless hadrons, which are ultimately the objects detected in experiments.
- EFTs: build QFT with hadrons ($\pi, K, \dots, D, B, \dots$) as degrees of freedom

Example 2: HQSS + SU(3) flavour

- Heavy quarks are... heavy: $m_c, m_b \rightarrow \infty$
- $H_a^{(Q)} = \frac{1+\gamma}{2} \left(P_{a\mu}^{*(Q)} \gamma^\mu - P_a^{(Q)} \gamma_5 \right)$
- HQSS and $SU(3)$ light flavour symmetry:
 $H_a^{(Q)} \sim (Q\bar{u}, Q\bar{d}, Q\bar{s}) \sim (D^{(*)0}, D^{(*)+}, D_s^{(*)+})$
[Grinstein *et al.*, NP,B380('92); Alfiky *et al.*, PL,B640('06),
...]

$H\bar{H} \rightarrow H\bar{H}$ LO lagrangian:

$$\begin{aligned} \mathcal{L}_{4H} &= \frac{1}{4} \text{Tr} \left[\bar{H}^{(Q)a} H_b^{(Q)} \gamma_\mu \right] \text{Tr} \left[H^{(\bar{Q})c} \bar{H}_d^{(\bar{Q})} \gamma^\mu \right] \left(F_A \delta_a^b \delta_c^d + F_A^\lambda \vec{\lambda}_a^b \cdot \vec{\lambda}_c^d \right) \\ &+ \frac{1}{4} \text{Tr} \left[\bar{H}^{(Q)a} H_b^{(Q)} \gamma_\mu \gamma_5 \right] \text{Tr} \left[H^{(\bar{Q})c} \bar{H}_d^{(\bar{Q})} \gamma^\mu \gamma_5 \right] \left(F_B \delta_a^b \delta_c^d + F_B^\lambda \vec{\lambda}_a^b \cdot \vec{\lambda}_c^d \right), \end{aligned}$$



Outline

1 Introduction: spectroscopy, exotics, QCD and EFTs

2 Open charm: spectroscopy and femtoscopy

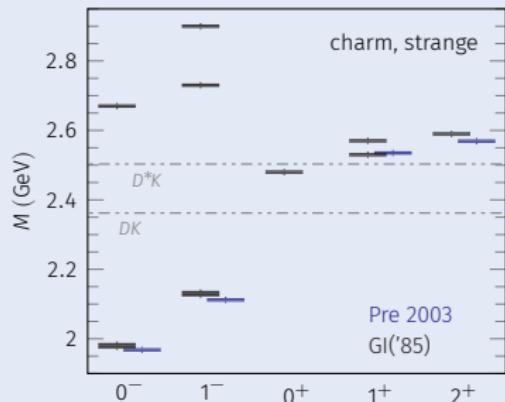
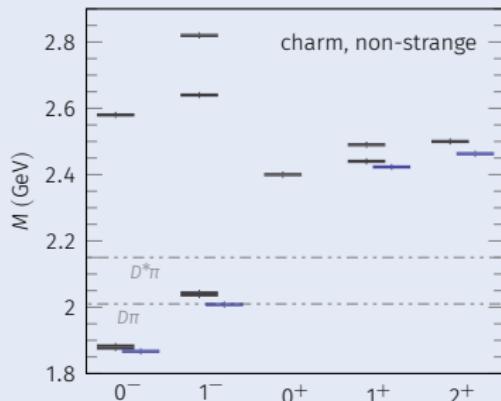
3 Double charm: spectroscopy and femtoscopy

4 Conclusions

Quark model in the open-charm sector

- Quark model $c\bar{n}$ is still our baseline:

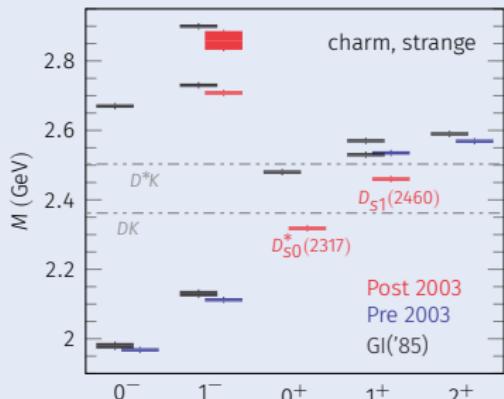
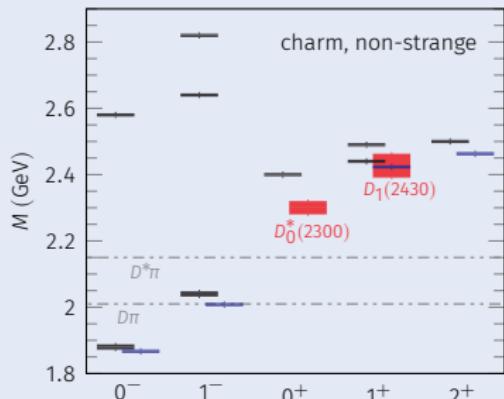
«In this paper we present the results of a study of light and heavy mesons in soft QCD. We have found that all mesons—from the pion to the upsilon—can be described in a unified framework.» [Godfrey, Isgur, PR,D32,189('85)]



Quark model in the open-charm sector

- Quark model $c\bar{n}$ is still our baseline:

«In this paper we present the results of a study of light and heavy mesons in soft QCD. We have found that all mesons—from the pion to the upsilon—can be described in a unified framework.» [Godfrey, Isgur, PR,D32,189('85)]



- The discovery of $D_{s0}^*(2317)$ in 2003 (and $D_{s1}(2460)$ later on) is “equivalent” to the discovery of $X(3872)$ in charmonium-like system.

[BABAR, PRL,90,242001('03)]
[CLEO, PR,D68,032002('03)]

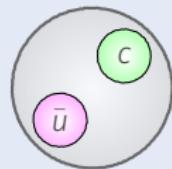
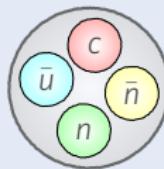
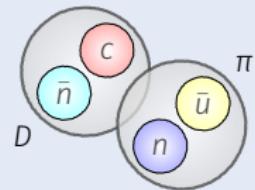
Theoretical interpretations

$c\bar{q}$ states

Colangelo, De Fazio, Phys. Lett. B **570**, 180 (2003)
Dai *et al.*, Phys. Rev. D **68**, 114011 (2003)
Narison, Phys. Lett. B **605**, 319 (2005)
Bardeen *et al.*, Phys. Rev. D **68**, 054024 (2003)
Lee *et al.*, Eur. Phys. J. C **49**, 737 (2007)
Wang, Wan, Phys. Rev. D **73**, 094020 (2006)

Pure tetraquarks

Cheng, Hou, Phys. Lett. B **566**, 193 (2003)
Terasaki, Phys. Rev. D **68**, 011501 (2003)
Chen, Li, Phys. Rev. Lett. **93**, 232001 (2004)
Maiani *et al.*, Phys. Rev. D **71**, 014028 (2005)
Bracco *et al.*, Phys. Lett. B **624**, 217 (2005)
Wang, Wan, Nucl. Phys. A **778**, 22 (2006)



$c\bar{q} +$ tetraquarks or meson-meson

Browder *et al.*, Phys. Lett. B **578**, 365 (2004)
van Beveren, Rupp, Phys. Rev. Lett. **91**, 012003 (2003)

Heavy-light meson-meson molecules

Barnes *et al.*, Phys. Rev. D **68**, 054006 (2003)
Szczeplaniak, Phys. Lett. B **567**, 23 (2003)
Kolomeitsev, Lutz, Phys. Lett. B **582**, 39 (2004)
Hofmann, Lutz, Nucl. Phys. A **733**, 142 (2004)
Guo *et al.*, Phys. Lett. B **641**, 278 (2006)
Gamermann *et al.*, Phys. Rev. D **76**, 074016 (2007)
Faessler *et al.*, Phys. Rev. D **76**, 014005 (2007)
Flynn, Nieves, Phys. Rev. D **75**, 074024 (2007)

Meanwhile, in the lattice...

- Masses larger than the physical ones if using $c\bar{s}$ interpolators only.

Bali, Phys. Rev., D68, 071501 (2003)
UKQCD Collab., Phys. Lett., B569, 41 (2003)

- Masses consistent with $D_0^*(2300)$ and $D_{s0}^*(2317)$ obtained when “meson-meson” interpolators are employed.

Mohler, Prelovsek, Woloshyn, Phys. Rev., D87, 034501 (2013)
Mohler *et al.*, Phys. Rev. Lett., 111, 222001 (2013)

- Close to the physical point: RQCD Collab., Phys. Rev., D96, 074501 (2017)

- More complete studies from the HadSpec collaboration:

► $D\pi$, $D\eta$ and $D_s\bar{K}$ coupled-channel scattering. A bound state with large coupling to $D\pi$ is identified with $D_0^*(2300)$.

HadSpec Collab., JHEP 1610, 011 (2016)

► $D_{s0}^*(2317)$: A bound state is found in the DK channel, with:

► $\Delta E = 25(3)$ MeV ($m_\pi = 391$ MeV)

► $\Delta E = 57(3)$ MeV ($m_\pi = 239$ MeV)

► Compare with experimental, $\Delta E \simeq 45$ MeV (the dependence on m_π does not need to be monotonic!)

[HadSpec Collab., JHEP 02 (2021) 100; JHEP 07 (2021) 123]

Lightest 0^+ open-charm situation and puzzles

- $D_{s0}^*(2317)$ ($S, I = (1, 0)$) $M_{D_{s0}^*(2317)} = 2317.8 \pm 0.5$ MeV (PDG)
- $D_0^*(2300)$ ($S, I = (0, 1/2)$) Not so well established:

	Collab.	M (MeV)	$\Gamma/2$ (MeV)	Ref.
Neutral	Belle	2308 ± 36	138 ± 33	Phys. Rev., D69, 112002 (2004)
	BaBar	2297 ± 22	137 ± 25	Phys. Rev., D79, 112004 (2009)
	FOCUS [?]	2407 ± 41	120 ± 40	Phys. Lett. B586, 11 (2004)
Charged	LHCb	2360 ± 34	128 ± 29	Phys. Rev., D92, 032012 (2015) ($B^0 \rightarrow \bar{D}^0 K^+ \pi^-$)
	LHCb	2349 ± 7	109 ± 9	Phys. Rev., D92, 012012 (2015) ($B^0 \rightarrow \bar{D}^0 \pi^+ \pi^-$)
	LHCb	2354 ± 13	128 ± 13	Phys. Rev., D92, 012012 (2015) ($B^0 \rightarrow \bar{D}^0 \pi^+ \pi^-$)
	FOCUS [?]	2403 ± 38	142 ± 21	Phys. Lett. B586, 11 (2004)
PDG				
PDG				

Three puzzles

- 1. Mass problem:** Why are $D_{s0}^*(2317)$ and $D_{s1}(2460)$ masses much lower than the CQM expectations?
- 2. Splittings:** Why $M_{D_{s1}(2460)} - M_{D_{s0}^*(2317)} \simeq M_{D^*} - M_D$ (within a few MeV)?
- 3. Hierarchy:** Why $M_{D_0^*(2300)} > M_{D_{s0}^*(2317)}$, i.e., why $c\bar{u}$, $c\bar{d}$ heavier than $c\bar{s}$?

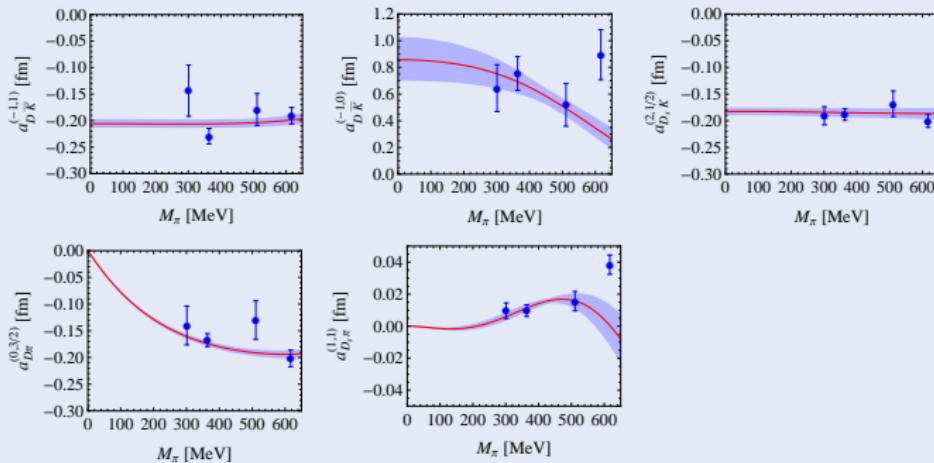
$D\pi, D\eta, D_s\bar{K}$ scattering amplitudes

- Coupled channel **T-matrix**: $D\pi, D\eta, D_s\bar{K}$ scattering [$J^P = 0^+, (S, I) = (0, \frac{1}{2})$].
- **Unitarity**: $T^{-1}(s) = V^{-1}(s) - \mathcal{G}(s)$
- **Chiral symmetry** used to compute the $\mathcal{O}(p^2)$ potential:

$$f^2 V_{ij}(s, t, u) = C_{\text{LO}}^{ij} \frac{s-u}{4} + \sum_{a=0}^5 h_a C_a^{ij}(s, t, u)$$

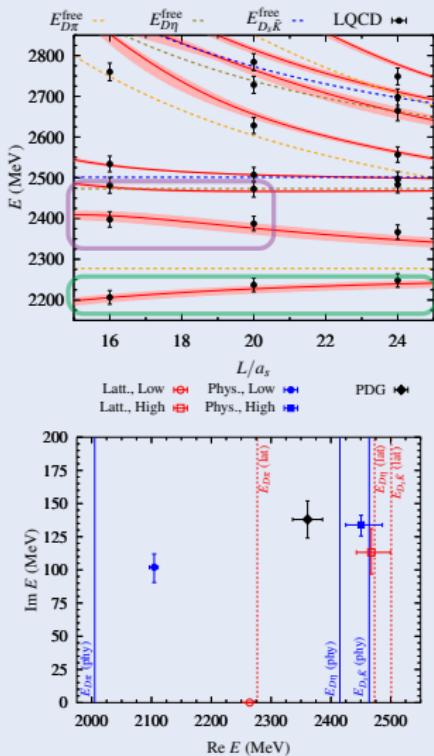
Guo *et al.*, Phys. Lett. B 666, 251 (2008)
 Liu *et al.*, Phys. Rev. D 87, 014508 (2013)

- h_a (LECs), subtraction constants: free parameters **previously fixed**.
- Fitted to reproduce scattering lengths obtained in a LQCD simulation:



$D\pi$, $D\eta$, $D_s\bar{K}$ and $D^*(2300)$: Comparison with LQCD

MA, P. Fernández-Soler, F.-K. Guo, J. Nieves, Phys. Lett. B 767, 465 (2017)



- $E_n(L)$ are provided for $D\pi$, $D\eta$, $D_s\bar{K}$ in a recent LQCD simulation. [G. Moir *et al.*, JHEP 1610, 011 (2016)]
- **Red Bands:** Our amplitude in a finite volume. [MA *et al.*, Phys. Lett. B 767, 465 (2017)]
- **No fit** is performed (LECs previously determined)
- Level **below threshold**, associated with a **bound state**.
- **Second level** has large shifts w. r. t. thresholds, non-interacting energy levels.
- For lattice masses, we find a **bound state** and a **resonance**.
- For physical masses, both evolve into **resonances**.

	M (MeV)	$\Gamma/2$ (MeV)
Low pole	2105^{+6}_{-8}	102^{+10}_{-12}
High pole	2451^{+36}_{-26}	134^{+7}_{-8}

- We also study DK , $D_s\eta$, $(S, I) = (1, 0)$, $D_{s0}^*(2317)$ bound state: $M = 2315^{+18}_{-28}$ MeV.

The $D_0^*(2300)$ structure actually consists of **two different states** (with complicated interferences with the thresholds)

Previously reported in:

Kolomeitsev, Lutz, Phys. Lett. B 582, 39 (2004)
 Guo *et al.*, Phys. Lett. B 641, 278 (2006)
 Guo *et al.*, Eur. Phys. J. A 40, 171 (2009)

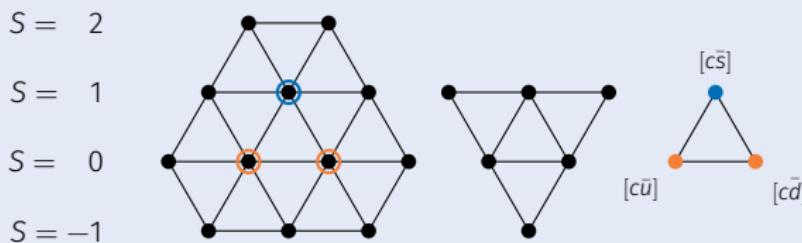
$SU(3)$ light-flavor limit

MA, P. Fernández-Soler, F.-K. Guo, J. Nieves, Phys. Lett. B 767, 465 (2017)

- $SU(3)$ flavor limit: $m_i \rightarrow m = 0.49$ GeV, $M_i \rightarrow M = 1.95$ GeV.
- Irrep decomposition: $\bar{3} \otimes 8 = \boxed{\bar{15} \oplus 6 \oplus \bar{3}}$. T and V can be **diagonalized**:

$$V_d(s) = D^\dagger V(s) D = \text{diag} (V_{\bar{15}}(s), V_6(s), V_{\bar{3}}(s)) = \boxed{A(s) \text{diag} (1, -1, -3)} ,$$

- $\bar{15}$ is repulsive. 6 and $\bar{3}$ are attractive. “Curiously”, $\bar{3}$ admits a $c\bar{q}$ interpretation.



In the $SU(3)$ limit:

- low D_0^* and $D_{s0}^*(2317)$ connect with a bound state in $\bar{3}$
- high D_0^* connects with a virtual state in 6
- See also [Gregory et al., 2106.15391]

State	Channels	(S, I)	$\bar{15}$	6	$\bar{3}$
D_0^*	$D\pi, D\eta, D_s\bar{K}$	$(0, \frac{1}{2})$	✓	✓	✓
$D_{s0}^*(2317)$	$DK, D_s\eta$	$(1, 0)$	✓	✗	✓

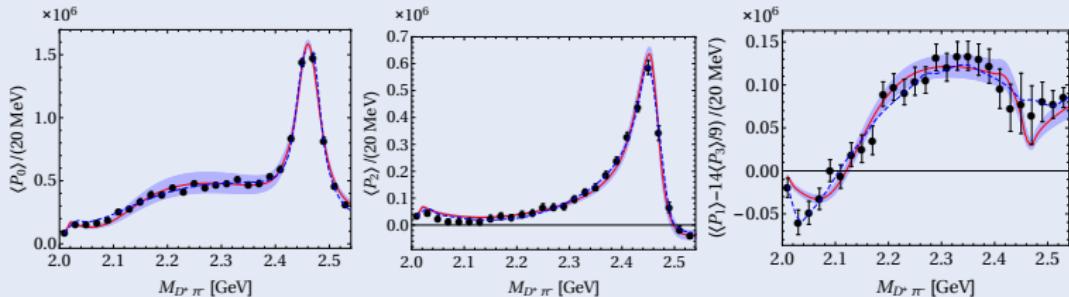
- A recent LQCD calculation by the HadSpec Collaboration finds a similar picture.

[HadSpec Collab., JHEP 02 (2021) 100; JHEP 07 (2021) 123]

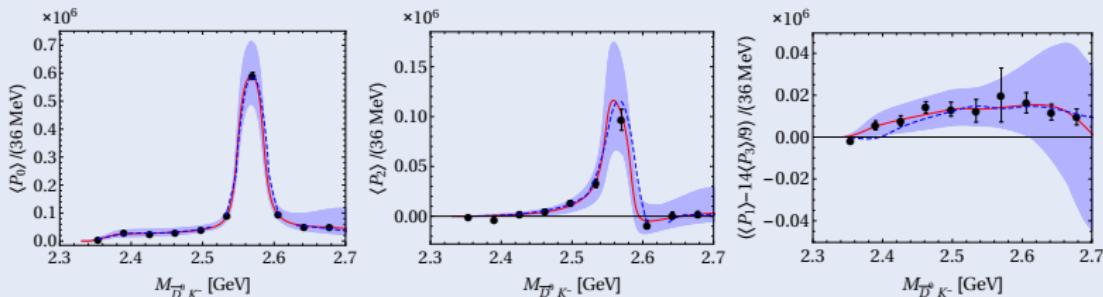
$D\pi$, $D\eta$, $D_s\bar{K}$ and $D^*(2300)$: Comparison with LHCb data

M.-L. Du, MA, P. Fernández-Soler, F.-K. Guo, C. Hanhart, U.-G. Meißner, J. Nieves, D.-L. Yao, PRD98,094018('18)

- $B^- \rightarrow D^+ \pi^- \pi^-$ [LHCb Collab., PRD94,072001('16)]

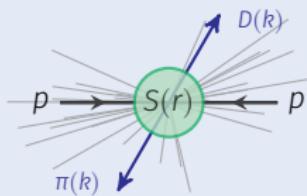


- $B_s^0 \rightarrow \bar{D}^0 K^- \pi^+$ [LHCb Collab., PRD90,072003('14)]



- Rapid movement in $\langle P_{13} \rangle$ [no $D_2(2460)$] at 2.4-2.5 GeV [$D\eta$ and $D_s\bar{K}$].
- Recall: these are the amplitudes with **two states** in the $D_0^*(2300)$ region, and no fit of the T-matrix parameters is done (production parameters are fitted).

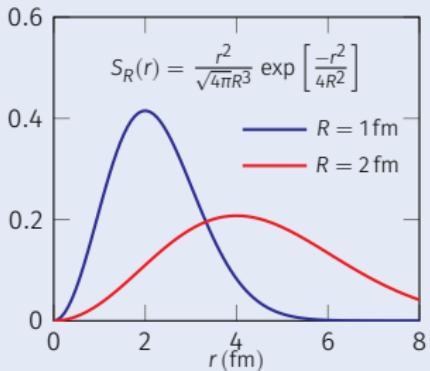
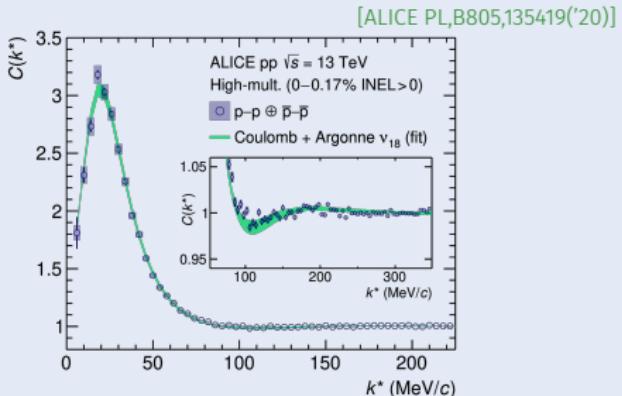
(Very basic introduction to) femtoscopy



$$C_{\text{exp}}(k) = \xi(k) \frac{N_{\text{same}}(k)}{N_{\text{mixed}}(k)}$$

$$C_{\text{th}}(k) = \sum_{\ell=0} (2\ell+1) \int dr S_R(r) |\psi_{\ell}(r, k)|^2$$

$$\psi_{\ell}^{\text{[asy,nr]}}(k, r) = j_{\ell}(kr) + f_{\ell}(k) \frac{e^{i(kr - \pi\ell/2)}}{r}$$



- Known the **source $S(r)$** , explore **interactions** (encoded in the wave function)
- A new method to explore **hadron interactions**
- Lot of attraction. In HADRON 2023:

► M. Janik [Mon. 11:00]	► W. Rzeza [Wed. 14:24]
► V. Mantovani [Mon. 14:30]	► L. Serksnyte [Wed. 15:12]
► D. Mihaylov [Mon. 17:40]	► E. Oset [Thu. 14:30]
► M. Albaladejo [Tue. 15:10]	► M. Lesch [Thu. 15:12]
► L. Graczykowski [Wed. 14:00]	► R. Lea [Thu. 15:42]

[Fabbietti, Mantovani, Vázquez-Doce, ARNPS, 71, 377 ('21)]
Check those talks for more references!

Open charm femtoscopy

MA, Nieves, Ruiz-Arriola, PRD,108,014020('23)

Channels (S -wave only):

- D_0^* ($S = 0, I = 1/2$): $D\pi, D_s\bar{K}, D\eta$.
- D_{s0}^* ($S = 1, I = 0, 1$): $D_s^+\pi^0, D^0K^+, D^+K^0, D_s^+\eta$.

$$C_i(s) = 1 + \int_0^\infty dr S_R(r) \left[\sum_j \left| \psi_i^j(s, r) \right|^2 - j_0(p_i r)^2 \right]$$

$$\psi_i^j(s, r) = j_0(p_i r) \delta_{ij} + \tilde{G}_j(s, r) T_{ji}(s)$$

$$T^{-1}(s) = V^{-1}(s) - G(s) \quad (\text{previous slides})$$

$$\tilde{G}_j(s, r) = \frac{1}{\pi} \int_{s_{\text{th}}}^\infty ds' \frac{p_j(s')}{8\pi\sqrt{s'}} \frac{j_0(p_j(s')r)}{s - s' + i\epsilon} \theta(\Lambda - p_i(s'))$$

Goal of our paper [MA, Nieves, Ruiz-Arriola, PRD,108,014020('23)]

To use our previously fixed T -matrices in the open-charm sector to **predict** correlation functions to be measured

- $C(k)$ in terms of on-shell T -matrix:

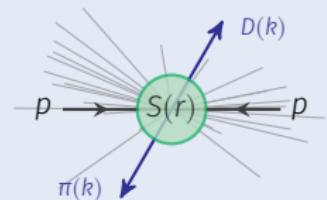
► Feijoo, Vidaña, MA, Nieves, Oset, PLB,846,138201('23)

- Coupled channels based on:

► Lednicky, Lyuboshitz (x2), PAN,61,2950('98)
► Haidenbauer, NPA,981,1('19)

- Cut-off Λ :

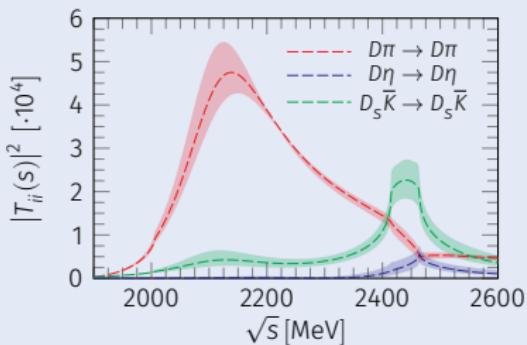
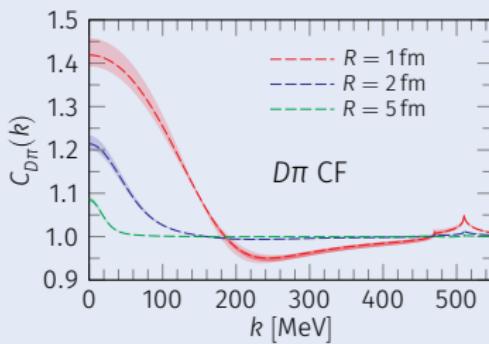
► Only used in $\tilde{G}(s, r)$, not in $G(s)$
► Very soft effect, because \tilde{G} would be convergent (extra $1/p$ from j_0)
► Take $\Lambda \in [0.6, 0.9] \text{ GeV}$



Open charm femtoscopy: results $S = 0, I = 1/2 [D\pi, D\eta, D_s\bar{K}]$

MA, Nieves, Ruiz-Arriola, PRD, 108, 014020 ('23)

- Lower pole, peak at 2135 MeV would correspond to $k_{D\pi} = 215$ MeV. However, we find a minimum at $C_{D\pi}(k)$.

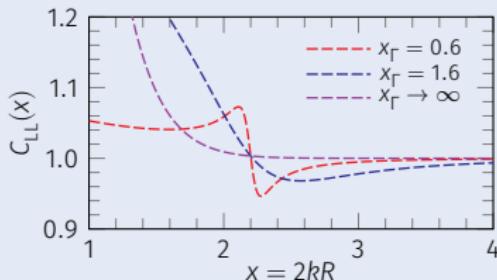


- Take the LL approximation to $C(k)$, and $f(k)$ in terms of $\delta(k)$:

$$C_{LL}(k) = 1 + \frac{2 \sin^2 \delta(k)}{x^2} \left(e^{-x^2} + \frac{2x F_1(x)}{\sqrt{\pi}} \cot \delta(k) \right)$$

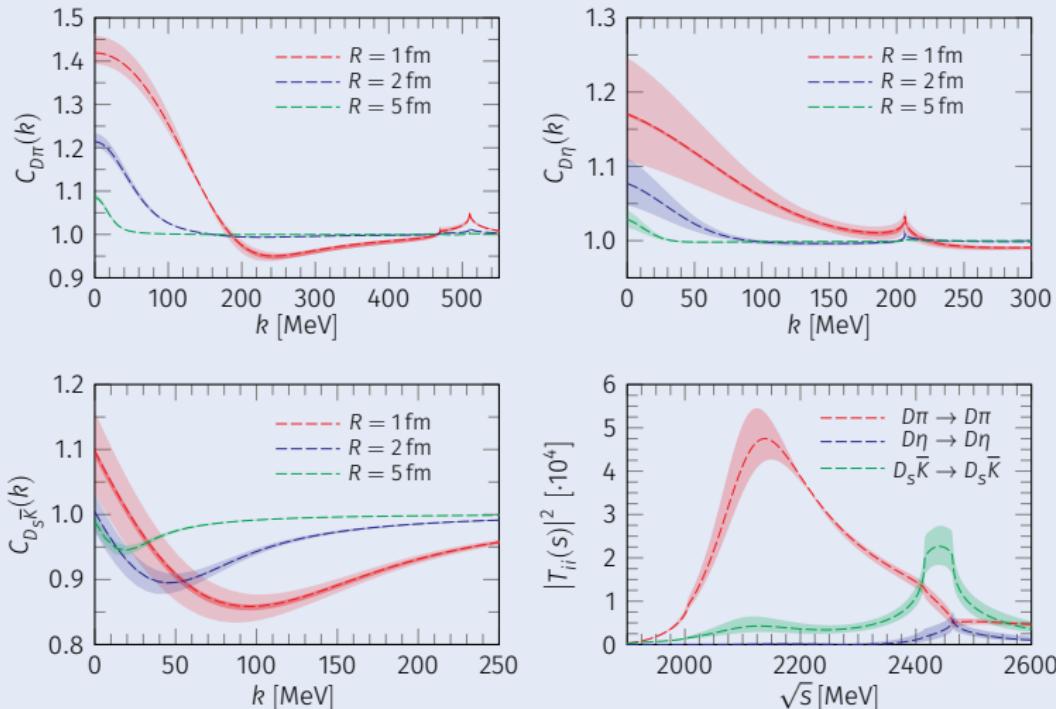
- For a simple BW: $C_{LL}(k_R) = 1, \quad C'_{LL}(k_R) < 0$

Conclusion: the minimum at $k_{D\pi} = 215$ MeV is a clear signature of the lowest pole.



Open charm femtoscopy: results $S = 0, I = 1/2$ [$D\pi, D\eta, D_s\bar{K}$]

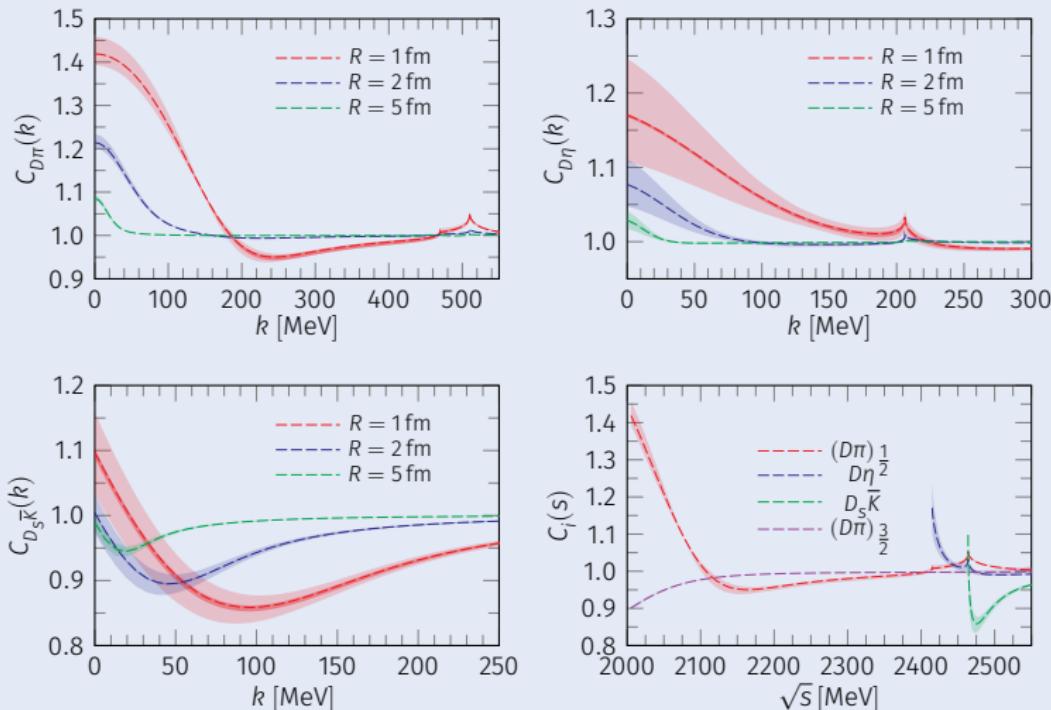
MA, Nieves, Ruiz-Arriola, PRD, 108, 014020 ('23)



- Two different minima at $\sqrt{s} \simeq 2135$ MeV ($D\pi$ CF) and 2475 MeV ($D_s\bar{K}$ CF), produced by the two different D_0^* states, can be observed
- Their observation would constitute a strong additional support of the two-state pattern.

Open charm femtoscopy: results $S = 0, I = 1/2 [D\pi, D\eta, D_s\bar{K}]$

MA, Nieves, Ruiz-Arriola, PRD, 108, 014020 ('23)

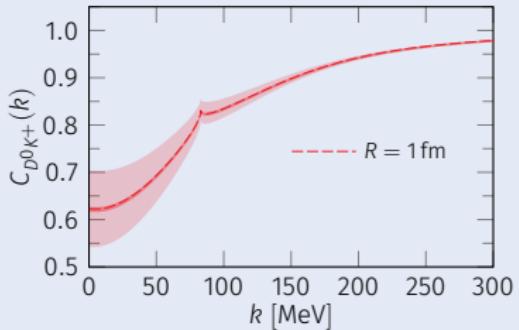


- Two different minima at $\sqrt{s} \simeq 2135$ MeV ($D\pi$ CF) and 2475 MeV ($D_s\bar{K}$ CF), produced by the two different D_0^* states, can be observed
- Their observation would constitute a strong additional support of the two-state pattern.

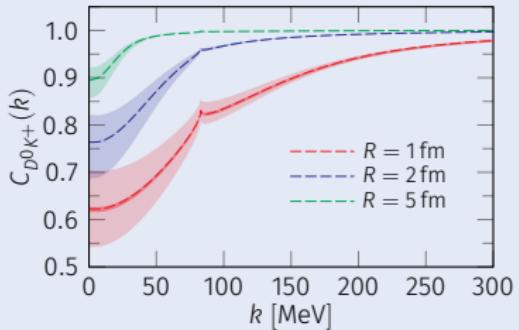
Open charm femtoscopy: results $S = 1, I = 0, 1 [D_s^+ \pi^0, D^0 K^+, D^+ K^0, D_s^+ \eta]$

MA, Nieves, Ruiz-Arriola, PRD,108,014020('23)

- $D_{s0}^*(2317)$ is a (mostly) DK $I = 0$ bound state, with $B = 45$ MeV, $p_B = 190i$ MeV
- Why use physical channels?
 - ▶ $E_{D^+ K^0}^{\text{th}} - E_{D^0 K^+}^{\text{th}} \simeq 9$ MeV [$k_{D^0 K^+} \simeq 83$ MeV]
 - ▶ Also, $C_{D^0 K^+} = C_{D^+ K^0} = \frac{C_0^{DK} + C_1^{DK}}{2}$
- Clear depletion at threshold, related to the presence of $D_{s0}^*(2317)$
- Similar trends in recent works, only small differences in the values:
 - ▶ [Liu, Lu, Geng, PRD107,074019('23)]
 - ▶ [Ikeno, Toledo, Oset, 2305.16431]



- $D_{s0}^*(2317)$ is a (mostly) DK $I = 0$ bound state, with $B = 45$ MeV, $p_B = 190i$ MeV
- Why use physical channels?
 - ▶ $E_{D^+ K^0}^{\text{th}} - E_{D^0 K^+}^{\text{th}} \simeq 9$ MeV [$k_{D^0 K^+} \simeq 83$ MeV]
 - ▶ Also, $C_{D^0 K^+} = C_{D^+ K^0} = \frac{C_0^{DK} + C_1^{DK}}{2}$
- Clear depletion at threshold, related to the presence of $D_{s0}^*(2317)$
- Similar trends in recent works, only small differences in the values:
 - ▶ [Liu, Lu, Geng, PRD 107, 074019 ('23)]
 - ▶ [Ikeno, Toledo, Oset, 2305.16431]



Outline

1 Introduction: spectroscopy, exotics, QCD and EFTs

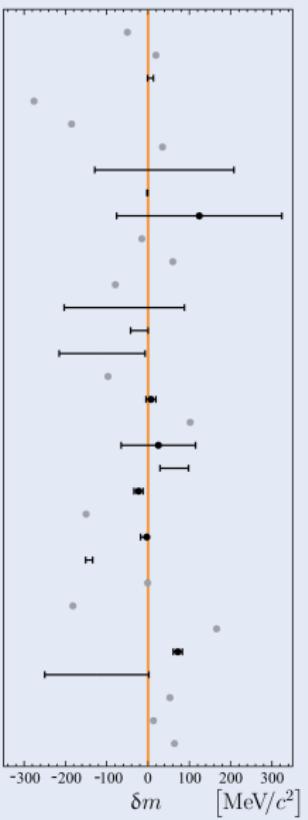
2 Open charm: spectroscopy and femtoscopy

3 Double charm: spectroscopy and femtoscopy

4 Conclusions

$T_{cc}(3875)^+$ and previous predictions

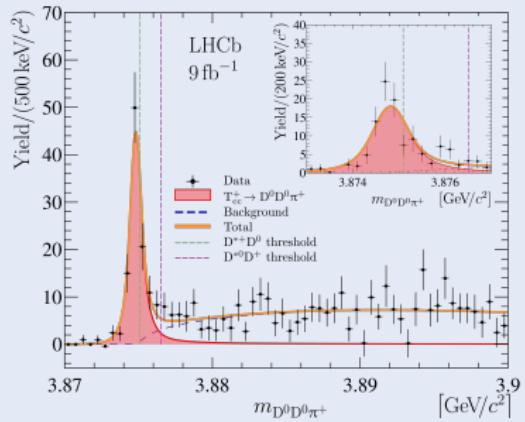
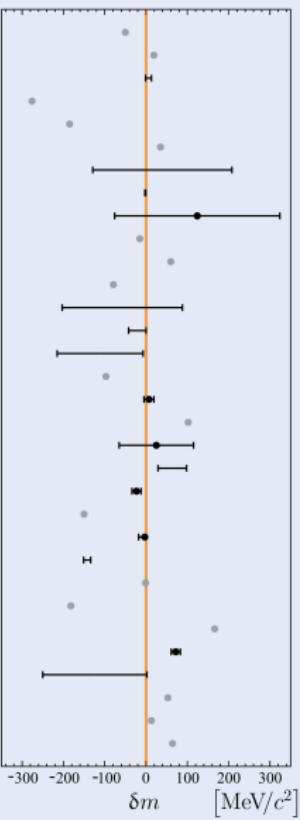
- $T_{cc}(3875)^+$ is a **tetraquark** with constituent $cc\bar{u}\bar{d}$
- Models give broad range of predictions.
- Not observed until now (only Ξ_{cc}^{++} [LHCb])
[PRL,119,112001('17)]
- LQCD: not conclusive in the charm sector; more agreement in the bottom sector.
[Leskovec *et al.*, PRD100,014503('19)]
[Bicudo *et al.*, PRD103,114506('21)]



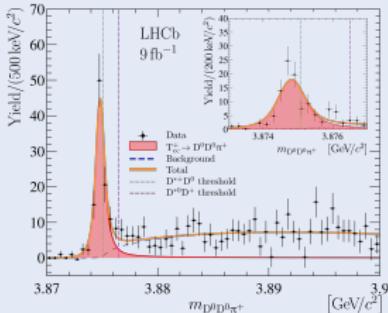
J. Carlson <i>et al.</i>	1987
B. Silvestre-Brac and C. Semay	1993
C. Semay and B. Silvestre-Brac	1994
M. A. Moinester	1995
S. Pepin <i>et al.</i>	1996
B. A. Gelman and S. Nussinov	2003
J. Vijande <i>et al.</i>	2003
D. Janc and M. Rosina	2004
F. Navarra <i>et al.</i>	2007
J. Vijande <i>et al.</i>	2007
D. Ebert <i>et al.</i>	2007
S. H. Lee and S. Yasui	2009
Y. Yang <i>et al.</i>	2009
N. Li <i>et al.</i>	2012
G.-Q. Feng <i>et al.</i>	2013
S.-Q. Luo <i>et al.</i>	2017
M. Karliner and J. Rosner	2017
E. J. Eichten and C. Quigg	2017
Z. G. Wang	2017
W. Park <i>et al.</i>	2018
P. Jumarkar <i>et al.</i>	2018
C. Deng <i>et al.</i>	2018
M.-Z. Liu <i>et al.</i>	2019
L. Maiani <i>et al.</i>	2019
G. Yang <i>et al.</i>	2019
Y. Tan <i>et al.</i>	2020
Q.-F. Lü <i>et al.</i>	2020
E. Braaten <i>et al.</i>	2020
D. Gao <i>et al.</i>	2020
J.-B. Cheng <i>et al.</i>	2020
S. Noh <i>et al.</i>	2021
R. N. Faustov <i>et al.</i>	2021

$T_{cc}(3875)^+$ and previous predictions

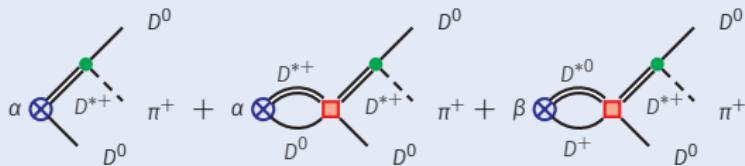
- $T_{cc}(3875)^+$ is a **tetraquark** with constituent $cc\bar{u}\bar{d}$
- Models give broad range of predictions.
- Not observed until now (only Ξ_{cc}^{++} [LHCb])
[PRL,119,112001('17)]
- LQCD: not conclusive in the charm sector; more agreement in the bottom sector.
[Leskovec *et al.*, PR,D100,014503('19)]
[Bicudo *et al.*, PR,D103,114506('21)]
- Then comes LHCb... [2109.01038;2109.01056]



J. Carlson <i>et al.</i>	1987
B. Silvestre-Brac and C. Semay	1993
C. Semay and B. Silvestre-Brac	1994
M. A. Moinester	1995
S. Pepin <i>et al.</i>	1996
B. A. Gelman and S. Nussinov	2003
J. Vijande <i>et al.</i>	2003
D. Janc and M. Rosina	2004
F. Navarra <i>et al.</i>	2007
J. Vijande <i>et al.</i>	2007
D. Ebert <i>et al.</i>	2007
S. H. Lee and S. Yasui	2009
Y. Yang <i>et al.</i>	2009
N. Li <i>et al.</i>	2012
G.-Q. Feng <i>et al.</i>	2013
S.-Q. Luo <i>et al.</i>	2017
M. Karliner and J. Rosner	2017
E. J. Eichten and C. Quigg	2017
Z. G. Wang	2017
W. Park <i>et al.</i>	2018
P. Jumarkar <i>et al.</i>	2018
C. Deng <i>et al.</i>	2018
M.-Z. Liu <i>et al.</i>	2019
L. Maiani <i>et al.</i>	2019
G. Yang <i>et al.</i>	2019
Y. Tan <i>et al.</i>	2020
Q.-F. Lü <i>et al.</i>	2020
E. Braaten <i>et al.</i>	2020
D. Gao <i>et al.</i>	2020
J.-B. Cheng <i>et al.</i>	2020
S. Noh <i>et al.</i>	2021
R. N. Faustov <i>et al.</i>	2021



- LHCb spectrum is essentially T_{cc}^+ signal and a D^*D phase space background
- Reasonable to assume that all $DD\pi$ events are produced through D^*D
- Small range (~ 30 MeV) $DD\pi$ invariant mass: assume D^*D in S-wave



$$\mathcal{N}_{\text{ev}}(Q^2) = \mathcal{N}_0 \left(\frac{Q_{\text{th}}^2}{Q^2} \right)^{\frac{3}{2}} \int_{s_{\text{th}}}^{s_{\text{max}}(Q^2)} ds \int_{t_{-(s,Q^2)}}^{t_{+(s,Q^2)}} dt \sum_{\lambda} |\mathcal{M}_{\lambda}(Q^2, s, t, u)|^2 ,$$

$$\mathcal{M}_{\lambda}(Q^2, s, t, u) = g_{D^*D\pi} p_{\pi}^{\nu} \epsilon_{S}^{\mu}(\lambda) \left[\frac{K_t(Q^2)}{t - m_{D_{(t)}^*}^2} \left(-g_{\mu\nu} + \frac{k_{\mu}^{(t)} k_{\nu}^{(t)}}{t} \right) + \frac{K_u(Q^2)}{u - m_{D_{(u)}^*}^2} \left(-g_{\mu\nu} + \frac{k_{\mu}^{(u)} k_{\nu}^{(u)}}{u} \right) \right] .$$

$$K_t(Q^2) = \alpha (1 + G_1(Q^2) T_{11}(Q^2)) C_{D^{*+} \rightarrow D^0 \pi^+} + \beta G_2(Q^2) T_{12}(Q^2) C_{D^{*+} \rightarrow D^0 \pi^+} .$$

- Coupled T -matrix for the $D^{*+}D^0$, $D^{*0}D^+$ channels:

$$T^{-1}(E) = V^{-1}(E) - \mathcal{G}(E) ,$$

- $I_z = 0$: the isospin decomposition reads:

$$|D^{*+}D^0\rangle = -\frac{1}{\sqrt{2}} (|D^*D, I=1\rangle + |D^*D, I=0\rangle) ,$$

$$|D^{*0}D^+\rangle = -\frac{1}{\sqrt{2}} (|D^*D, I=1\rangle - |D^*D, I=0\rangle) ,$$

$V(E)$: **interaction** kernels written in terms of $C_{I=0,1}$ (constants):

$$V(E) = \frac{1}{2} \begin{pmatrix} C_0 + C_1 & C_1 - C_0 \\ C_1 - C_0 & C_0 + C_1 \end{pmatrix}$$

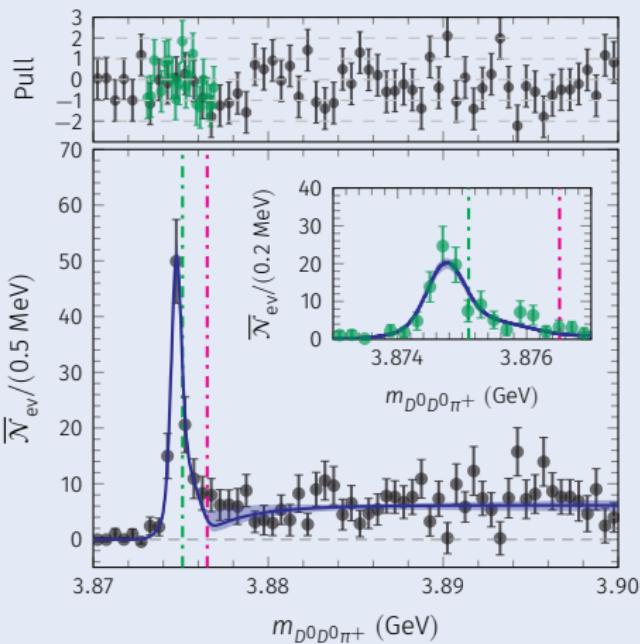
$\mathcal{G}(E)$: **loop functions** of the $D^{*+}D^0$, $D^{*0}D^+$ channels:

$$G_i(E) = \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{e^{-\frac{2\vec{k}^2}{\Lambda^2}}}{E - E_{th}^i - \frac{\vec{k}^2}{2\mu_i}}$$

- Width of the D^* : the loop functions are analytically continued to complex values of the D^* mass, $m_{D^*} \rightarrow m_{D^*} - i\Gamma_{D^*}/2$.
- Two values for the cutoff, $\Lambda = 0.5$ GeV and $\Lambda = 1.0$ GeV.
- The V -matrix elements depend now on the cutoff, $C_i(\Lambda)$.

- Exp. resolution taken from LHCb ($\delta \simeq 400$ keV):

$$\overline{\mathcal{N}}_{\text{ev}}(E) = \int dE' R_{\text{LHCb}}(E, E') \mathcal{N}_{\text{ev}}(E')$$



Parameter	$\Lambda = 1.0 \text{ GeV}$	$\Lambda = 0.5 \text{ GeV}$
$C_0(\Lambda) [\text{fm}^2]$	-0.7008(22)	-1.5417(121)
$C_1(\Lambda) [\text{fm}^2]$	-0.440(79)	-0.71(27)
β/α	0.228(108)	0.093(79)
χ^2/dof	0.95	0.92

- Good agreement ($\chi^2/\text{dof} = \{0.92, 0.95\}$)
- Check: pull of the data seems randomly distributed.
- Statistical uncertainties obtained by MC bootstrap of the data

- Bound state pole in T -matrix, $\det(\mathbb{1} - VG) = 0$:

$$T_{ij}(E) = \frac{\tilde{g}_i \tilde{g}_j}{E^2 - (M_{T_{cc}^+} - i\Gamma_{T_{cc}^+}/2)^2} + \dots$$

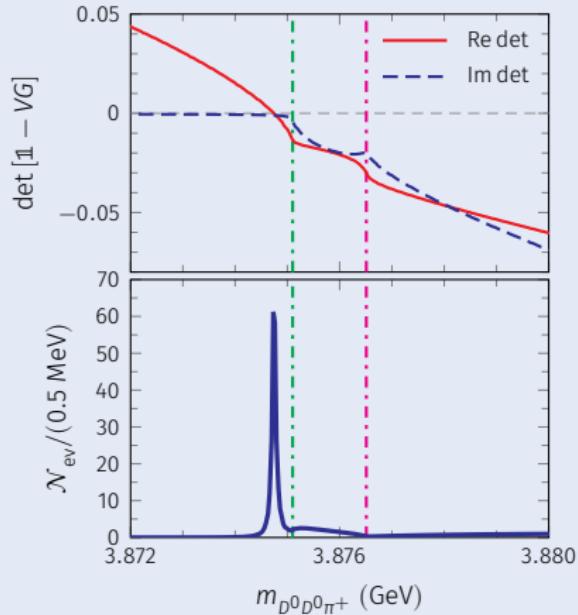
- Width: $m_{D^*} - i\Gamma_{D^*}/2 \Rightarrow M_{T_{cc}^+} - i\Gamma_{T_{cc}^+}/2$
- Pole position (wrt $D^{*+}D^0$ threshold):

Λ (GeV)	$\delta M_{T_{cc}^+}$ (keV)	$\Gamma_{T_{cc}^+}$ (keV)
1.0	-357(29)	77(1)
0.5	-356(29)	78(1)

- Good agreement with LHCb determination:

	$\delta M_{T_{cc}^+}$ (keV)	$\Gamma_{T_{cc}^+}$ (keV)
[2109.01038]	-273(61)	410(165)
[2109.01056]	-360(40)	48(2)

- Our width is somewhat larger than the ~ 50 keV obtained by LHCb and [Feijoo *et al.*, 2108.02730], [Ling *et al.*, 2108.00947].
- [Du *et al.*, 2110.13765]: $\Gamma_{T_{cc}^+}$ depending on the model used.



- Results similar to [LHCb, 2109.0156] (top) and [Feijoo *et al.*, 2108.02730; Du *et al.*, 2110.13765] (bottom).

- Weinberg compositeness [Weinberg, PR,137,B672('65)]: $P = 1 - Z \simeq \frac{\mu^2 g^2}{2\pi\gamma_B} = -g^2 G'(E_B)$
- We get $P_{D^*+D^0} = 0.78(5)(2)$, $P_{D^*0D^+} = 0.22(5)(2) \rightarrow P_{l=0} = 1$ **purely molecular state (model built-in!)**
- Single channel & isospin limit:

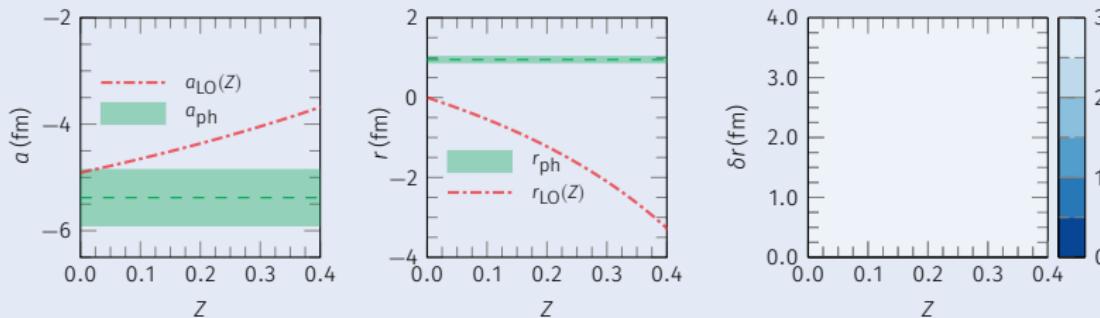
Λ (GeV)	0.5	1.0
E_B (keV)	833(67)	856(53)
$a_{l=0}$ (fm)	-5.57(25)	-5.18(16)
$r_{l=0}$ (fm)	0.63	1.26

- Relation to ERE parameters a, r [Weinberg, PR,137,B672('65)]

$$a = -\frac{2}{\gamma_B} \frac{1-Z}{2-Z} + \dots ,$$

$$r = -\frac{1}{\gamma_B} \frac{Z}{1-Z} + \dots .$$

- Average values: $a_{ph} = -5.38(30)$ fm, $r_{ph} = 0.95(32)$ fm, $\gamma_{Bph} = 40.4(1.7)$ MeV.



The values obtained clearly support a molecular picture for T_{cc}^+

- Weinberg compositeness [Weinberg, PR,137,B672('65)]: $P = 1 - Z \simeq \frac{\mu^2 g^2}{2\pi\gamma_B} = -g^2 G'(E_B)$
- We get $P_{D^*+D^0} = 0.78(5)(2)$, $P_{D^*0D^+} = 0.22(5)(2) \rightarrow P_{l=0} = 1$ **purely molecular state (model built-in!)**
- Single channel & isospin limit:

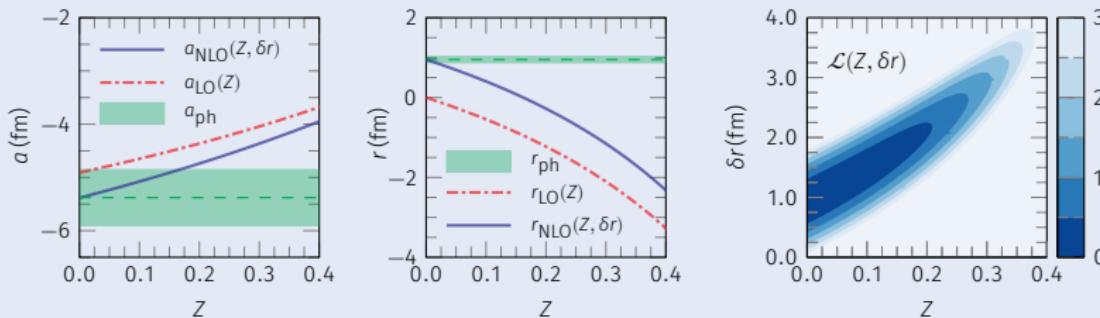
Λ (GeV)	0.5	1.0
E_B (keV)	833(67)	856(53)
$a_{l=0}$ (fm)	-5.57(25)	-5.18(16)
$r_{l=0}$ (fm)	0.63	1.26

- Relation to ERE parameters a, r
[Weinberg, PR,137,B672('65)] + [MA, J. Nieves, EPJ,C82,8('22)]

$$a = -\frac{2}{\gamma_B} \frac{1-Z}{2-Z} - 2\delta r \left(\frac{1-Z}{2-Z} \right)^2 + \dots ,$$

$$r = -\frac{1}{\gamma_B} \frac{Z}{1-Z} + \delta r + \dots .$$

- Average values: $a_{\text{ph}} = -5.38(30)$ fm, $r_{\text{ph}} = 0.95(32)$ fm, $\gamma_{B_{\text{ph}}} = 40.4(1.7)$ MeV. Minimum at $\delta r \simeq r_{\text{ph}} \simeq 1$ fm



The values obtained clearly support a molecular picture for T_{cc}^+

- Heavy-Quark Spin Symmetry (HQSS) predicts that heavy-meson interactions are independent of the heavy-quark spin in the limit $m_Q \rightarrow \infty$.
- Relation between $D^*D^* \rightarrow D^*D^*$ and $D^*D \rightarrow D^*D$ amplitudes.
- The interaction kernels of the $I(J^P)$ D^*D^* systems are related to those of the D^*D ones as:

$$\langle D^*D^*, 0(1^+) | \hat{V} | D^*D^*, 0(1^+) \rangle = \langle D^*D, 0(1^+) | \hat{V} | D^*D, 0(1^+) \rangle = V_0 ,$$

$$\langle D^*D^*, 1(2^+) | \hat{V} | D^*D^*, 1(2^+) \rangle = \langle D^*D, 1(1^+) | \hat{V} | D^*D, 1(1^+) \rangle = V_1 .$$

- We predict the existence of T_{cc}^{*+} , a D^*D^* molecular state, HQSS partner of T_{cc}^+ , with a binding energy (wrt the different D^*D^* thresholds) of **1.1–1.5 MeV**.

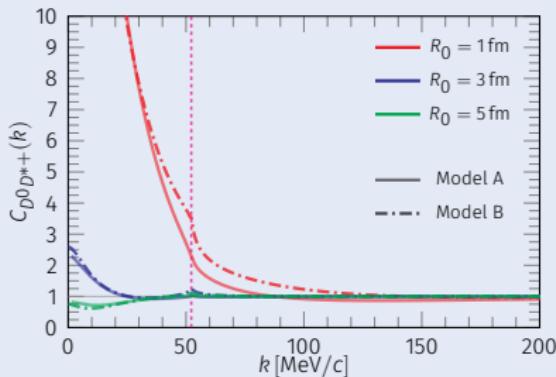
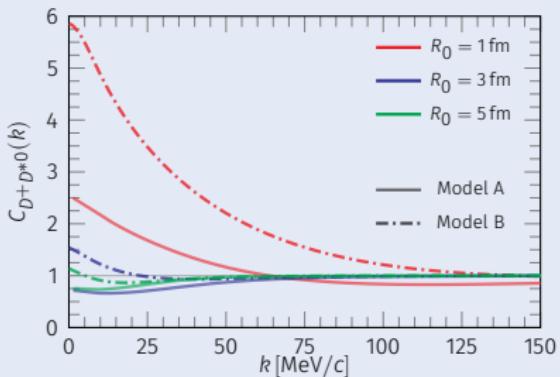
		$\delta M_{T_{cc}^*}$ (keV)	
		Isoscalar solution	
		$\Lambda = 1.0$ GeV	$\Lambda = 0.5$ GeV
$D^{*+}D^{*+}$			$-1580(71)$
$D^{*+}D^{*0}$	$-1561(71)$	$-1148(79)$	$-1561(71)$
$D^{*0}D^{*0}$			$-1140(79)$

- Similar predictions are obtained in a later work [Dai *et al.*, PR,D105,016029('22)]
- Previous works predicting D^*D^* states: [Molina *et al.*, PR,D82,014010('10); Liu *et al.*, PR,D99,094018('19)].

Femtoscopy correlation functions for $T_{cc}(3875)^+$

Feijoo, Vidaña, MA, Nieves, Oset, PLB,846,138201('23)

- $D^0 D^{*+}$ channel: $C(k)$ positive and very large ($\simeq 30$) for $R = 1\text{fm}$ at the threshold.
- $D^+ D^{*0}$ channel: Also positive and larger than 1 (but substantially smaller than for $D^0 D^{*+}$)
- These predictions could be compared with future measurements by ALICE



1 Introduction: spectroscopy, exotics, QCD and EFTs

2 Open charm: spectroscopy and femtoscopy

3 Double charm: spectroscopy and femtoscopy

4 Conclusions

Conclusions

- Constituent quark models are able to reproduce many of the discovered hadrons, but there's room for many more species of them.
- We have entered into the **exotic** and **precision spectroscopy** era.
- **Femtoscopy** can give new experimental insights into these challenges.
- **Effective Field Theories** are an ideal tool to study reactions and spectroscopy
 - ▶ Their combination with LQCD simulations can be very powerful
- For **single charm** studies, the combination of ChPT, $SU(3)$ and HQSS produces an economic description of scattering amplitudes.
 - ▶ **Two states** are predicted instead of a single $D_0^*(2300)$
 - ▶ This picture is compatible with different LQCD simulations and experimental (LHCb) data
 - ▶ We have also predicted CFs that can be measured in **femtoscopy** studies at ALICE
- We are having a first glimpse into the **double charm** sector.
 - ▶ The study of the spectra points to a **molecular nature** of the $T_{cc}(3875)^+$
 - ▶ A HQSS partner $[T_{cc}^{*+}(4016)]$ is predicted. Its finding would constitute a strong support of this picture.
 - ▶ Femtoscopic correlation functions are also predicted for $T_{cc}(3875)^+$.

Thank you!

(Some) attempts to explain $D_{s0}^*(2317)$ as a $c\bar{s}$ state

[Ortega *et al.*, PR,D94,074037('16) (and references therein)]

- Problem: original Quark Model prediction mass is ~ 150 MeV above experimental one.
- 1-loop correction to OGE potential ($\mathcal{O}(\alpha_s^2)$) reduces the mass to 2383 MeV, much closer to the experimental one.
- 3P_0 mechanism to couple $c\bar{s}$ states to DK meson-pairs, $P_{DK} \sim 30\%$.
- Much better situation, but:
 - ▶ Still above DK threshold
 - ▶ This mechanism only affects the 0^+ sector, still problems with 1^+
 - ▶ Coupling to DK is included, but no DK “dynamics”

[Lakhina, Swanson, PL,B650,159('07)]

Open questions for the community

- Need of more collaboration between (and simultaneous use of!) different "subcommunities": LQCD, molecular/tetraquarks/QM models...

• Spectroscopy, mixing:

Specific example of D_{s0}^* (2317), take for granted the presence of a CQM $c\bar{s}$ state. **Theoretical possibilities:**

- ▶ Genuine $c\bar{s}$, (very) renormalized by DK threshold. Or renormalized by DK interactions themselves?
- ▶ Or, there is a $S = 1, I = 0$ state coming from DK interactions in addition to the $c\bar{s}$ state. If so, where are those two poles? Which is which?

[Cincioglu *et al.*, EPJ C76,576('16); MA *et al.*, EPJ C78,722('19)]

• Nature/size:

- ▶ Can we address the question of $4q, q\bar{q}$, molecule based on the size of the object?

- ▶ For $\pi\pi$ scattering, σ meson: MA, Oller, PR,D86,034003('12)

$$\sqrt{\langle r^2 \rangle_\sigma^S} \simeq 0.44 \text{ fm} \text{ vs } \sqrt{\langle r^2 \rangle_\pi^S} \simeq 0.81 \text{ fm}$$

- ▶ Perhaps only theoretical? Future lattice QCD calculations?

Briceño *et al.*, PR,D103,114512('21) [and refs. therein]

Riemann sheets:

$$\mathcal{G}_{ii}(s) \rightarrow \mathcal{G}_{ii}(s) + i \frac{p_i(s)}{4\pi\sqrt{s}} \xi_i$$

$SU(3)$ limit:

$$m_i = m_i^{\text{phy}} + x(m - m_i^{\text{phy}}) , \quad (m = 0.49 \text{ GeV}) ,$$
$$M_i = M_i^{\text{phy}} + x(M - M_i^{\text{phy}}) , \quad (M = 1.95 \text{ GeV}) .$$

- Physical case ($x = 0$): RS specified by $(\xi_1 \xi_2 \xi_3)$, $\xi_i = 0$ or 1.
- $SU(3)$ symmetric case ($x = 1$): all channels have the same threshold, so there are only two RS (000) and (111).
- To connect the **lower pole** with the T_6 virtual state,

$$\xi_3 = x \quad (1, 1, 0) \rightarrow (1, 1, x)$$

- To connect the **lower pole** with the $T_{\bar{3}}$ bound state,

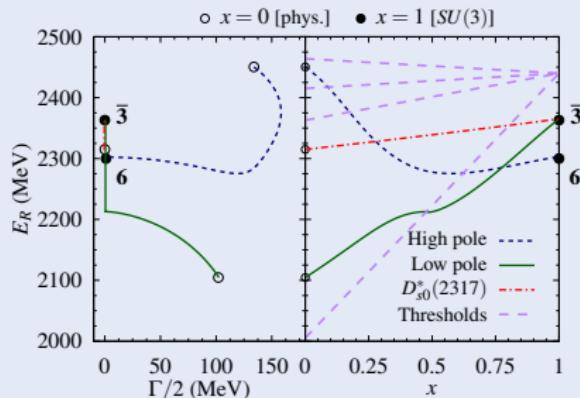
$$\xi_1 = 1 - x \quad (1, 0, 0) \rightarrow (1 - x, 0, 0)$$

Connecting $SU(3)$ and physical limits Riemann sheets (II)

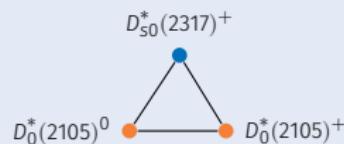
Connecting physical ($x = 0$) and flavor $SU(3)$ ($x = 1$) limits:

$$m_i = m_i^{\text{phy}} + x(m - m_i^{\text{phy}}), \quad (m = 0.49 \text{ GeV}),$$

$$M_i = M_i^{\text{phy}} + x(M - M_i^{\text{phy}}), \quad (M = 1.95 \text{ GeV}).$$



- The **high D_0^*** connects with a **6 virtual state** (unph. RS, below threshold).
- The **low D_0^*** connects with a **$\bar{3}$ bound state** (ph. RS, below threshold).
- The **$D_{s0}^*(2317)$** also connects with the **$\bar{3}$ bound state**.



- The low D_0^* and the $D_{s0}^*(2317)$ are $SU(3)$ flavor partners.
- This solves the “puzzle” of $D_{s0}^*(2317)$ being lighter than $D_0^*(2300)$: it is not, the lower D_0^* pole ($M = 2105$ MeV) is lighter.

Form factors in semileptonic $D \rightarrow \pi \bar{\ell} \nu_\ell$

D.-L. Yao, P. Fernández-Soler, MA, F.-K. Guo, J. Nieves, Eur. Phys. J. C 78, 310 (2018)

- General definitions:

$$\frac{d\Gamma(D \rightarrow \pi \bar{\ell} \nu_\ell)}{dq^2} = \frac{G_F^2}{24\pi^3} |\vec{p}_\pi|^3 |V_{cd}|^2 |f_+(q^2)| . \quad [q^2 = 0 : f_+(0) = f_0(0)]$$

$$\langle \pi(p') | \bar{q} \gamma^\mu Q | D(p) \rangle = f_+(q^2) \left[\Sigma^\mu - \frac{m_D^2 - m_\pi^2}{q^2} q^\mu \right] + f_0(q^2) \frac{m_D^2 - m_\pi^2}{q^2} q^\mu ,$$

- “Isospin” form factors, related to $D\pi$, $D\eta$, $D_s \bar{K}$ scattering:

$$\mathcal{F}^{(0,1/2)}(s) \equiv \begin{pmatrix} -\sqrt{\frac{3}{2}} f_0^{D^0 \rightarrow \pi^-}(s) \\ -f_0^{D^+ \rightarrow \eta}(s) \\ -f_0^{D_s^+ \rightarrow K^0}(s) \end{pmatrix} , \quad \text{Im} \mathcal{F}(s) = T^*(s) \Sigma(s) \mathcal{F}(s)$$

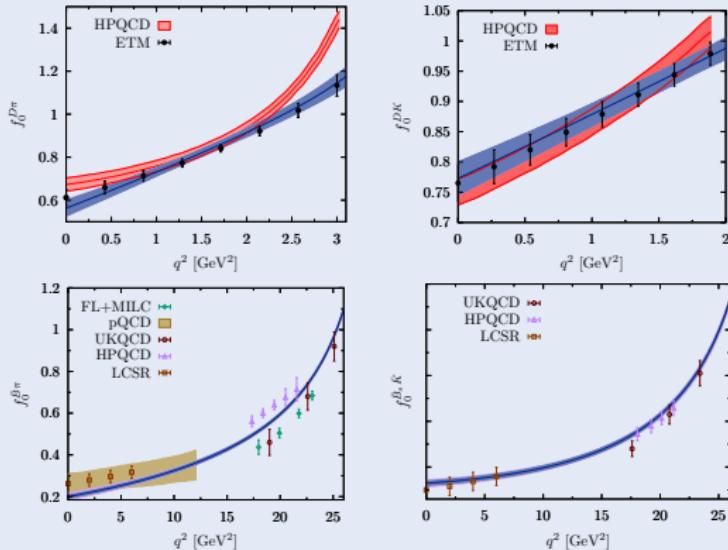
- Write form factors as Omnés matrix times polynomials

$$\mathcal{F}(s) = \Omega(s) \cdot \mathcal{P}(s)$$

- Polynomials fixed so as to reproduce the NLO chiral lagrangian:

$$\begin{aligned} \mathcal{L}_0 &= f_{\mathcal{P}} \left(\not{m} P_\mu^* - \partial_\mu P \right) u^\dagger J^\mu , \\ \mathcal{L}_0 &= \beta_1 P u (\partial_\mu U^\dagger) J^\mu + \beta_2 (\partial_\mu \partial_\nu P) u (\partial^\nu U^\dagger) J^\mu . \end{aligned}$$

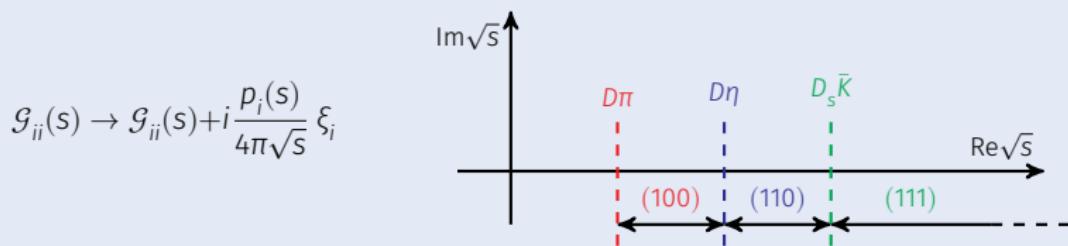
Form factors in semileptonic $D \rightarrow \pi \bar{\ell} \nu_\ell$ (II)



- Points mostly from LQCD
- Also LCSR for $q^2 \rightarrow 0$
- Good agreement in general
- CKM matrix can also be calculated
- Definitive results may differ...

	This work	Exp.
$10^3 V_{ub} $	4.3(7)	4.49(24) [Incl.] 3.72(19) [Excl.]
$ V_{cd} $	0.244(22)	0.220(5)
$ V_{cs} $	0.945(41)	0.995(16)

- Normalization: $-ip_{ii}(s)T_{ii}(s) = 4\pi\sqrt{s}(\eta_i(s)e^{2i\delta_i(s)} - 1)$.
- $\mathcal{G}_{ii}(s) = G(s, m_i, M_i)$, regularized with a subtraction constant $a(\mu)$ ($\mu = 1$ GeV).
- Riemann sheets (RS) denoted as $(\xi_1 \xi_2 \xi_3)$:



Why is $D_0^*(2300)$ interesting?

- Lightest systems to test **ChPT with heavy mesons**, besides $D^* \rightarrow D\pi$.
- $D\pi$ interactions (where it shows up) are relevant, since $D\pi$ appears as a final state in many reactions that are being considered now (i.e., $Z_c(3900)$ and $\bar{D}^* D\pi$)
- $D_0^*(2300)$ is important in **weak interactions and CKM** parameters:

Flynn, Nieves, Phys. Rev. D **76**, 031302 (2007)

D.-L. Yao, P. Fernández-Soler, MA, F.-K. Guo, J. Nieves, Eur. Phys. J. C **78**, 310 (2018)

- ▶ It determines the shape of the scalar form factor $f_0(q^2)$ in semileptonic $D \rightarrow \pi$ decays.
- ▶ Relation to $|V_{cd}|$: $f_+(0) = f_0(0)$ and $d\Gamma \propto |V_{cd} f_+(q^2)|^2$.
- ▶ Even more interesting: the bottom analogue $|V_{ub}|$.

$D\pi, D\eta, D_s \bar{K}$ energy levels in a finite volume

- Periodic boundary conditions imposes **momentum quantization**
- Lüscher formalism:

Commun. Math. Phys. 105, 153 (1986)
 Nucl. Phys. B 354, 531 (1991)

infinite volume	finite volume
$\vec{q} \in \mathbb{R}^3$	$\vec{q} = \frac{2\pi}{L} \vec{n}, \quad \vec{n} \in \mathbb{Z}^3$
$\int_{\mathbb{R}^3} \frac{d^3q}{(2\pi)^3}$	$\frac{1}{L^3} \sum_{\vec{n} \in \mathbb{Z}^3}$

- In practice, changes in the T -matrix: $T(s) \rightarrow \tilde{T}(s, L)$:

Döring *et al.*, Eur. Phys. J. A 47, 139 (2011)

$$\mathcal{G}_{ii}(s) \rightarrow \tilde{\mathcal{G}}_{ii}(s, L) = \mathcal{G}_{ii}(s) + \lim_{\Lambda \rightarrow \infty} \left(\frac{1}{L^3} \sum_{\vec{n}}^{\lvert \vec{q} \rvert < \Lambda} I_i(\vec{q}) - \int_0^{\Lambda} \frac{q^2 dq}{2\pi^2} I_i(\vec{q}) \right) ,$$

$$V(s) \rightarrow \tilde{V}(s, L) = V(s) ,$$

$$T^{-1}(s) \rightarrow \tilde{T}^{-1}(s, L) = V^{-1}(s) - \tilde{\mathcal{G}}(s, L) ,$$

- **Free** energy levels: $E_{n,\text{free}}^{(i)}(L) = \omega_{i1}((2\pi n/L)^2) + \omega_{i2}((2\pi n/L)^2)$
- **Interacting** energy levels $E_n(L)$: $\tilde{T}^{-1}(E_n^2(L), L) = 0$ (poles of the \tilde{T} -matrix).

- Other famous two-poles structures rooted in **chiral dynamics**:

$\Lambda(1405)$ [$\Sigma\pi, N\bar{K}$]

Oller, Meißner, Phys. Lett. B 500, 263 (2001)

Jido *et al.*, Nucl. Phys. A 725, 181 (2003)

García-Recio *et al.*, Phys. Lett. B 582, 49 (2004)

Magas *et al.*, Phys. Rev. Lett. 95, 052301 (2005)

$K_1(1270)$

Roca *et al.*, Phys. Rev. D 72, 014002 (2005)

Geng *et al.*, Phys. Rev. D 75, 014017 (2007)

García-Recio *et al.*, Phys. Rev. D 83, 016007 (2011)

- Recently, [Clymton, Kim, 2305.14812](#) claim a two-pole structure for $b_1(1235)$.

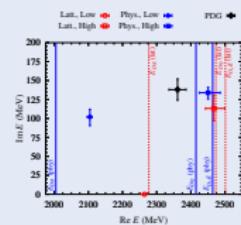
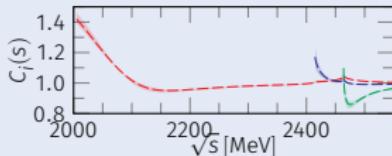
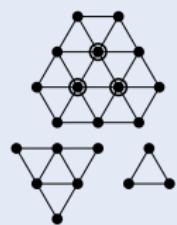
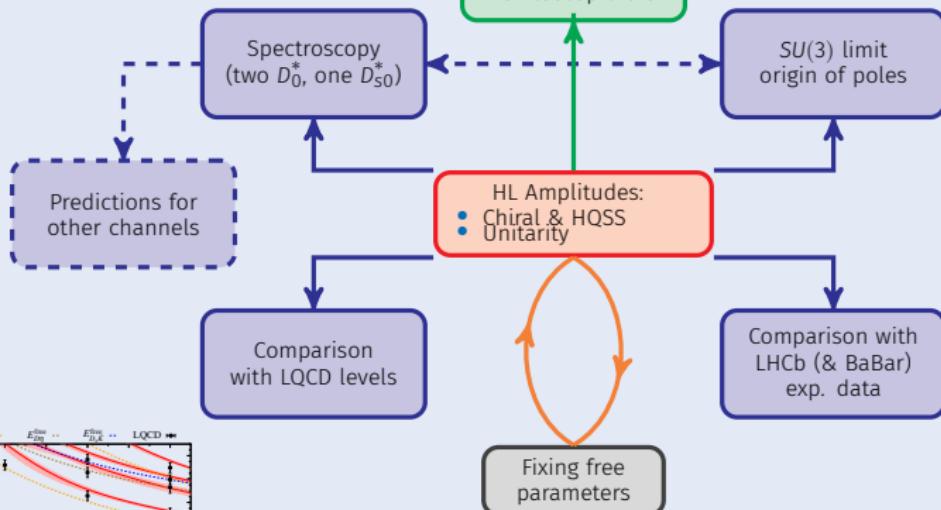
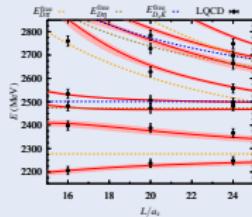
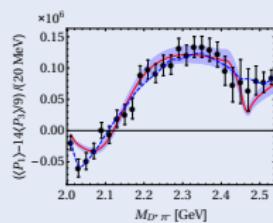
- **Chiral dynamics:**

- ▶ Incorporates the $SU(3)$ light-flavor structure,
- ▶ Determines the strength of the interaction,
- ▶ Ensures lightness of Goldstone bosons, which in turn separates generating channels from higher hadronic channels.

Summary and conclusions

- We have employed unitarized NLO chiral amplitudes to study the open-charm sector.
- The LECs are fixed through LQCD calculations of m_π -dependent scattering lengths.
- The $D_0^*(2300)$ structure is actually produced by **two different states** (poles), together with complicated interferences with thresholds.
- This two-state structure receives **strong support**. **Without any fit**, the amplitudes are **compatible** with:
 - ▶ available LQCD simulations,
 - ▶ and experimental data
- This picture, with the lowest D_0^* pole and $D^*(2317)$ being **flavour partners** nicely solves simultaneously all the puzzles.
- We have used these amplitudes to predict **femtoscopy correlation functions** in the open-charm sector.
- In particular, we have highlighted the imprints that the two-state structure leaves on $C_{D\pi}$, $C_{D\eta}$, and $C_{D_s\bar{K}}$.
- The measurements of these CFs can shed further light on the (very interesting!) open-charm sector.

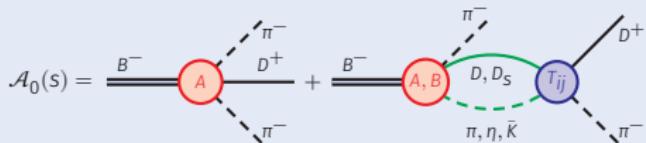
Scheme of unitary EFTs relations to LQCD and experiments



Comparison with experimental data: $B^- \rightarrow D^+ \pi^- \pi^-$

Du, MA, Fernández-Soler, Guo, Hanhart, Meißner, Nieves, Yao, PRD98,094018('18)

- $\mathcal{A}(s, z) = \mathcal{A}_0(s) + \sqrt{3}\mathcal{A}_1(s)P_1(z) + \sqrt{5}\mathcal{A}_2(s)P_2(z) + \dots$
- **P -, D -wave** as in LHCb paper: D^* , $D^*(2680)$ in P -wave, $D_2^*(2460)$ in D -wave
- **S -wave** parameterization:



$$\begin{aligned} \mathcal{A}_0(s) = & \textcolor{red}{A} \left\{ E_\pi \left[2 + \textcolor{green}{G}_1(s) \left(\frac{5}{3} T_{11}^{1/2}(s) + \frac{1}{3} T^{3/2}(s) \right) \right] \right. \\ & \left. + \frac{1}{3} E_\eta \textcolor{green}{G}_2(s) T_{21}^{1/2}(s) + \sqrt{\frac{2}{3}} E_{\bar{K}} \textcolor{green}{G}_3(s) T_{31}^{1/2}(s) \right\} + \textcolor{red}{B} E_\eta \textcolor{green}{G}_2(s) T_{21}^{1/2}(s), \end{aligned}$$

- **Angular moments:** $\langle P_\ell \rangle(s) = \int dz |\mathcal{A}(s, z)|^2 P_\ell(z)$

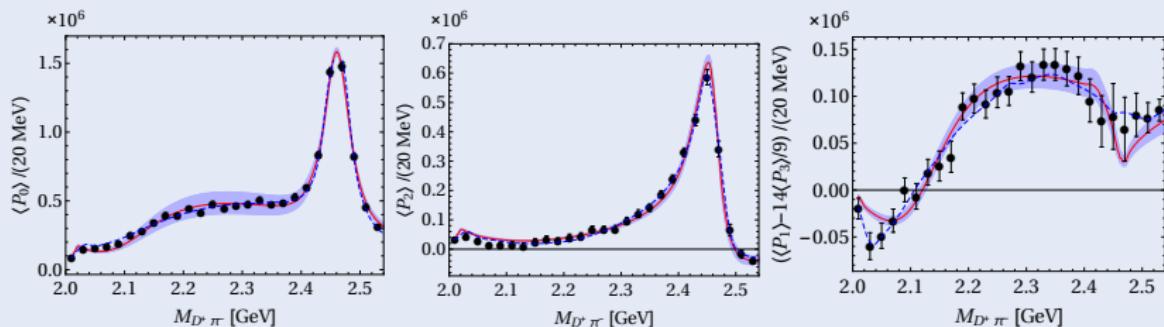
$$\langle P_0 \rangle \propto |\mathcal{A}_0|^2 + |\mathcal{A}_1|^2 + |\mathcal{A}_2|^2, \quad \langle P_2 \rangle \propto \frac{2}{5} |\mathcal{A}_1|^2 + \frac{2}{7} |\mathcal{A}_2|^2 + \frac{2}{\sqrt{5}} |\mathcal{A}_0| |\mathcal{A}_2| \cos(\delta_0 - \delta_2),$$

$$\langle P_{13} \rangle \equiv \langle P_1 \rangle - \frac{14}{9} \langle P_3 \rangle \propto \frac{2}{\sqrt{3}} |\mathcal{A}_0| |\mathcal{A}_1| \cos(\delta_0 - \delta_1).$$

Comparison with experimental data: $B^- \rightarrow D^+ \pi^- \pi^-$

Du, MA, Fernández-Soler, Guo, Hanhart, Meiñner, Nieves, Yao, PRD98,094018('18)

Data: LHCb Collab., PRD94,072001('16)

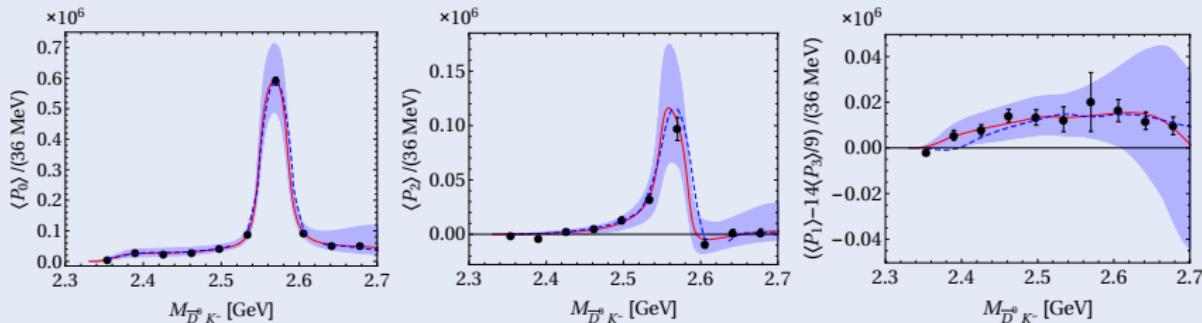


- Parameters: $B/A = -3.6 \pm 0.1$, $a_A = 1.0 \pm 0.1$, $\chi^2/\text{d.o.f.} = 1.7$
- This work. - - - LHCb. Bands: fit uncertainty
- Good agreement** with data & with LHCb fit
- Rapid movement in $\langle P_{13} \rangle$ [no $D_2(2460)$] between 2.4 and 2.5 GeV. Related to $D\eta$ and $D_s\bar{K}$ openings.
- Recall: these are the amplitudes with **two states** in the $D_0^*(2300)$ region, and no fit of the T -matrix parameters is done.

Comparison with experimental data: $B_s^0 \rightarrow \bar{D}^0 K^- \pi^+$

Du, MA, Fernández-Soler, Guo, Hanhart, Meißner, Nieves, Yao, PR,D98,094018('18)

Data: LHCb Collab., PR,D90,072003('14)



- Exactly the same formalism applied to $B_s^0 \rightarrow \bar{D}^0 K^- \pi^+$.

$$\mathcal{A}_0(s) = E_K \left[C + \frac{C+A}{2} G_1(s) T_{11}^0(s) + \frac{C-A}{2} G_1(s) T_{11}^1(s) \right] - \frac{1}{\sqrt{3}} \left(\frac{3}{2} B - C \right) E_\eta G_2(s) T_{21}^0(s)$$

- Take same value of B/A , a_A , as before: $C/A = 4.8^{+3.4}_{-1.7}$, $\chi^2/\text{d.o.f.} = 1.6$
- This work. - - - LHCb. Bands: fit uncertainty
- Good agreement with data & with LHCb fit
- See also Du *et al.*, PRL,126,192001('21)

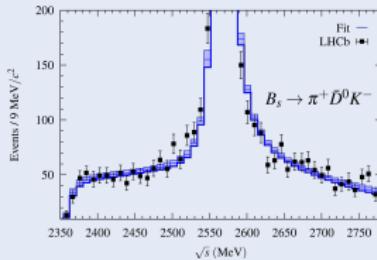
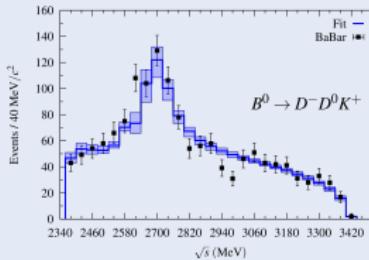
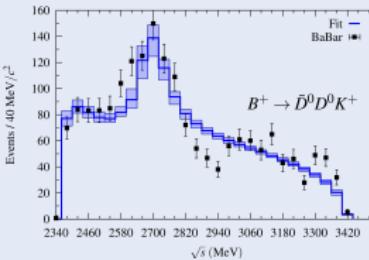
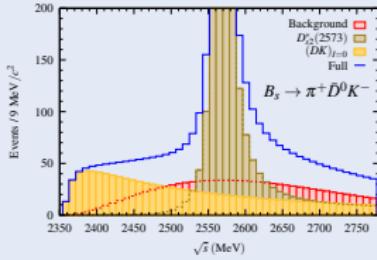
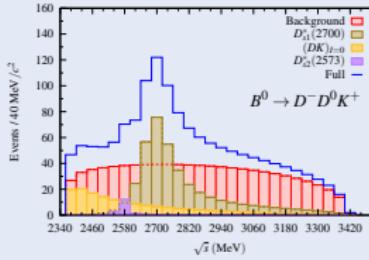
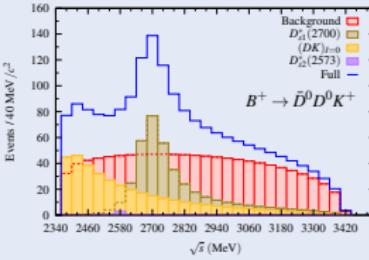
Old analysis of LHCb data

MA, Nieves, Oset, Jido, EPJ,C76,300('16)

Data: LHCb Collab., PR,D90,072003('14)

BaBar Collab., PR,D91,052002('15)

- The LHCb (and BaBar) data had already been analyzed with a similar amplitude



Predictions for other sectors: charm

(S, I)	Channels	$\overline{\mathbf{15}} \quad \mathbf{6} \quad \overline{\mathbf{3}}$	0^+		1^+	
			M	$\Gamma/2$	M	$\Gamma/2$
$(0, \frac{1}{2})$	$D^{(*)}\pi, D^{(*)}\eta, D_s^{(*)}\bar{K}$	✓ ✓ ✓	(R) 2105^{+6}_{-8}	102^{+10}_{-12}	(R) 2240^{+5}_{-6}	93^{+9}_{-9}
$(1, 0)$	$D^{(*)}K, D_s^{(*)}\eta$	✓ ✗ ✓	(B) 2315^{+18}_{-28}		(B) 2436^{+16}_{-22}	
$(-1, 0)$	$D^{(*)}\bar{K}$	✗ ✓ ✗	(V) 2342^{+13}_{-41}		–	
$(1, 1)$	$D_s^{(*)}\pi, D^{(*)}K$	✓ ✓ ✗	–		–	

- HQSS relates $0^+ (D_{(s)} P)$ and $1^+ (D_{(s)}^* P)$ sectors: **similar resonance pattern**.
- Two pole structure: higher D_1 pole probably affected by ρ channels.
- $D\bar{K} [0^+, (-1, 0)]$: this virtual state (from **6**) has a large impact on the scattering length, $a_{(-1,0)}^{D\bar{K}} \simeq 0.8$ fm. (Rest of scattering lengths are $|a| \simeq 0.1$ fm.)

Predictions for other sectors: bottom

(S, I)	Channels	$\bar{\mathbf{15}} \quad \bar{\mathbf{6}} \quad \bar{\mathbf{3}}$	0 ⁺		1 ⁺	
			M	$\Gamma/2$	M	$\Gamma/2$
$(0, \frac{1}{2})$	$\bar{B}^{(*)}\pi, \bar{B}^{(*)}\eta, \bar{B}_s^{(*)}\bar{K}$	✓ ✓ ✓	(R) 5537^{+9}_{-11}	116^{+14}_{-15}	(R) 5581^{+9}_{-11}	115^{+13}_{-15}
$(1, 0)$	$\bar{B}^{(*)}K, \bar{B}_s^{(*)}\eta$	✓ ✗ ✓	(B) 5724^{+17}_{-24}		(B) 5768^{+17}_{-23}	
$(-1, 0)$	$\bar{B}^{(*)}\bar{K}$	✗ ✓ ✗		(V-B) thr.		(V-B) thr.
$(1, 1)$	$\bar{B}_s^{(*)}\pi, \bar{B}^{(*)}K$	✓ ✓ ✗		–		–

- **Heavy flavour symmetry** relates charm (D) and bottom (\bar{B}) sectors.
- $(0, \frac{1}{2})$: B_0^* , two-pole pattern also observed.
- $(-1, 0)$: $[\bar{B}^{(*)}\bar{K}]$: very close to threshold. Relevant prediction.
Can be either **bound or virtual** (**6**) within our errors.
- $(1, 1)$: $[\bar{B}_s\pi, \bar{B}K, 0^+]$, X(5568) channel. No state is found: **15** and **6**. If it exists, it is not generated with these $B_s\pi, B\bar{K}$ interactions.
- $(1, 0)$: Our results for B_{s0}^* and B_{s1} agree with **other results** from LQCD:
M. A. et al., Phys. Lett. B 757, 515 (2016); Guo et al., Commun. Theor. Phys. 65, 593 (2016)
Lang et al., Phys. Lett. B 750, 17 (2015); M. A. et al. Eur. Phys. J. C77, 170 (2017)
- Comparison of $0^+, 1^+$ beauty states by Colangelo et al., Phys. Rev. D 86 054024 (2012): agreement in $(1, 0)$ $[b\bar{s}]$, but not in $(0, 1/2)$ $[b\bar{q}]$.

Accessing isospin-definite $C(k)$ from physical channels

MA, Nieves, Ruiz-Arriola, PRD, 108, 014020 ('23)

- We are considering $I_z = +\frac{1}{2}$ channels: $D^+\pi^0/D^0\pi^+$, $D^+\eta$, $D_s^+\bar{K}^0$.
- We avoid Coulomb interaction, which shows up in $I_z = -\frac{1}{2}$, through $D^+\pi^-$ (not in $D^0\pi^0$) and $D_s^+K^-$.
- Q: Does it make sense to use isospin channels, when physical ones are measured?
 - ▶ Physical channels will have combination of $I = \frac{1}{2}$ and $I = \frac{3}{2}$.
 - ▶ Potentially, you can also have Coulomb interaction.

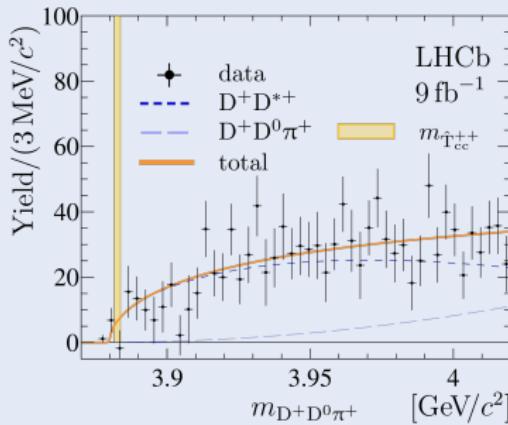
A: Let us see...

- Inserting isospin decompositions in the amplitudes, we get **interesting relations**:

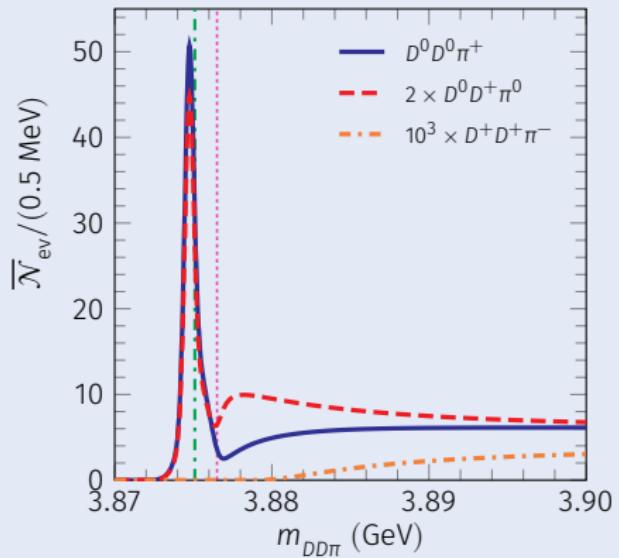
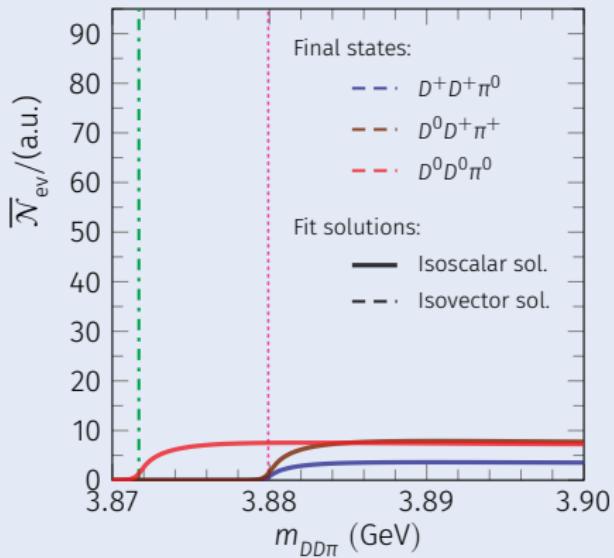
$$\begin{aligned} \blacktriangleright I = \frac{1}{2}: \quad C_{D\pi}^{(1/2)} &= 2C_{D^0\pi^+} - C_{D^+\pi^0} = \frac{3C_{D^0\pi^+} - C_{D^0\pi^-}}{2} \\ \blacktriangleright I = \frac{3}{2}: \quad C_{D\pi}^{(3/2)} &= 2C_{D^+\pi^0} - C_{D^0\pi^+} = C_{D^0\pi^-} \end{aligned}$$

Isospin $I = 0$ or $I = 1$, and fit degeneracy

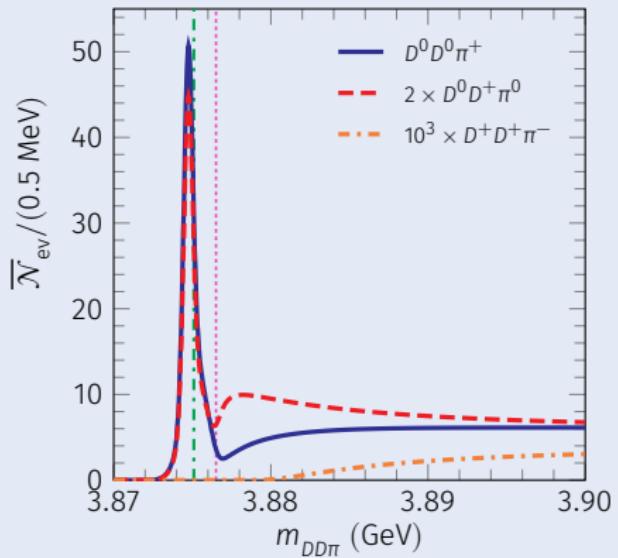
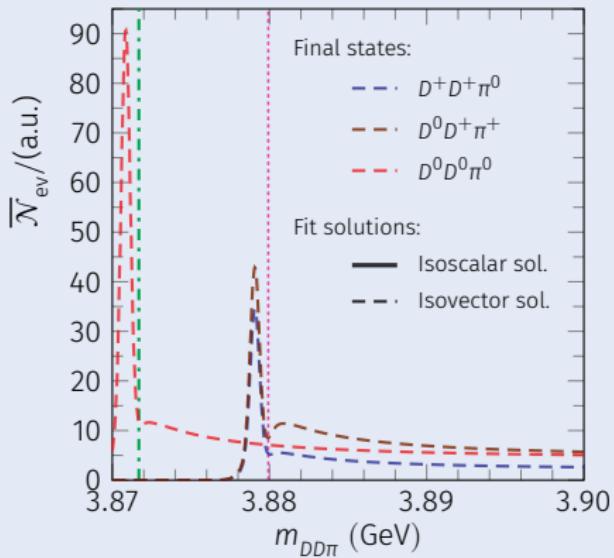
- Q: Can I know the T_{cc}^+ isospin from [this](#) analysis? A: **No**
- There's a degeneracy in the solutions: the model is "invariant" under a simultaneous exchange: $C_0 \leftrightarrow C_1$ and $\beta \leftrightarrow -\beta$
- Physically, this is due to the fact that $D^0 D^0 \pi^+$ has $I_z = 0$, so you cannot know whether T_{cc}^+ is $|II_z\rangle = |10\rangle$ or $|00\rangle$.
- We will keep both solutions $I = 0$ or $I = 1$ for T_{cc}^+ and discuss their differences (whenever they exist!)
- LHCb [\[2109.01056\]](#) has shown an additional spectrum, $D^+ D^0 \pi^+$ ($I_z = 1$), in which no sign of a T_{cc}^{++} is observed, but with much less statistics:



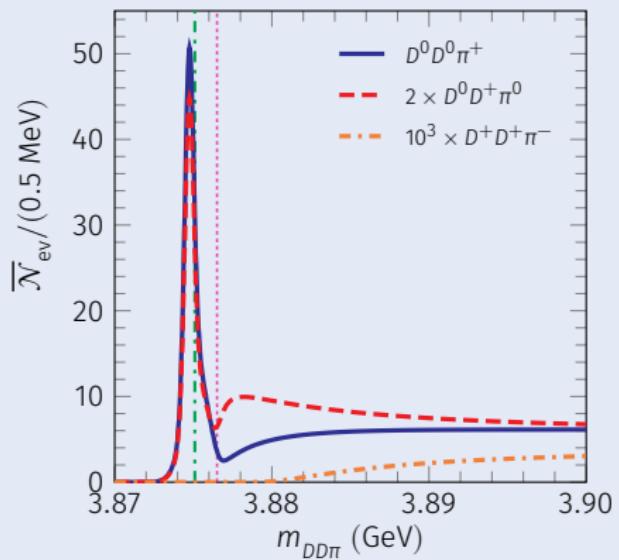
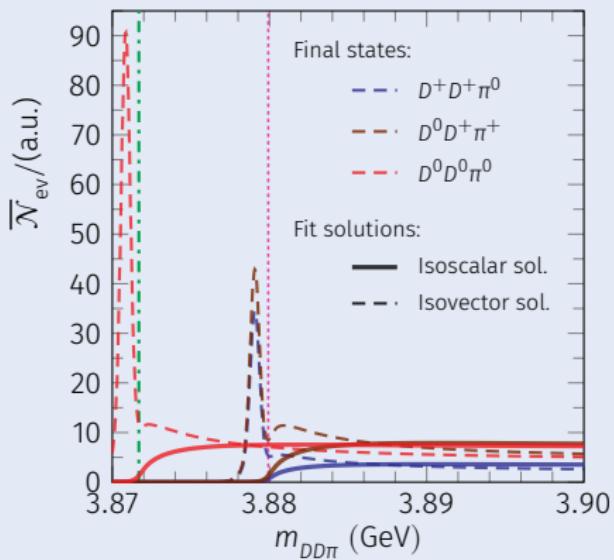
Other distributions



Other distributions



Other distributions



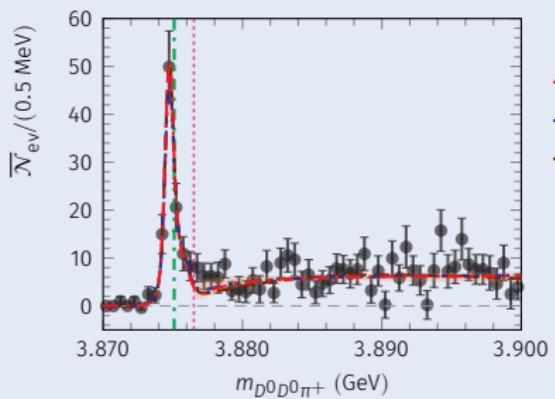
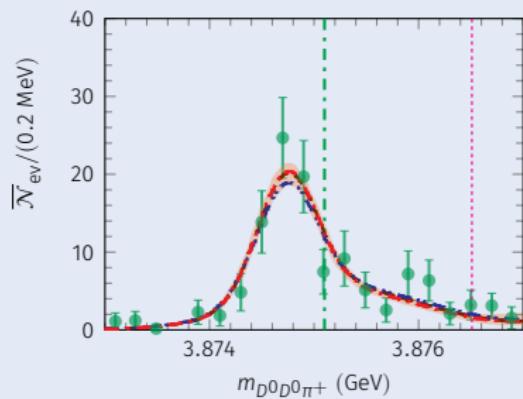
Other parameterizations

- Other parameterizations could lead to different line shapes and/or properties: pole position, scattering length, molecular probability,...
- No large variations are observed when the most immediate generalizations are employed
- In particular, always large molecular probability

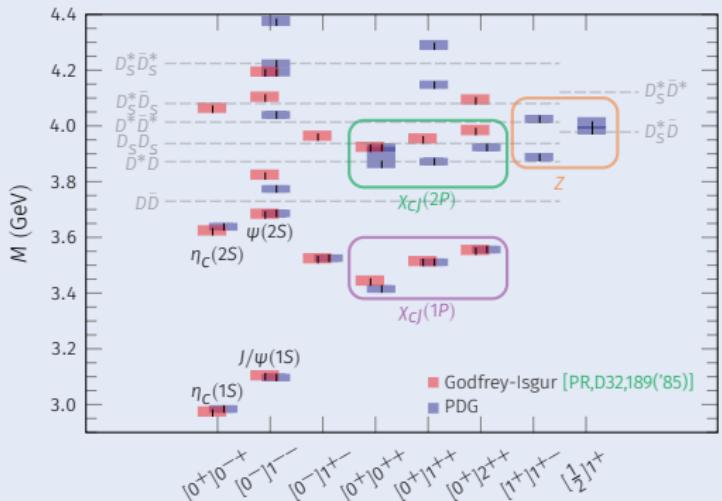
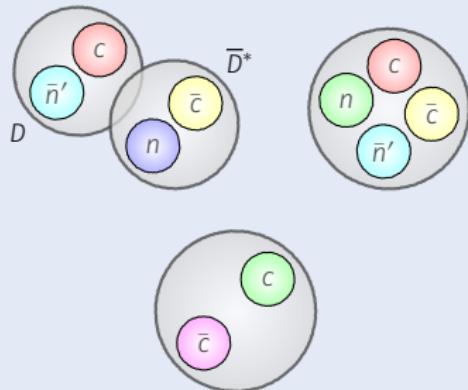
$$V_0(s) = C_0(\Lambda) \quad \rightarrow \quad V_0(s) = C_0(\Lambda) + b_0(\Lambda)k^2 , \quad (2a)$$

$$V_0(s) = C_0(\Lambda) \quad \rightarrow \quad V_0(s) = \frac{d_0(\Lambda)}{E - M_0(\Lambda)} , \quad (2b)$$

$$V_1(s) = C_1(\Lambda) \quad \rightarrow \quad V_1(s) = C_1(\Lambda) + b_1(\Lambda)k^2 . \quad (2c)$$



Quark model in the charmonium sector

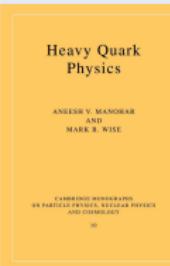
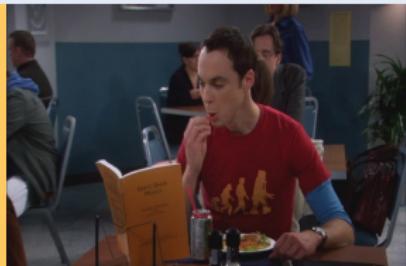


Appropriate tool: Weinberg's compositeness
 [Weinberg PR,137,B672('65)]
 [MA, Nieves, EPJ,C82,724('22)]

- $X_c(1P)$ well established, “very CQM model” state.
- $X(3872)$ discovered by Belle [PRL,91,262001('03)] (also 2003!)
- $J^{PC} = 1^{++}$ and $\Gamma \simeq 1$ MeV established by LHCb (e.g. [JHEP,08(2020),123])
- $X_c(2P)$ Not established. Influence of open thresholds? $X(3872)$ a molecular state, $4q, \dots$?
- Z_c/Z_{cs} states have $I = 1$ or $1/2$, clearly “tetraquarks” ($c\bar{c}u\bar{d}, \dots$)
- Many theoretical and lattice and experimental works: can't cite them properly here! (many references in [PR,D106,094002('22)])

HQSS and flavour $SU(3)$ LO lagrangian

- HQSS: $H_a^{(Q)} = \frac{1+\gamma}{2} (P_{a\mu}^{*(Q)} \gamma^\mu - P_a^{(Q)} \gamma_5)$
(with $\nu \cdot P_a^{*(Q)} = 0$)
[Grinstein *et al.*, NP,B380('92); Alfky *et al.*, PL,B640('06),
...]
- $SU(3)$ light flavour symmetry:
 $H_a^{(Q)} \sim (Q\bar{u}, Q\bar{d}, Q\bar{s}) \sim (D^0, D^+, D_s^+)$



- $H\bar{H} \rightarrow H\bar{H}$ LO lagrangian (S -wave contact interactions):

$$\begin{aligned}\mathcal{L}_{4H} &= \frac{1}{4} \text{Tr} \left[\bar{H}^{(Q)a} H_b^{(Q)} \gamma_\mu \right] \text{Tr} \left[H^{(\bar{Q})c} \bar{H}_d^{(\bar{Q})} \gamma^\mu \right] \left(F_A \delta_a^b \delta_c^d + F_A^\lambda \vec{\lambda}_a^b \cdot \vec{\lambda}_c^d \right) \\ &+ \frac{1}{4} \text{Tr} \left[\bar{H}^{(Q)a} H_b^{(Q)} \gamma_\mu \gamma_5 \right] \text{Tr} \left[H^{(\bar{Q})c} \bar{H}_d^{(\bar{Q})} \gamma^\mu \gamma_5 \right] \left(F_B \delta_a^b \delta_c^d + F_B^\lambda \vec{\lambda}_a^b \cdot \vec{\lambda}_c^d \right),\end{aligned}$$

- **Only 4 constants**, any linear combination can be used

$$\begin{aligned}\mathcal{C}_{0a} &= F_A + \frac{10F_A^\lambda}{3}, & \mathcal{C}_{1a} &= F_A - \frac{2}{3}F_A^\lambda, \\ \mathcal{C}_{0b} &= F_B + \frac{10F_B^\lambda}{3}, & \mathcal{C}_{1b} &= F_B - \frac{2}{3}F_B^\lambda.\end{aligned}$$

$D_s^+ D_s^-$ interaction and $B^+ \rightarrow D_s^+ D_s^- K^+$ decay

Ji, Dong, MA, Du, Guo, Nieves, PRD106,094002('22)

- Scattering amplitude: $T^{-1}(E) = V^{-1} - G(E)$

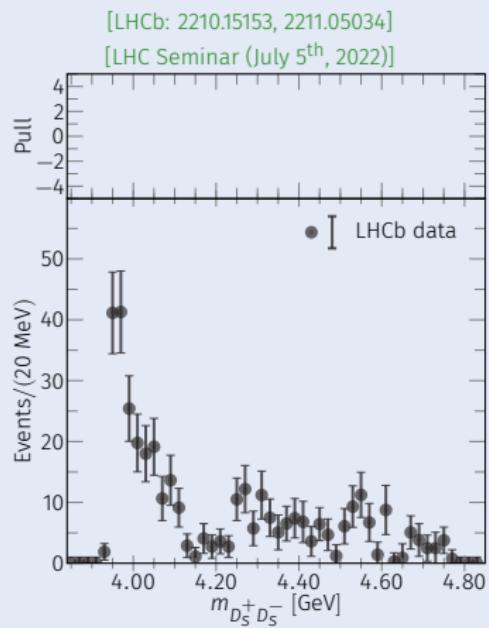
$$\triangleright V = 4m_{D_s}^2 \frac{C_{0a} + C_{1a}}{2}$$

$\triangleright G(E)$: loop functions, once-subtracted DR,
 $G(E_{\text{th}}) = G_{\Lambda}(E_{\text{th}})$

- Simple production model:

$$T_B(E) = P + P G(E) T(E) = P \frac{1}{1 - V G(E)}$$

$$\frac{d\Gamma}{dE} = \frac{1}{(2\pi)^3} \frac{kp}{4m_B^2} |T_B(E)|^2$$



$D_s^+ D_s^-$ interaction and $B^+ \rightarrow D_s^+ D_s^- K^+$ decay

Ji, Dong, MA, Du, Guo, Nieves, PRD106,094002('22)

- Scattering amplitude: $T^{-1}(E) = V^{-1} - G(E)$

$$\triangleright V = 4m_{D_s}^2 \frac{C_{0a} + C_{1a}}{2}$$

$\triangleright G(E)$: loop functions, once-subtracted DR,
 $G(E_{\text{th}}) = G_{\Lambda}(E_{\text{th}})$

- Simple production model:

$$T_B(E) = P + P G(E) T(E) = P \frac{1}{1 - V G(E)}$$

$$\frac{d\Gamma}{dE} = \frac{1}{(2\pi)^3} \frac{kp}{4m_B^2} |T_B(E)|^2$$

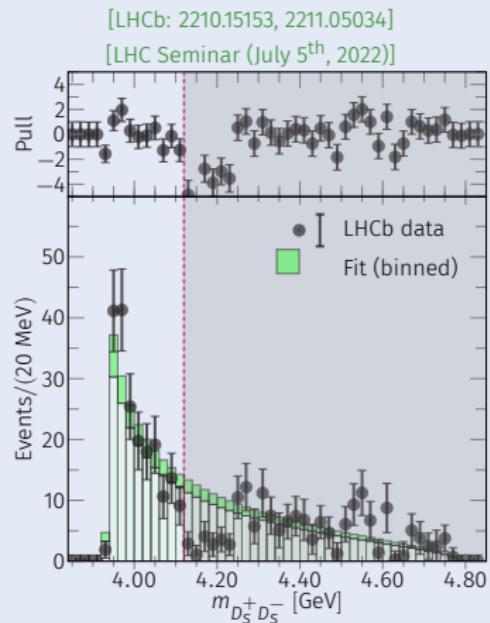
- Fit: two solutions (virtual or bound), in both:

$$M_{X(3960)} = 3928(3) \text{ MeV}$$

$$2M_{D_s} - M_{X(3960)} = 8(3) \text{ MeV}$$

- LHCb: $M = 3956(5)(11) \text{ MeV}$, $\Gamma = 43(13)(7) \text{ MeV}$

- [Prelovsek *et al.*, JHEP 06,035('20)]: Bound state $B = 6.2^{+2.0}_{-3.8} \text{ MeV}$
 $(cf. \text{ also } [\text{Bayar, Feijoo, Oset, 2207.08490}])$



	Vir. (S-I)		Bou. (S-II)	
	$\Lambda = 0.5 \text{ GeV}$	$\Lambda = 1.0 \text{ GeV}$	$\Lambda = 0.5 \text{ GeV}$	$\Lambda = 1.0 \text{ GeV}$
$C_{D_s \bar{D}_s}$ (fm ²)	$-0.74^{+0.04}_{-0.04}$	$-0.46^{+0.02}_{-0.02}$	$-3.36^{+0.56}_{-1.02}$	$-0.91^{+0.05}_{-0.06}$

$D_s^+ D_s^-$ interaction and $B^+ \rightarrow D_s^+ D_s^- K^+$ decay

Ji, Dong, MA, Du, Guo, Nieves, PRD106,094002('22)

- Scattering amplitude: $T^{-1}(E) = V^{-1} - G(E)$

$$\triangleright V = 4m_{D_s}^2 \frac{C_{0a} + C_{1a}}{2}$$

$\triangleright G(E)$: loop functions, once-subtracted DR,
 $G(E_{\text{th}}) = G_{\Lambda}(E_{\text{th}})$

- Simple production model:

$$T_B(E) = P + P G(E) T(E) = P \frac{1}{1 - V G(E)}$$

$$\frac{d\Gamma}{dE} = \frac{1}{(2\pi)^3} \frac{kp}{4m_B^2} |T_B(E)|^2$$

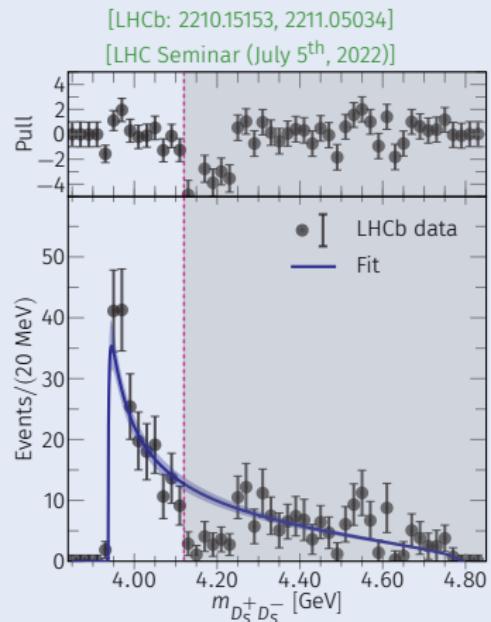
- Fit: two solutions (virtual or bound), in both:

$$M_{X(3960)} = 3928(3) \text{ MeV}$$

$$2M_{D_s} - M_{X(3960)} = 8(3) \text{ MeV}$$

- LHCb: $M = 3956(5)(11) \text{ MeV}$, $\Gamma = 43(13)(7) \text{ MeV}$

- [Prelovsek *et al.*, JHEP 06,035('20)]: Bound state $B = 6.2^{+2.0}_{-3.8} \text{ MeV}$
 $(cf. \text{ also } [\text{Bayar, Feijoo, Oset, 2207.08490}])$



	Vir. (S-I)		Bou. (S-II)	
	$\Lambda = 0.5 \text{ GeV}$	$\Lambda = 1.0 \text{ GeV}$	$\Lambda = 0.5 \text{ GeV}$	$\Lambda = 1.0 \text{ GeV}$
$C_{D_s \bar{D}_s}$ (fm ²)	$-0.74^{+0.04}_{-0.04}$	$-0.46^{+0.02}_{-0.02}$	$-3.36^{+0.56}_{-1.02}$	$-0.91^{+0.05}_{-0.06}$

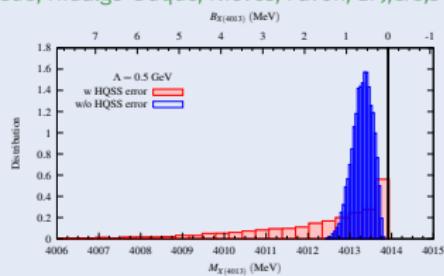
Fixing constants

- Lagrangian \mathcal{L} with HQSS and light-flavour $SU(3)$ symmetry has 4 constants (C_{0a} , C_{0b} , C_{1a} , C_{1b})
- Some relations can be independently useful. Some examples:

① $X(3872)$ and X_{2++}

$$\left. \begin{array}{l} \left\langle D\bar{D}^*; 0(1^{++}) \right| \hat{T} \left. \right\rangle D\bar{D}^*; 0(1^{++}) \\ \left\langle D^*\bar{D}^*; 0(2^{++}) \right| \hat{T} \left. \right\rangle D^*\bar{D}^*; 0(2^{++}) \end{array} \right\} = C_{0a} + C_{0b}$$

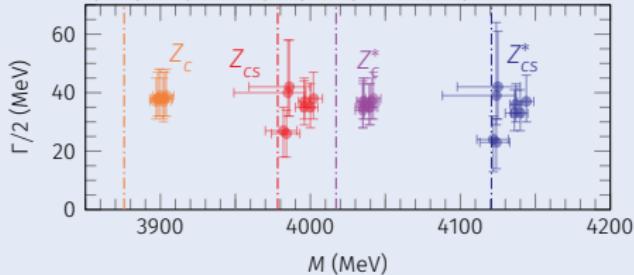
[MA, Guo, Hidalgo-Duque, Nieves, Pavón, EPJ C75, 547 ('15)]



② $Z_c, Z'_c, Z_{cs}, Z'_{cs}$

$$\left. \begin{array}{l} \left\langle D\bar{D}^*; 1(1^{+-}) \right| \hat{T} \left. \right\rangle D\bar{D}^*; 1(1^{+-}) \\ \left\langle D_s\bar{D}^*; \frac{1}{2}(1^+) \right| \hat{T} \left. \right\rangle D_s\bar{D}^*; \frac{1}{2}(1^+) \\ \left\langle D^*\bar{D}^*; 1(1^{+-}) \right| \hat{T} \left. \right\rangle D^*\bar{D}^*; 1(1^{+-}) \\ \left\langle D_s^*\bar{D}^*; \frac{1}{2}(1^+) \right| \hat{T} \left. \right\rangle D_s^*\bar{D}^*; \frac{1}{2}(1^+) \end{array} \right\} = C_{1a} - C_{1b}$$

[Du, MA, Guo, Nieves, PRD 105, 074018 ('22); see below]



Fixing all constants

Ji, Dong, MA, Du, Guo, Nieves, PR,D106,094002('22)

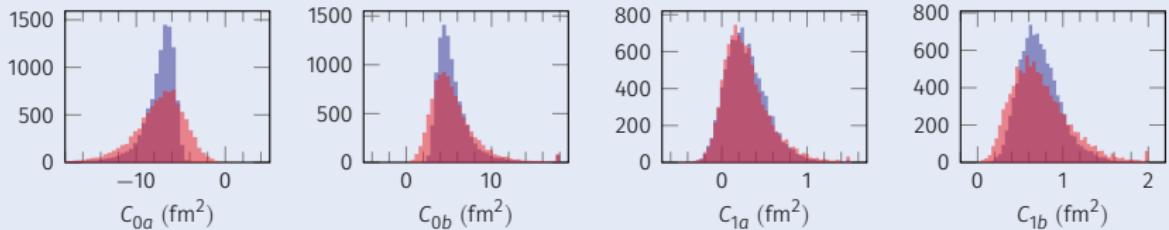
- $X(3960)$: fixes $C_{D_s\bar{D}_s} = (C_{0a} + C_{1a})/2$ (as previously seen)
- $Z_c(3900)$: fixes $C_{1Z} = C_{1a} - C_{1b}$
 - ▶ Assume virtual state $M = 3813^{+28}_{-21}$ MeV ([2201.08253; 1512.03638] from a fit to BESIII data)
- $X(3872)$: fixes $\begin{cases} C_{0X} = (C_{0a} + C_{0b})/2 \\ C_{1X} = (C_{1a} + C_{1b})/2 \end{cases}$
 - ▶ Experimental information:

$$\begin{cases} [\text{LHCb, 2204.12597}] & R_{X(3872)}^{\text{exp}} = 0.29(4) \\ [\text{LHCb, PR,D102,092005('20)}] & B_{X(3872)}^{\text{exp}} = [-150, 0] \text{ keV} \leftarrow M_{X(3872)}^{\text{exp}} = 3871.69^{+0.00+0.05}_{-0.04-0.13} \text{ MeV} \end{cases}$$
 - ▶ Theoretically: [0911.4407; 1210.5431; 1504.00861]

$$V = \frac{1}{2} \begin{pmatrix} C_{0X} + C_{1X} & C_{0X} - C_{1X} \\ C_{0X} - C_{1X} & C_{0X} + C_{1X} \end{pmatrix}, \quad T = (\mathbb{I} - VG)^{-1} V.$$

$$R_{X(3872)} = \frac{\hat{\Psi}_n - \hat{\Psi}_c}{\hat{\Psi}_n + \hat{\Psi}_c}, \quad \hat{\Psi}_n = \frac{1 - (2m_D + m_{D^*}) G_2 (C_{0X} + C_{1X})}{(2m_D + m_{D^*}) G_2 (C_{0X} - C_{1X})} = \frac{(2m_{D^0} m_{D^{*0}}) G_1 (C_{0X} - C_{1X})}{1 - (2m_{D^0} m_{D^{*0}}) G_1 (C_{0X} + C_{1X})},$$

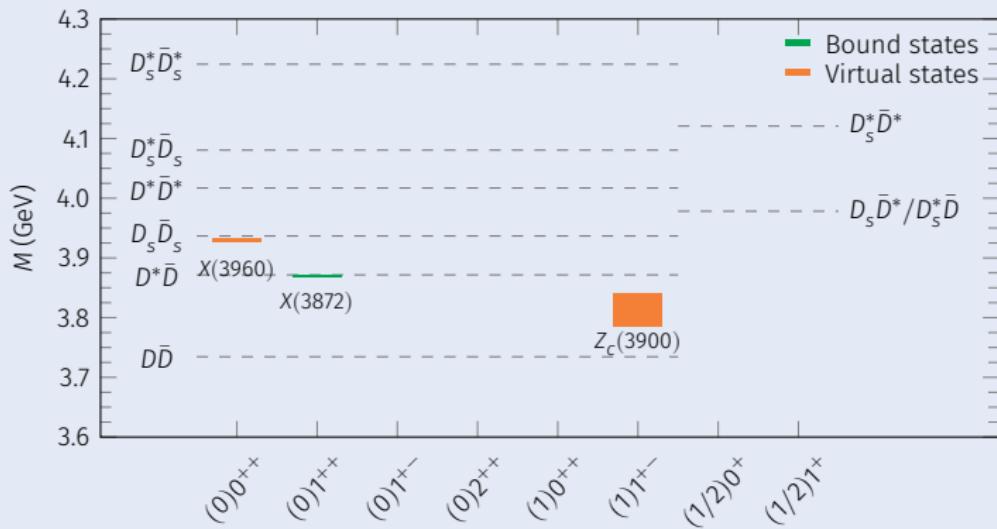
- $SU(3)$ and HQSS **breaking corrections** (30%) are taken into account for the LECs



Predictions (complete multiplet): $X(3960)$ as virtual

Ji, Dong, MA, Du, Guo, Nieves, PRD106,094002('22)

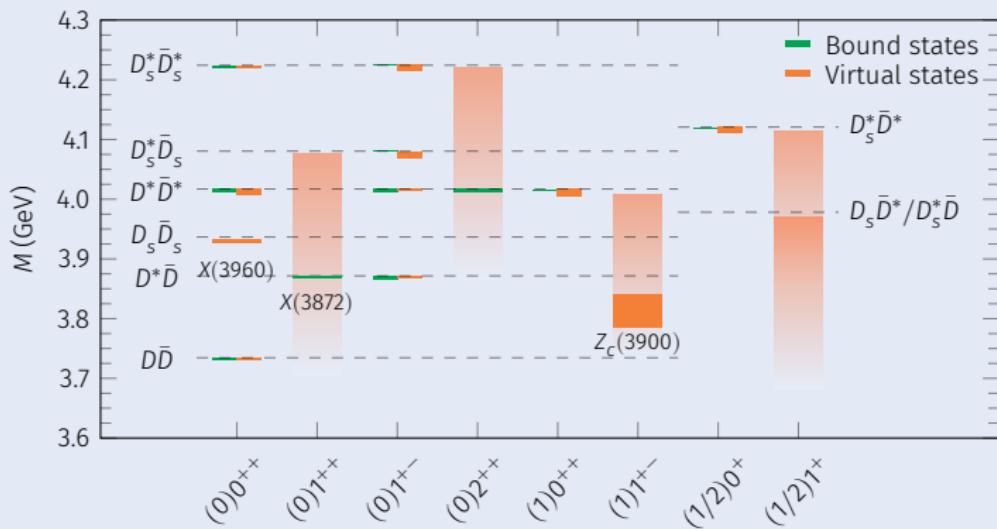
With the **four LECs** (C_{0a} , C_{0b} , C_{1a} , C_{1b}) fixed, poles can be looked for in every sector.



Predictions (complete multiplet): $X(3960)$ as virtual

Ji, Dong, MA, Du, Guo, Nieves, PRD106,094002('22)

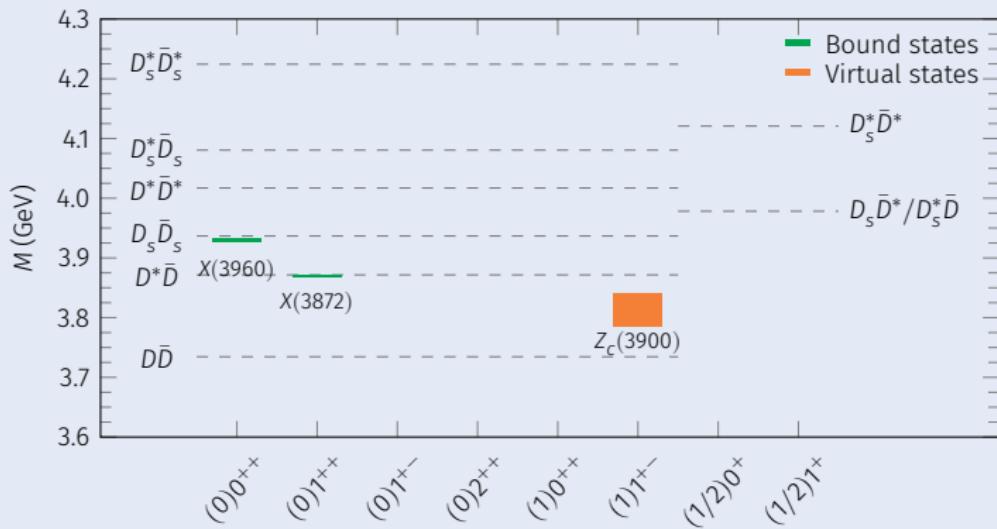
With the **four LECs** (C_{0a} , C_{0b} , C_{1a} , C_{1b}) fixed, poles can be looked for in every sector.



Predictions (complete multiplet): $X(3960)$ as bound

Ji, Dong, MA, Du, Guo, Nieves, PRD106,094002('22)

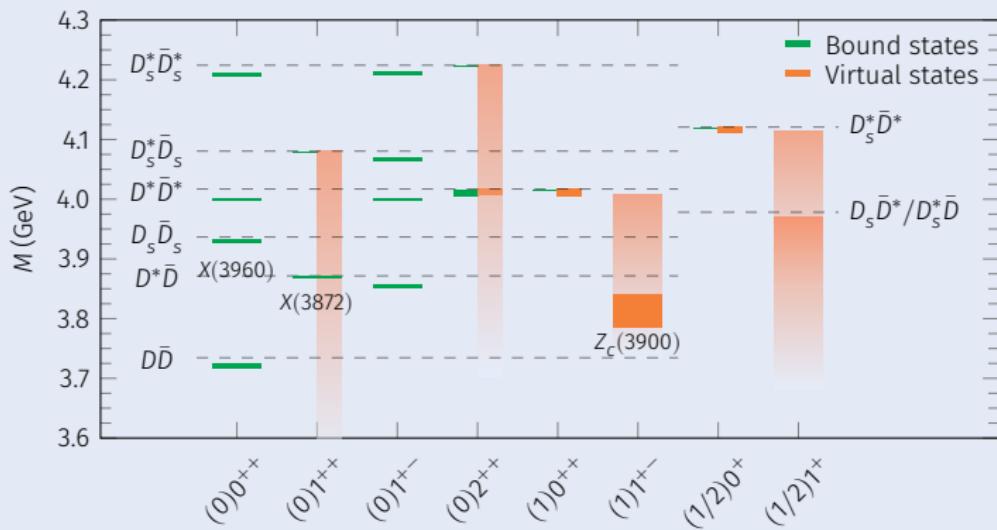
With the **four LECs** (C_{0a} , C_{0b} , C_{1a} , C_{1b}) fixed, poles can be looked for in every sector.



Predictions (complete multiplet): $X(3960)$ as bound

Ji, Dong, MA, Du, Guo, Nieves, PRD106,094002('22)

With the **four LECs** (C_{0a} , C_{0b} , C_{1a} , C_{1b}) fixed, poles can be looked for in every sector.



A closer look into $Z_c(3900)$ and $Z_{cs}(3985)$

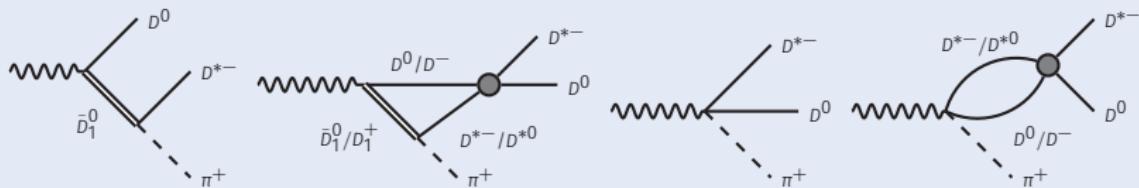
Du, MA, Guo, Nieves, PR,D105,074018('22)

- $\langle D\bar{D}^*; 1(1^{+-}) | \hat{T} | D\bar{D}^*; 1(1^{+-}) \rangle = \langle D_s\bar{D}^*; \frac{1}{2}(1^+) | \hat{T} | D_s\bar{D}^*; \frac{1}{2}(1^+) \rangle = C_{1a} - C_{1b} \equiv C_{1Z}$
- Constant V and single channel: only virtual or bound states (pole condition $V^{-1} = G$)
- Extension of the previous approach in two directions [MA, Guo, Hidalgo-Duque, Nieves, PL,B755,337('16)]:

① **Coupled channels** $\begin{cases} I = 1 & \left(\frac{1}{\sqrt{2}} [D\bar{D}^* - D^*\bar{D}], J/\psi \pi \right) \\ I = \frac{1}{2} & \left(\frac{1}{\sqrt{2}} [D_s\bar{D}^* - D_s^*\bar{D}], J/\psi K \right) \end{cases}$ (also necessary for $e^+e^- \rightarrow J/\psi \pi\pi$ data)

② **Energy dependence** $C_{1Z} \rightarrow C_{1Z} + b \frac{s - E_{\text{th}}^2}{2E_{\text{th}}}$

- Production mechanism (includes triangle singularity!) for $Y \rightarrow D^0 D^{*-} \pi^+$



$$\overline{|\mathcal{A}_2(s, t)|^2} = \left| \frac{1}{t - m_{D_1}^2} + I(s)T_{22}(s) \right|^2 q_\pi^4(s) + \frac{1}{2} \left| E_\pi(s) \frac{h_S}{h_D} \left[\frac{1}{t - m_{D_1}^2} + I(s)T_{22}(s) \right] + \beta [1 + G_2(s)T_{22}(s)] \right|^2$$

A closer look into $Z_c(3900)$ and $Z_{cs}(3985)$

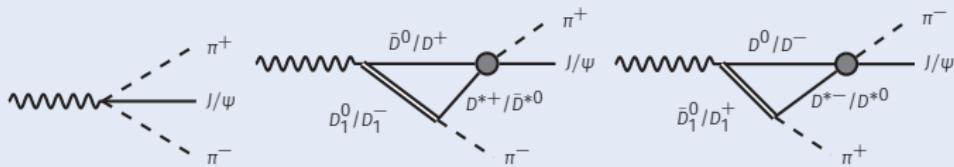
Du, MA, Guo, Nieves, PRD105,074018('22)

- $\langle D\bar{D}^*; 1(1^{+-}) | \hat{T} | D\bar{D}^*; 1(1^{+-}) \rangle = \langle D_s\bar{D}^*; \frac{1}{2}(1^+) | \hat{T} | D_s\bar{D}^*; \frac{1}{2}(1^+) \rangle = C_{1a} - C_{1b} \equiv C_{1Z}$
- Constant V and single channel: only virtual or bound states (pole condition $V^{-1} = G$)
- Extension of the previous approach in two directions [MA, Guo, Hidalgo-Duque, Nieves, PLB755,337('16)]:

① **Coupled channels** $\begin{cases} I = 1 & \left(\frac{1}{\sqrt{2}} [D\bar{D}^* - D^*\bar{D}], J/\psi \pi \right) \\ I = \frac{1}{2} & \left(\frac{1}{\sqrt{2}} [D_s\bar{D}^* - D_s^*\bar{D}], J/\psi K \right) \end{cases}$ (also necessary for $e^+e^- \rightarrow J/\psi \pi\pi$ data)

② **Energy dependence** $C_{1Z} \rightarrow C_{1Z} + b \frac{s - E_{\text{th}}^2}{2E_{\text{th}}}$

- Production mechanism (includes triangle singularity!) for $Y \rightarrow J/\psi \pi^+ \pi^-$



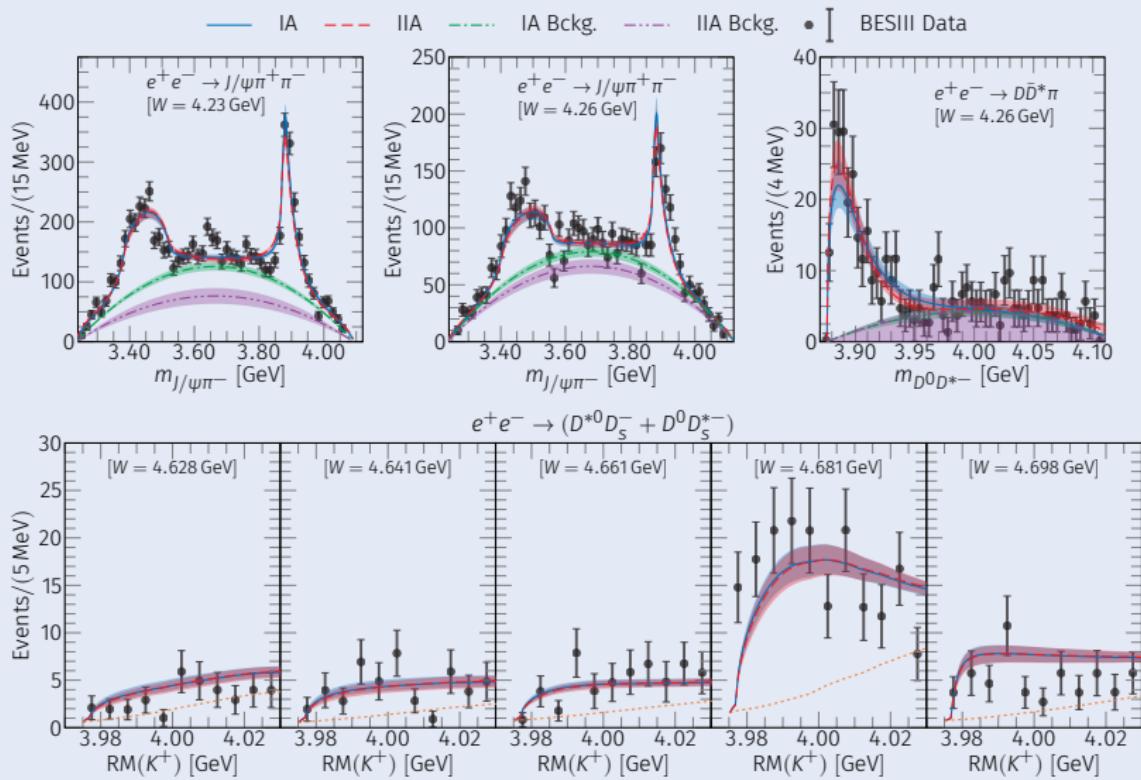
$$\begin{aligned} \overline{|\mathcal{A}_1(s, t)|^2} &= |\tau(s)|^2 q_\pi^4(s) + |\tau(t)|^2 q_\pi^4(t) + \frac{3 \cos^2 \theta - 1}{2} [\tau(s)\tau(t)^* + \tau(s)^*\tau(t)] q_\pi^2(s) q_\pi^2(t) \\ &+ \frac{1}{2} \left\{ |\tau'(s)|^2 E_\pi^2(s) + |\tau'(t)|^2 E_\pi^2(t) + [\tau'(s)^*\tau'(t) + \tau'(s)\tau'(t)^*] E_\pi(s) E_\pi(t) \right\} \\ \tau(s) &= \sqrt{2} I(s) T_{12}(s) + \alpha \quad \tau'(s) = \sqrt{2} I(s) T_{12}(s) \times (h_S/h_D) \end{aligned}$$

- Fitted data:
 - ▶ $J/\psi\pi^-$ distribution in $e^+e^- \rightarrow J/\psi\pi^+\pi^-$ [BESIII, PRL,119('17)]
 - ▶ D^0D^{*-} distribution in $e^+e^- \rightarrow D^0D^{*-}\pi^+$ [BESIII, PR, D92('15)]
 - ▶ $e^+e^- \rightarrow (D^{*0}D_s^- + D^0D_s^{*-})K^+$ [BESIII, PRL,126('21)]
- Some production/background/normalization constants are also fitted (not shown here)
- Four schemes:
 - ▶ A or B: $b = 0$ or free
 - ▶ I or II: $h_s = 0$ or not (D - or S - and D -waves)

Scheme	$D_1D^*\pi$	$a_2(\mu)$	χ^2/dof	$C_{12} [\text{fm}^2]$	$C_2 [\text{fm}^2]$	$b [\text{fm}^3]$
IA	D	-2.5	1.62	0.005(1)	-0.226(10)	0^*
		-3.0	1.62	0.005(1)	-0.177(6)	0^*
IIA	$S+D$	-2.5	1.83	0.006(1)	-0.217(10)	0^*
		-3.0	1.83	0.006(1)	-0.171(6)	0^*
IB	D	-2.5	1.24	0.007(4)	-0.222(6)	-0.447(44)
		-3.0	1.21	0.008(1)	-0.177(4)	-0.255(30)
IIB	$S+D$	-2.5	1.37	0.005(1)	-0.203(7)	-0.473(45)
		-3.0	1.27	0.005(1)	-0.171(5)	-0.270(30)

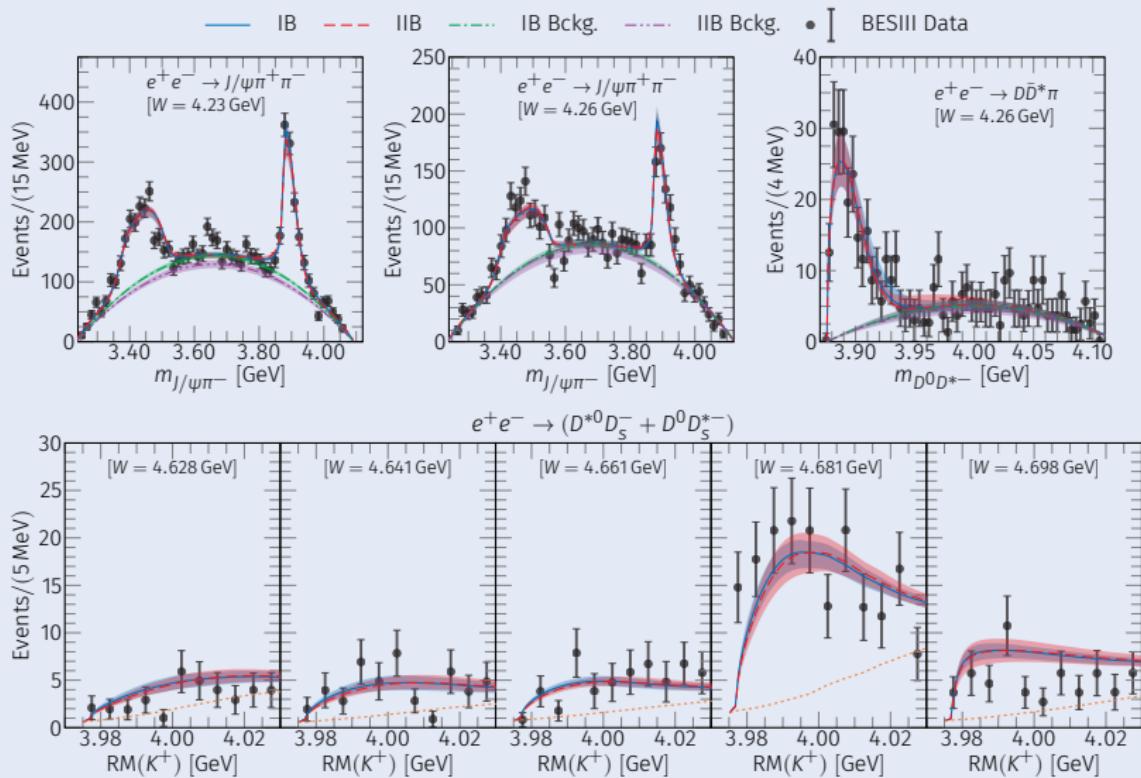
Fit to data (scheme A)

Du, MA, Guo, Nieves, PR,D105,074018('22)



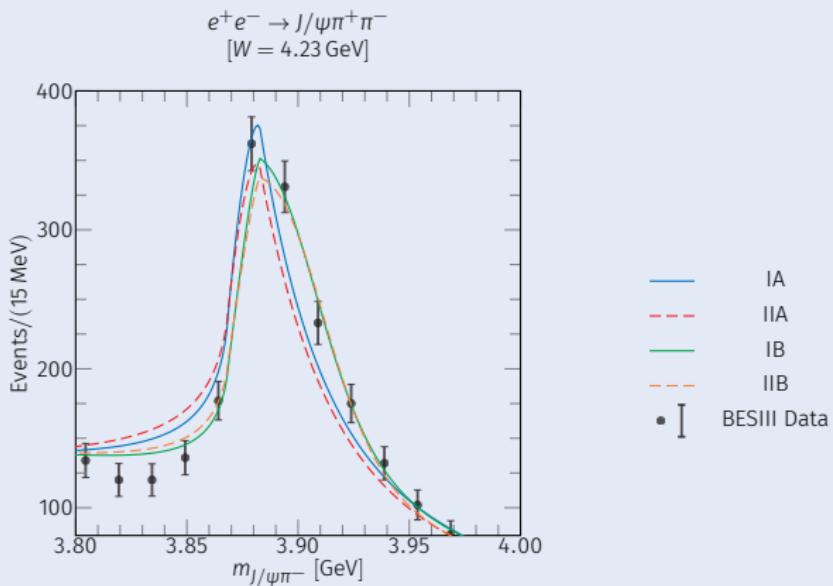
Fit to data (scheme B)

Du, MA, Guo, Nieves, PR,D105,074018('22)



Not possible to distinguish different scenarios in $J/\psi\pi$ spectrum

Du, MA, Guo, Nieves, PR,D105,074018('22)



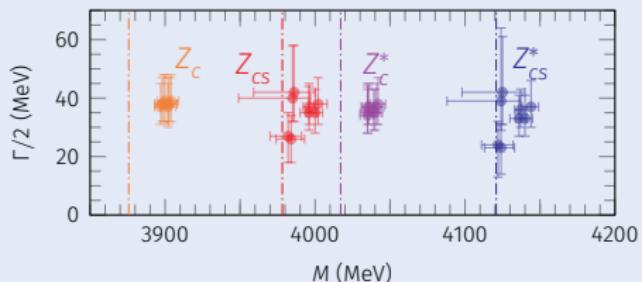
- The effect/peak produced by a **virtual pole** is always at threshold
- The peak of a **resonance** can be shifted from $\text{Re}\sqrt{s}_{\text{pole}}$
- And, in this case, the effect is very close to threshold
- We had observed this already [MA *et al.*, Phys. Lett., B755, 337 (2016)]

$Z_{cs}^{(*)}$ and $Z_c^{(*)}$ poles

Du, MA, Guo, Nieves, PR,D105,074018('22)

	$D_1 D^* \pi$	$a_2(\mu)$	Z_c [MeV] Mass	Z_c [MeV] $\Gamma/2$	Z_c^* [MeV] Mass	Z_c^* [MeV] $\Gamma/2$	Z_{cs}^* [MeV] Mass	Z_{cs}^* [MeV] $\Gamma/2$
IA	D	-2.5	3813^{+21}_{-28}	vir.	3920^{+18}_{-26}	vir.	3962^{+19}_{-25}	vir.
		-3.0	3812^{+22}_{-26}	vir.	3924^{+19}_{-23}	vir.	3967^{+19}_{-22}	vir.
IIA	$S+D$	-2.5	3799^{+24}_{-33}	vir.	3907^{+22}_{-31}	vir.	3949^{+22}_{-30}	vir.
		-3.0	3798^{+25}_{-31}	vir.	3911^{+17}_{-27}	vir.	3955^{+22}_{-27}	vir.
IB	D	-2.5	3897^{+4}_{-4}	37^{+8}_{-6}	3996^{+4}_{-4}	37^{+8}_{-6}	4035^{+4}_{-4}	37^{+8}_{-6}
		-3.0	3898^{+5}_{-5}	38^{+10}_{-7}	3996^{+5}_{-6}	35^{+9}_{-6}	4035^{+4}_{-5}	34^{+9}_{-6}
IIB	$S+D$	-2.5	3902^{+6}_{-6}	38^{+9}_{-6}	4002^{+6}_{-6}	38^{+9}_{-7}	4042^{+5}_{-5}	38^{+9}_{-7}
		-3.0	3902^{+5}_{-5}	37^{+9}_{-6}	4000^{+5}_{-6}	35^{+8}_{-7}	4039^{+5}_{-6}	35^{+8}_{-6}

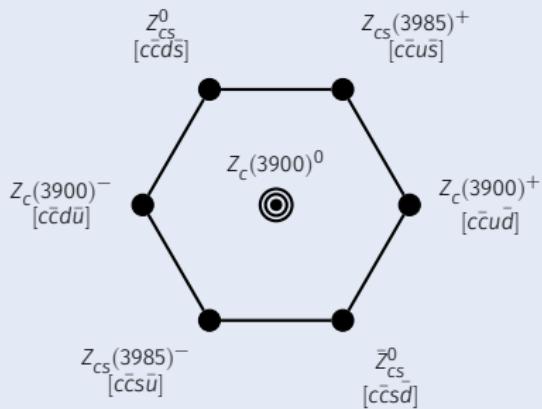
- Z_c exp.: $M = 3881.2(4.2)(52.7)$ MeV
 $\Gamma/2 = 25.9(2.3)(18.0)$ MeV
- Z_{cs} exp.: $M = 3982.5(2.6)(2.1)$ MeV
 $\Gamma/2 = 6.4(2.6)(1.5)$ MeV
- [Yang *et al.*, PR,D103('21)] (Z_{cs} and distribution)
- [Ikeno, Molina, Oset, PL,B814('21)] (Z_{cs} threshold effect)
- [JPAC, PL,B772('17)] Several possibilities for Z_c



- Both schemes (IB and IIB)
- Including SU(3) breaking effects

Z_c and Z_{cs} form a $J^{PC} = 1^{+-}$ octet

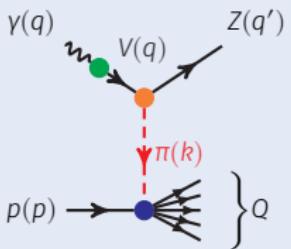
Ji, Dong, MA, Du, Guo, Nieves, PRD106,094002('22)



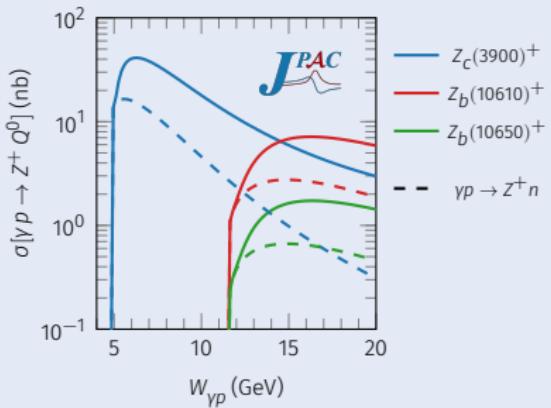
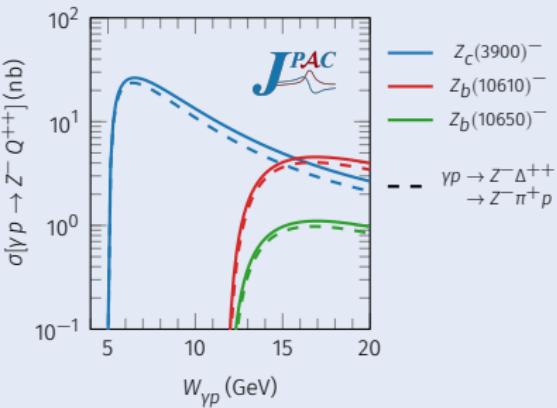
- $3 \otimes \bar{3} = 8 \oplus 1$
- A \bar{Z}_{cs}^0 has also been found by BESIII [PRL,129,112003('22)]
- In the case of $I = 0$ one cannot make direct identification (mixing vs. coupled channels)

Photoproduction of Z states would be beneficial...

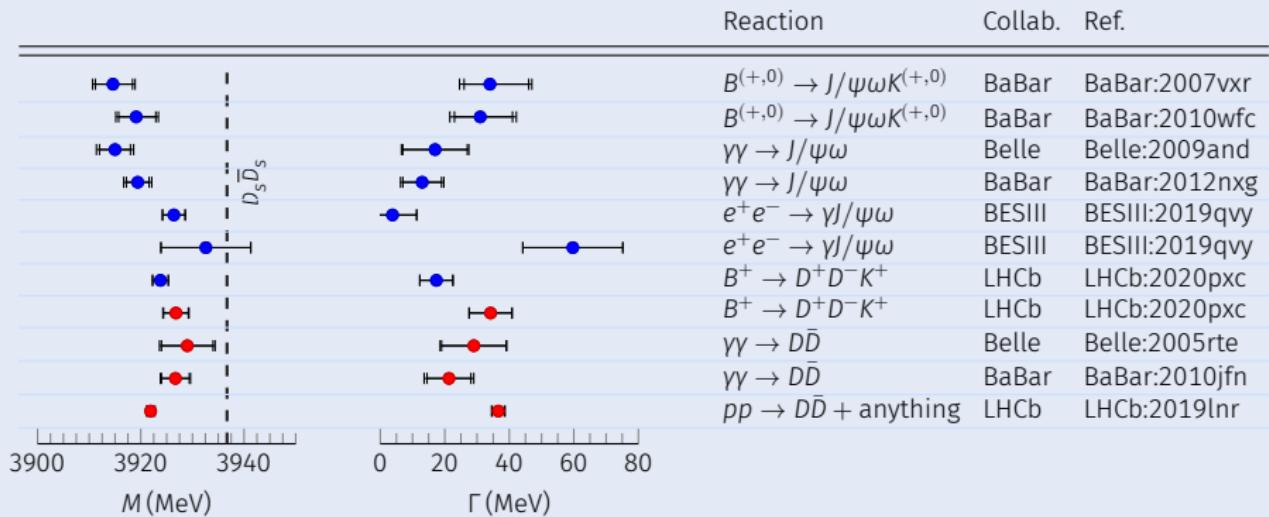
JPAC, PRD106,094009('22)



- A new method to **confirm or discard** these new XYZ states
- In principle, photoproduction is **free of triangle-singularities** that can give rise to resonance-like effects
- Different background, easier to pin down the scattering amplitude part



$\chi_{c0}(3915)$ and $\chi_{c2}(3930)$?



- Identity resolution:

$$1\!\!1 = \sum_n |n\rangle\langle n| + \int d\alpha |\alpha\rangle\langle\alpha|$$

- $\hat{H} = \hat{H}_0 + \hat{V}$
- Eigenstates of \hat{H}_0 :
 - ▶ continuum $|\alpha\rangle$, $\hat{H}_0|\alpha\rangle = E(\alpha)|\alpha\rangle$
 - ▶ bare elementary $|n\rangle$, $\hat{H}_0|n\rangle = E_n|n\rangle$
- Eigenstates of \hat{H} :
 - ▶ $|d\rangle$ ("deuteron") $\hat{H}|d\rangle = E_B|d\rangle$

- Normalized:

$$\begin{aligned}\langle\alpha|\beta\rangle &= \delta(\beta - \alpha) & \langle\alpha|n\rangle &= 0 \\ \langle m|n\rangle &= \delta_{mn} & \langle d|d\rangle &= 1\end{aligned}$$

- Identity resolution:

$$1 = \sum_n |n\rangle\langle n| + \int d\alpha |\alpha\rangle\langle\alpha|$$

- $\hat{H} = \hat{H}_0 + \hat{V}$
- Eigenstates of \hat{H}_0 :
 - ▶ continuum $|\alpha\rangle$, $\hat{H}_0|\alpha\rangle = E(\alpha)|\alpha\rangle$
 - ▶ bare elementary $|n\rangle$, $\hat{H}_0|n\rangle = E_n|n\rangle$
- Eigenstates of \hat{H} :
 - ▶ $|d\rangle$ ("deuteron") $\hat{H}|d\rangle = E_B|d\rangle$

- Normalized:

$$\begin{aligned}\langle\alpha|\beta\rangle &= \delta(\beta - \alpha) & \langle\alpha|n\rangle &= 0 \\ \langle m|n\rangle &= \delta_{mn} & \langle d|d\rangle &= 1\end{aligned}$$

- "Sandwich" $\langle d|1|d\rangle = 1$

$$1 = Z + \int d\alpha \frac{|\langle\alpha|V|d\rangle|^2}{(E(\alpha) - E_B)^2}$$

Fundamental quantity $Z = \sum_n |\langle n|d\rangle|^2$

«(...) Z is the probability of finding the deuteron in a bare elementary-particle state.»

[Weinberg, PR,137,B672]

- Identity resolution:

$$1 = \sum_n |n\rangle\langle n| + \int d\alpha |\alpha\rangle\langle\alpha|$$

- $\hat{H} = \hat{H}_0 + \hat{V}$
- Eigenstates of \hat{H}_0 :
 - ▶ continuum $|\alpha\rangle$, $\hat{H}_0|\alpha\rangle = E(\alpha)|\alpha\rangle$
 - ▶ bare elementary $|n\rangle$, $\hat{H}_0|n\rangle = E_n|n\rangle$
- Eigenstates of \hat{H} :
 - ▶ $|d\rangle$ ("deuteron") $\hat{H}|d\rangle = E_B|d\rangle$

- Normalized:

$$\begin{aligned}\langle\alpha|\beta\rangle &= \delta(\beta - \alpha) & \langle\alpha|n\rangle &= 0 \\ \langle m|n\rangle &= \delta_{mn} & \langle d|d\rangle &= 1\end{aligned}$$

- "Sandwich" $\langle d|1\!1|d\rangle = 1$

$$1 = Z + \int d\alpha \frac{|\langle\alpha|V|d\rangle|^2}{(E(\alpha) - E_B)^2}$$

- 1st crucial approximation: $\langle\alpha|V|d\rangle \simeq g/(2\pi)^{3/2}$

$$1 - Z = g^2 \frac{\mu}{2\pi^2} \int_{E_{\text{th}}}^{\infty} dW \frac{k(W)}{(W - E_B)^2} = \frac{\mu^2 g^2}{2\pi \gamma_B}$$

Fundamental quantity $Z = \sum_n |\langle n|d\rangle|^2$

«(...) Z is the probability of finding the deuteron in a bare elementary-particle state.» [Weinberg, PR,137,B672]

- Measure: $d\alpha = d^3\vec{k} = 4\pi \mu k(W) dW$

- $1 - Z$ written in terms of g^2 : $1 - Z = \frac{\mu^2 g^2}{2\pi\gamma_B}$

Next step, move to *low energy n-p scattering*, and relate g^2 to a, r

- Start from a version of the Low equation:

$$T(E) = \frac{g^2}{E - E_B} + \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{\sqrt{\vec{k}^2}}{E - E_{th} - \vec{k}^2/(2\mu)} |T(E(\vec{k}^2))|^2$$

- A *solution* proposed by Weinberg reads
[2nd crucial assumption]:

$$T^{-1}(E) = \frac{E - E_B}{g^2} - \frac{\mu^2}{2\pi\gamma_B} (E + E_B - 2E_{th}) + i \frac{\mu k(E)}{2\pi}$$

- This solution for the amplitude **exactly satisfies the Effective Range Expansion (ERE)**:

$$-\frac{2\pi}{\mu} T^{-1}(E) = k \cot \delta - ik = \frac{1}{a} + \frac{1}{2} r k^2 + \dots - ik$$

- $1 - Z$ written in terms of g^2 : $1 - Z = \frac{\mu^2 g^2}{2\pi\gamma_B}$

Next step, move to *low energy n-p scattering*, and relate g^2 to a, r

- Start from a version of the Low equation:

$$T(E) = \frac{g^2}{E - E_B} + \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{\sqrt{\vec{k}^2}}{E - E_{th} - \vec{k}^2/(2\mu)} |T(E(\vec{k}^2))|^2$$

- A *solution* proposed by Weinberg reads

[2nd crucial assumption]:

- Relation of g^2 and γ_B to a and r :

$$T^{-1}(E) = \frac{E - E_B}{g^2} - \frac{\mu^2}{2\pi\gamma_B} (E + E_B - 2E_{th}) + i \frac{\mu k(E)}{2\pi}$$

- This solution for the amplitude **exactly satisfies the Effective Range Expansion (ERE)**:

$$-\frac{2\pi}{\mu} T^{-1}(E) = k \cot \delta - ik = \frac{1}{a} + \frac{1}{2} r k^2 + \dots - ik$$

$$a\gamma_B = -2 \left(1 + \frac{2\pi\gamma_B}{\mu^2 g^2} \right)^{-1}$$

$$r\gamma_B = \left(1 - \frac{2\pi\gamma_B}{\mu^2 g^2} \right)$$

- $1 - Z$ written in terms of g^2 : $1 - Z = \frac{\mu^2 g^2}{2\pi\gamma_B}$

Next step, move to *low energy n-p scattering*, and relate g^2 to a, r

- Start from a version of the Low equation:

$$T(E) = \frac{g^2}{E - E_B} + \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{\sqrt{\vec{k}^2}}{E - E_{th} - \vec{k}^2/(2\mu)} |T(E(\vec{k}^2))|^2$$

- A *solution* proposed by Weinberg reads

[2nd crucial assumption]:

- Relation of g^2 and γ_B to a and r :

$$T^{-1}(E) = \frac{E - E_B}{g^2} - \frac{\mu^2}{2\pi\gamma_B} (E + E_B - 2E_{th}) + i \frac{\mu k(E)}{2\pi}$$

- This solution for the amplitude **exactly satisfies the Effective Range Expansion (ERE)**:

$$-\frac{2\pi}{\mu} T^{-1}(E) = k \cot \delta - ik = \frac{1}{a} + \frac{1}{2} r k^2 + \dots - ik$$

$$a\gamma_B = -2 \left(1 + \frac{2\pi\gamma_B}{\mu^2 g^2} \right)^{-1}$$

$$r\gamma_B = \left(1 - \frac{2\pi\gamma_B}{\mu^2 g^2} \right)$$

- $1 - Z$ written in terms of g^2 : $1 - Z = \frac{\mu^2 g^2}{2\pi\gamma_B}$

Next step, move to *low energy n-p scattering*, and relate g^2 to a, r

- Start from a version of the Low equation:

$$T(E) = \frac{g^2}{E - E_B} + \int \frac{d^3 \vec{k}}{(2\pi)^3} \frac{\sqrt{\vec{k}^2}}{E - E_{th} - \vec{k}^2/(2\mu)} |T(E(\vec{k}^2))|^2$$

- A *solution* proposed by Weinberg reads

[2nd crucial assumption]:

- Relation of g^2 and γ_B to a and r :

$$T^{-1}(E) = \frac{E - E_B}{g^2} - \frac{\mu^2}{2\pi\gamma_B} (E + E_B - 2E_{th}) + i \frac{\mu k(E)}{2\pi}$$

- This solution for the amplitude **exactly satisfies the Effective Range Expansion (ERE)**:

$$-\frac{2\pi}{\mu} T^{-1}(E) = k \cot \delta - ik = \frac{1}{a} + \frac{1}{2} r k^2 + \dots - ik$$

$$a\gamma_B = -2 \left(1 + \frac{2\pi\gamma_B}{\mu^2 g^2}\right)^{-1}$$

$$r\gamma_B = \left(1 - \frac{2\pi\gamma_B}{\mu^2 g^2}\right)$$

Weinberg's compositeness condition(s)

$$a = -\frac{2}{\gamma_B} \frac{1-Z}{2-Z} \quad r = -\frac{1}{\gamma_B} \frac{Z}{1-Z}$$

Ⓐ r, a are expansions in $\frac{1}{\beta} \left(\frac{\gamma_B}{\beta}\right)^{n-1}$, with β^{-1} an interaction range [in $np, \beta \sim m_\pi$]

$$r = \underbrace{-\frac{1}{\gamma_B} \frac{Z}{1-Z}}_{r_{\text{LO}}(Z) \sim \mathcal{O}(\gamma_B^{-1})} + \mathcal{O}(\gamma_B^0 \beta^{-1})$$
$$a = \underbrace{-\frac{2}{\gamma_B} \frac{1-Z}{2-Z}}_{a_{\text{LO}}(Z) \sim \mathcal{O}(\gamma_B^{-1})} + \mathcal{O}(\gamma_B^0 \beta^{-1})$$

Ⓐ r, a are expansions in $\frac{1}{\beta} \left(\frac{\gamma_B}{\beta} \right)^{n-1}$, with β^{-1} an interaction range [in np , $\beta \sim m_\pi$]

$$\begin{aligned}
 r &= \underbrace{-\frac{1}{\gamma_B} \frac{Z}{1-Z}}_{r_{\text{LO}}(Z) \sim \mathcal{O}(\gamma_B^{-1})} + \mathcal{O}(\gamma_B^0 \beta^{-1}) & \Rightarrow & r = \underbrace{r_{\text{LO}}(Z) + \delta r}_{r_{\text{NLO}}(Z, \delta r)} + \mathcal{O}(\gamma_B^0 / \beta^2) \\
 a &= \underbrace{-\frac{2}{\gamma_B} \frac{1-Z}{2-Z}}_{a_{\text{LO}}(Z) \sim \mathcal{O}(\gamma_B^{-1})} + \mathcal{O}(\gamma_B^0 \beta^{-1}) & \Rightarrow & a = \underbrace{a_{\text{LO}}(Z) + \delta a}_{a_{\text{NLO}}(Z, \delta a)} + \mathcal{O}(\gamma_B^0 / \beta^2)
 \end{aligned}$$

Ⓐ r, a are expansions in $\frac{1}{\beta} \left(\frac{\gamma_B}{\beta} \right)^{n-1}$, with β^{-1} an interaction range [in np , $\beta \sim m_\pi$]

$$\begin{aligned}
 r &= \underbrace{-\frac{1}{\gamma_B} \frac{Z}{1-Z}}_{r_{\text{LO}}(Z) \sim \mathcal{O}(\gamma_B^{-1})} + \mathcal{O}(\gamma_B^0 \beta^{-1}) & \Rightarrow & r = \underbrace{r_{\text{LO}}(Z) + \delta r}_{r_{\text{NLO}}(Z, \delta r)} + \mathcal{O}(\gamma_B^0 / \beta^2) \\
 a &= \underbrace{-\frac{2}{\gamma_B} \frac{1-Z}{2-Z}}_{a_{\text{LO}}(Z) \sim \mathcal{O}(\gamma_B^{-1})} + \mathcal{O}(\gamma_B^0 \beta^{-1}) & \Rightarrow & a = \underbrace{a_{\text{LO}}(Z) + \delta a}_{a_{\text{NLO}}(Z, \delta a)} + \mathcal{O}(\gamma_B^0 / \beta^2)
 \end{aligned}$$

Ⓑ From ERE one gets a relation that **works very well**: $\gamma_B \simeq -\frac{1}{a} + \frac{1}{2} r \gamma_B^2$

Ⓐ r, a are expansions in $\frac{1}{\beta} \left(\frac{\gamma_B}{\beta} \right)^{n-1}$, with β^{-1} an interaction range [in np , $\beta \sim m_\pi$]

$$\begin{aligned}
 r &= \underbrace{-\frac{1}{\gamma_B} \frac{Z}{1-Z}}_{r_{\text{LO}}(Z) \sim \mathcal{O}(\gamma_B^{-1})} + \mathcal{O}(\gamma_B^0 \beta^{-1}) & \Rightarrow & r = \underbrace{r_{\text{LO}}(Z) + \delta r}_{r_{\text{NLO}}(Z, \delta r)} + \mathcal{O}(\gamma_B^0 / \beta^2) \\
 a &= \underbrace{-\frac{2}{\gamma_B} \frac{1-Z}{2-Z}}_{a_{\text{LO}}(Z) \sim \mathcal{O}(\gamma_B^{-1})} + \mathcal{O}(\gamma_B^0 \beta^{-1}) & \Rightarrow & a = \underbrace{a_{\text{LO}}(Z) + \delta a}_{a_{\text{NLO}}(Z, \delta a)} + \mathcal{O}(\gamma_B^0 / \beta^2)
 \end{aligned}$$

Ⓑ From ERE one gets a relation that **works very well**: $\gamma_B \simeq -\frac{1}{a} + \frac{1}{2} r \gamma_B^2$

- **The trick** is to combine A & B to correlate δr and δa :

- ① Introduce a_{NLO} and r_{NLO} above,
- ② Expand in powers of γ_B ,
- ③ Solve δa in terms of δr such that the difference is $\mathcal{O}(\gamma_B^3 / \beta^2)$.

Ⓐ r, a are expansions in $\frac{1}{\beta} \left(\frac{\gamma_B}{\beta} \right)^{n-1}$, with β^{-1} an interaction range [in np , $\beta \sim m_\pi$]

$$\begin{aligned} r &= \underbrace{-\frac{1}{\gamma_B} \frac{Z}{1-Z}}_{r_{\text{LO}}(Z) \sim \mathcal{O}(\gamma_B^{-1})} + \mathcal{O}(\gamma_B^0 \beta^{-1}) & \Rightarrow & r = \underbrace{r_{\text{LO}}(Z) + \delta r}_{r_{\text{NLO}}(Z, \delta r)} + \mathcal{O}(\gamma_B / \beta^2) \\ a &= \underbrace{-\frac{2}{\gamma_B} \frac{1-Z}{2-Z}}_{a_{\text{LO}}(Z) \sim \mathcal{O}(\gamma_B^{-1})} + \mathcal{O}(\gamma_B^0 \beta^{-1}) & \Rightarrow & a = \underbrace{a_{\text{LO}}(Z) + \delta a}_{a_{\text{NLO}}(Z, \delta a)} + \mathcal{O}(\gamma_B / \beta^2) \end{aligned}$$

Ⓑ From ERE one gets a relation that **works very well**: $\gamma_B \simeq -\frac{1}{a} + \frac{1}{2} r \gamma_B^2$

- **The trick** is to combine A & B to correlate δr and δa :

- ① Introduce a_{NLO} and r_{NLO} above,
- ② Expand in powers of γ_B ,
- ③ Solve δa in terms of δr such that the difference is $\mathcal{O}(\gamma_B^3 / \beta^2)$.

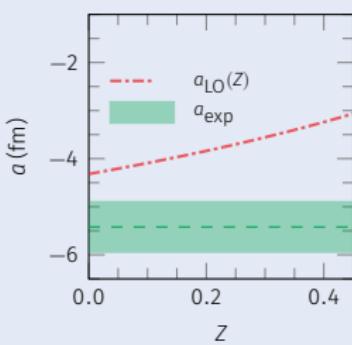
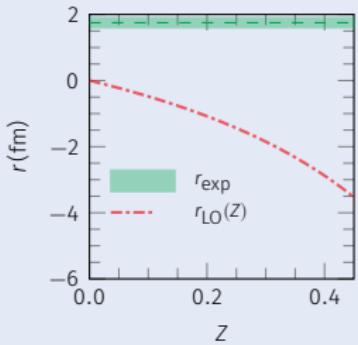
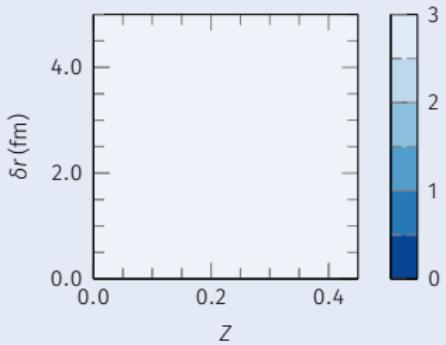
- Final equations, main result of [MA, J. Nieves, EPJ,C82,8('22)]:

$$\begin{aligned} r &= -\frac{1}{\gamma_B} \frac{Z}{1-Z} + \delta r + \mathcal{O}(\gamma_B / \beta^2) \\ a &= -\frac{2}{\gamma_B} \frac{1-Z}{2-Z} - 2\delta r \left(\frac{1-Z}{2-Z} \right)^2 + \mathcal{O}(\gamma_B / \beta^2) \end{aligned}$$

Canonical example: the deuteron

- Exp. data:
$$\left\{ \begin{array}{l} a_{\text{exp}} = -5.42(1) \text{ fm} \\ r_{\text{exp}} = +1.75(1) \text{ fm} \\ \gamma_{B_{\text{exp}}} = 45.7 \text{ MeV} \end{array} \right\}$$

If Z is **naively evaluated** from these data, one gets $P = 1 - Z = 1.68$ [which makes no sense!]



Canonical example: the deuteron

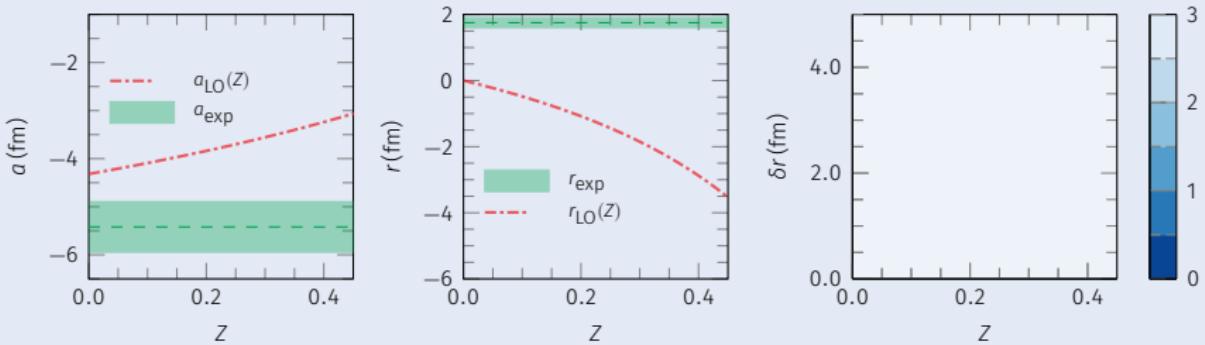
- Exp. data: $\left\{ \begin{array}{l} a_{\text{exp}} = -5.42(1) \text{ fm} \\ r_{\text{exp}} = +1.75(1) \text{ fm} \\ \gamma_B^{\text{exp}} = 45.7 \text{ MeV} \end{array} \right\}$

If Z is **naively evaluated** from these data, one gets $P = 1 - Z = 1.68$ [which makes no sense!]

- Additional tool, likelihood estimator $\mathcal{L}(Z, \delta r)$:

$$\mathcal{L}(Z, \delta r) = \frac{1}{3} \left[\left(\frac{a_{\text{exp}} - a_{\text{NLO}}}{\Delta a_{\text{exp}}} \right)^2 + \left(\frac{r_{\text{exp}} - r_{\text{NLO}}}{\Delta r_{\text{exp}}} \right)^2 + \left(\frac{\gamma_B^{\text{exp}} - \gamma_B^{\text{NLO}}}{\Delta \gamma_B^{\text{exp}}} \right)^2 \right]$$

- Δa_{exp} (et al.): **relative error** taken as $(\gamma_B/m_\pi)^2 \simeq 0.1$ because exp. error is smaller



Canonical example: the deuteron

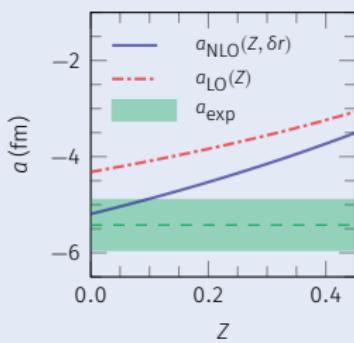
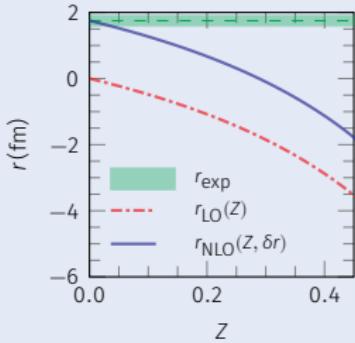
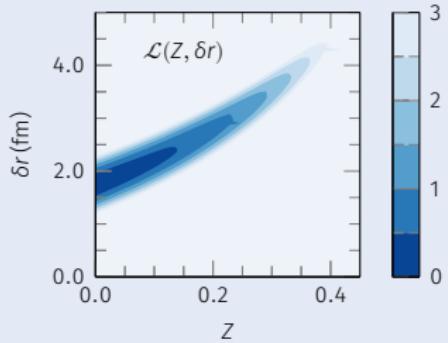
- Exp. data: $\left\{ \begin{array}{l} a_{\text{exp}} = -5.42(1) \text{ fm} \\ r_{\text{exp}} = +1.75(1) \text{ fm} \\ \gamma_{B,\text{exp}} = 45.7 \text{ MeV} \end{array} \right\}$

If Z is **naively evaluated** from these data, one gets $P = 1 - Z = 1.68$ [which makes no sense!]

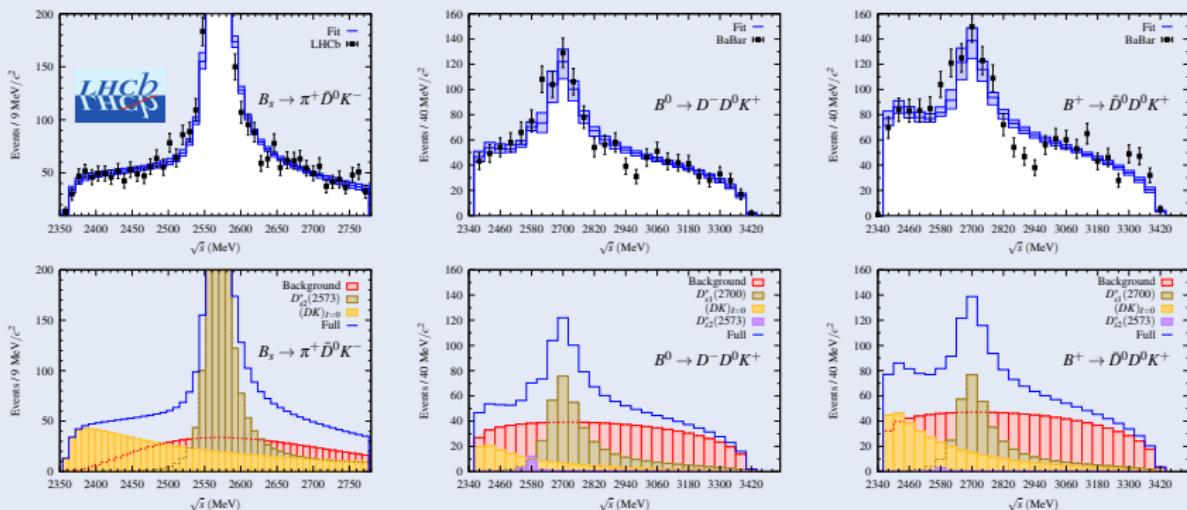
- Additional tool, likelihood estimator $\mathcal{L}(Z, \delta r)$:

$$\mathcal{L}(Z, \delta r) = \frac{1}{3} \left[\left(\frac{a_{\text{exp}} - a_{\text{NLO}}}{\Delta a_{\text{exp}}} \right)^2 + \left(\frac{r_{\text{exp}} - r_{\text{NLO}}}{\Delta r_{\text{exp}}} \right)^2 + \left(\frac{\gamma_{B,\text{exp}} - \gamma_{B,\text{NLO}}}{\Delta \gamma_{B,\text{exp}}} \right)^2 \right]$$

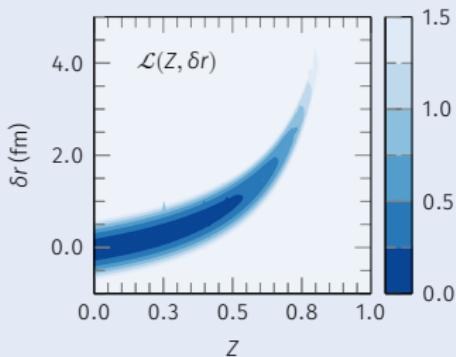
- Δa_{exp} (et al.): **relative error** taken as $(\gamma_B/m_\pi)^2 \simeq 0.1$ because exp. error is smaller
- The **NLO expressions** improve the agreement with data for $Z \simeq 0$ (molecular case), as expected
- The minimum is found for $\delta r \simeq r_{\text{exp}} = 1.75 \text{ fm}$ ($\simeq m_\pi^{-1}$, as expected)



- $DK (I=0)$ interaction taken from Heavy Meson ChPT



Fit	$M_{D_{s0}^*}$ (MeV)	$P_{DK}(\%)$	a_0 (fm)
LHCb	$2326^{+16}_{-16} {}^{+1}_{-5}$	$74^{+7}_{-6} {}^{+9}_{-1}$	$-1.10^{+0.19}_{-0.39} {}^{+0.01}_{-0.02}$
BaBar	$2306^{+14}_{-23} {}^{+16}_{-9}$	$67^{+5}_{-7} {}^{+6}_{-10}$	$-0.87^{+0.15}_{-0.15} {}^{+0.11}_{-0.18}$
Combined	$2315^{+12}_{-17} {}^{+10}_{-5}$	$70^{+4}_{-6} {}^{+4}_{-8}$	$-0.95^{+0.15}_{-0.15} {}^{+0.08}_{-0.13}$



- a and r :

[Martínez-Torres *et al.*, JHEP,05,153('15)]
 [Mohler *et al.*, PRL,111,222001('13); PR,D90,034510('14)]

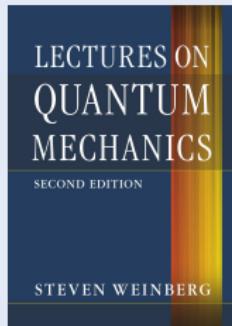
$$a = -1.3(5) \text{ fm}$$

$$r = -0.1(3) \text{ fm}$$

[Values compatible with those in the previous slide]

- $E_B = -45(4) \text{ MeV}$ [from PDG compilation]

- Molecular probabilities $P = 1 - Z \gtrsim 0.5$
- We are not as specific as in other cases:
 - ▶ Larger uncertainties on the input (a, r, E_B)
 - ▶ Formalism pushed to (or beyond?) the limits: $\gamma_B/\beta \sim 0.6$ [$(\gamma_B/\beta)^2 = 36\%$]



Thus, expanding in bare two-particle states, Eq. (8.8.17) gives

$$1 = |g|^2 \int_0^\infty \frac{p(E) dE}{(E + B)^2}$$

and so¹⁴

$$|g|^2 = \frac{1}{\pi} \sqrt{\frac{2B}{\mu}}. \quad (8.8.19)$$

Using this in the solution (8.8.16) of the Low equation, we have

$$t(E) = \frac{1}{\pi \sqrt{2\mu}} \left[\sqrt{B} + i\sqrt{E} \right]^{-1}. \quad (8.8.20)$$

¹⁴ More generally, if in addition to the continuum the eigenstates of H_0 include an elementary particle state with the same quantum numbers as the bound state, $|g|$ is less than the value given in Eq. (8.8.19) by a factor $1 - Z$, where Z is the probability that an examination of the bound state will find it in the elementary particle state rather than the two-particle state. The case $Z \neq 0$ is studied in detail by S. Weinberg, *Phys. Rev.* **B137**, 672 (1965).

PHYSICAL REVIEW

VOLUME 137, NUMBER 3B

8 FEBRUARY 1965

Evidence That the Deuteron Is Not an Elementary Particle*

STEVEN WEINBERG†

Department of Physics and Lawrence Radiation Laboratory, University of California, Berkeley, California

(Received 30 September 1964)

$$a_s = +5.41 \text{ F}; \quad r_e = +1.75 \text{ F}. \quad (5)$$

In contrast, if the deuteron had an appreciable probability Z of being found in an elementary bare-particle state then a_s would be less than R , and more striking, r_e would be large and negative. This is clearly contradicted by the experimental values (5), so we may conclude that Z is small (say <0.2), and therefore the deuteron is at least mostly composite.³