

Flavor and Dark Matter

Oscar Vives

8th Jan , 2024, IFIC.

Standard Model: A story of success

- $SU(3) \times SU(2) \times U(1)$ gauge symmetry describes all observed interactions in Nature.
- Electroweak symmetry breaking established after Higgs discovery in 2012.
- LHC results agree with the model predictions.
- Low-energy precision experiments confirm SM to high orders.

Standard Model: A story of success

- $SU(3) \times SU(2) \times U(1)$ gauge symmetry describes all observed interactions in Nature.
- Electroweak symmetry breaking established after Higgs discovery in 2012.
- LHC results agree with the model predictions.
- Low-energy precision experiments confirm SM to high orders.

But... \Rightarrow Several open question remain in SM

Standard Model: A story of success

- $SU(3) \times SU(2) \times U(1)$ gauge symmetry describes all observed interactions in Nature.
- Electroweak symmetry breaking established after Higgs discovery in 2012.
- LHC results agree with the model predictions.
- Low-energy precision experiments confirm SM to high orders.

But... \Rightarrow Several open question remain in SM

We still need new physics!!!

Flavor Problem

All Observed *Flavour transitions* can be accommodated in Yukawa couplings:

$$\mathcal{L}_Y = H \bar{Q}_i Y_{ij}^d d_j + H^* \bar{Q}_i Y_{ij}^u u_j$$

But... \Rightarrow

- a) what is the origin of the Yukawa structures??
- b) why is there a CP-violating phase in CKM??
- c) why couplings are so different???

Flavor Problem

All Observed *Flavour transitions* can be accommodated in Yukawa couplings:

$$\mathcal{L}_Y = H \bar{Q}_i Y_{ij}^d d_j + H^* \bar{Q}_i Y_{ij}^u u_j$$

But... \Rightarrow

- a) what is the origin of the Yukawa structures??
- b) why is there a CP-violating phase in CKM??
- c) why couplings are so different???

Dark Matter

Required by rotational velocity of galaxies, Cosmic Microwave Background, etc.

But... \Rightarrow No massive, stable and weakly interacting candidate present in SM.

Dark matter

- Dark matter masses from sub-eV to TeV (or micro black holes).
- Observed DM abundance requires **weak couplings** through freeze-out, with masses $\mathcal{O}(\Lambda_{EW})$: **WIMPs**.
- Weaker couplings and lighter masses possible through freeze-in mechanism: **FIMPs**
- Must be stable or long-lived at cosmological scales.

Dark matter

- Dark matter masses from sub-eV to TeV (or micro black holes).
- Observed DM abundance requires **weak couplings** through freeze-out, with masses $\mathcal{O}(\Lambda_{EW})$: **WIMPs**.
- Weaker couplings and lighter masses possible through freeze-in mechanism: **FIMPs**
- Must be stable or long-lived at cosmological scales.

Additional unbroken symmetry
needed for DM stability.

Flavour symmetries

- Very different elements in Yukawa matrices: $y_t \simeq 1$, $y_u \simeq 10^{-5}$
- Expect couplings in a “fundamental” theory $\mathcal{O}(1)$
- Small couplings generated as function of small vevs or loops.
- Froggatt-Nielsen mechanism and flavour symmetry to understand small Yukawa elements.

Flavour symmetries

- Very different elements in Yukawa matrices: $y_t \simeq 1$, $y_u \simeq 10^{-5}$
- Expect couplings in a “fundamental” theory $\mathcal{O}(1)$
- Small couplings generated as function of small vevs or loops.
- Froggatt-Nielsen mechanism and flavour symmetry to understand small Yukawa elements.

Can a single symmetry explain flavor and stabilize DM ??

Example $U(1)_{\text{fl}}$

- SM fermion with flavour charges:

$$\begin{pmatrix} a_{Q_1} & a_{Q_2} & a_{Q_3} \\ a_{u_1} & a_{u_2} & a_{u_3} \\ a_{d_1} & a_{d_2} & a_{d_3} \\ a_{L_1} & a_{L_2} & a_{L_3} \\ a_{e_1} & a_{e_2} & a_{e_3} \end{pmatrix} = \begin{pmatrix} 4 & 2 & 0 \\ 4 & 2 & 0 \\ 4 & 3 & 3 \\ 4 & 3 & 3 \\ 4 & 2 & 0 \end{pmatrix}.$$

flavon S of charge -1

Dark sector fermion charged under $U(1)_{\text{fl}}$ with charge $15/2$

$$\mathcal{L}_{\text{DM}} = \frac{1}{2} \bar{\chi} \left(i \gamma^\mu \partial_\mu \right) \chi - y_\chi \left(\frac{S}{\Lambda} \right)^{2n-1} S \bar{\chi}^c \chi + h.c.$$

Example $U(1)_{fl}$

- SM fermion with flavour charges:

$$\begin{pmatrix} a_{Q_1} & a_{Q_2} & a_{Q_3} \\ a_{u_1} & a_{u_2} & a_{u_3} \\ a_{d_1} & a_{d_2} & a_{d_3} \\ a_{L_1} & a_{L_2} & a_{L_3} \\ a_{e_1} & a_{e_2} & a_{e_3} \end{pmatrix} = \begin{pmatrix} 4 & 2 & 0 \\ 4 & 2 & 0 \\ 4 & 3 & 3 \\ 4 & 3 & 3 \\ 4 & 2 & 0 \end{pmatrix}.$$

flavon S of charge -1

Dark sector fermion charged under $U(1)_{fl}$ with charge $15/2$

$$\mathcal{L}_{DM} = \frac{1}{2} \bar{\chi} \left(i \gamma^\mu \partial_\mu \right) \chi - y_\chi \left(\frac{S}{\Lambda} \right)^{2n-1} S \bar{\chi}^c \chi + h.c.$$

\Rightarrow Stable with small flavor interactions

Coincidence problem

- Dark matter (WIMP) produced via freeze-out of a massive, $O(\text{TeV})$, stable particle with weak couplings.
- Baryon density produced via baryo/leptogenesis in presence of CP violation, baryon number violation and out of equilibrium processes.
- Nevertheless, measured values for baryon and dark matter densities surprisingly similar:

$$\frac{\Omega_{DM} h_0^2}{\Omega_B h_0^2} = 4.99 \pm 0.20$$

Coincidence problem

- Dark matter (WIMP) produced via freeze-out of a massive, $O(\text{TeV})$, stable particle with weak couplings.
- Baryon density produced via baryo/leptogenesis in presence of CP violation, baryon number violation and out of equilibrium processes.
- Nevertheless, measured values for baryon and dark matter densities surprisingly similar:

$$\frac{\Omega_{DM} h_0^2}{\Omega_B h_0^2} = 4.99 \pm 0.20$$

Can baryonic and dark-matter have a common origin???

⇒ Asymmetric Dark Matter

Asymmetric Dark Matter

- New quantum number of Dark Matter shared by visible matter.
- Asymmetry in this number shared between the two sectors through new (higher dimension op.) interactions.
- After efficient annihilation of symmetric part, asymmetries of comparable size in visible and dark sectors.
- For total baryons asymmetry, B , and dark matter X .

$$m_{\text{DM}} \sim 5 \cdot \frac{B}{X} \cdot 1 \text{ GeV.}$$

Asymmetric Dark Matter

- New quantum number of Dark Matter shared by visible matter.
- Asymmetry in this number shared between the two sectors through new (higher dimension op.) interactions.
- After efficient annihilation of symmetric part, asymmetries of comparable size in visible and dark sectors.
- For total baryons asymmetry, B , and dark matter X .

$$m_{\text{DM}} \sim 5 \cdot \frac{B}{X} \cdot 1 \text{ GeV.}$$

B and X related through chemical potentials

$$\text{If } B \simeq X \Rightarrow m_{\text{DM}} \simeq 5 \text{ GeV}$$

Asymmetric Dark Matter model building

- New dark sector particles with non-vanishing charges to generate observed dark matter.
- New interactions connecting visible and dark sectors.
- Generation of related asymmetries in baryonic and dark sectors.
- Efficient **annihilation** of the symmetric components.
- Decoupling of visible and dark sector with similar densities

Asymmetric Dark Matter model building

- New dark sector particles with non-vanishing charges to generate observed dark matter.
- New interactions connecting visible and dark sectors.
- Generation of related asymmetries in baryonic and dark sectors.
- Efficient **annihilation** of the symmetric components.
- Decoupling of visible and dark sector with similar densities

But...

Can we do this in a complete model without new *ad hoc* particles and interactions??

Super Asymmetric Dark Matter

- **Sfermions** share quantum numbers with standard particles and decay to stable dark matter at low temperatures. ✓
- **Gaugino** interactions connect fermion and sfermions. ✓
- **Baryon/lepton** asymmetry shared by the two sectors. ✓
- **Efficient** (s-)particle–anti(s-)particle annihilation to photons through gauge interactions. ✓

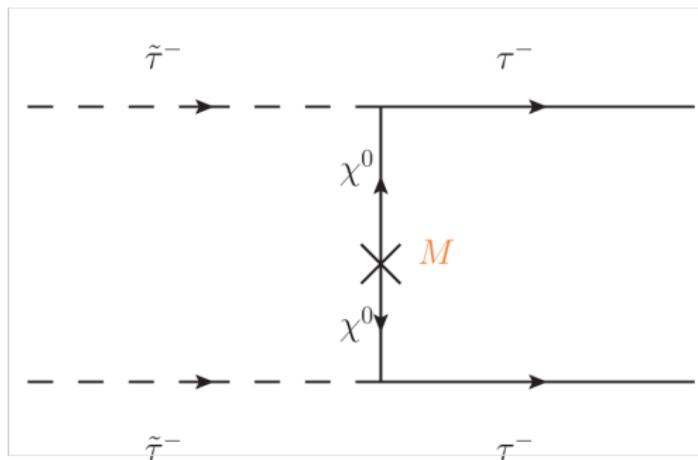
Super Asymmetric Dark Matter

- **Sfermions** share quantum numbers with standard particles and decay to stable dark matter at low temperatures. ✓
- **Gaugino** interactions connect fermion and sfermions. ✓
- **Baryon/lepton** asymmetry shared by the two sectors. ✓
- **Efficient** (s-)particle–anti(s-)particle annihilation to photons through gauge interactions. ✓
- **BUT...** decoupling of standard and supersymmetric sectors too slow for Majorana gauginos... X

Super Asymmetric Dark Matter

- **Sfermions** share quantum numbers with standard particles and decay to stable dark matter at low temperatures. ✓
- **Gaugino** interactions connect fermion and sfermions. ✓
- **Baryon/lepton** asymmetry shared by the two sectors. ✓
- **Efficient** (s-)particle–anti(s-)particle annihilation to photons through gauge interactions. ✓
- **BUT...** decoupling of standard and supersymmetric sectors too slow for **Majorana gauginos...** X

Asymmetry in supersymmetric sector washed away by gaugino interactions...


Super Asymmetric Dark Matter

Supersymmetric leptogenesis with stau (slepton) NLSP, decaying to gravitino.

Super Asymmetric Dark Matter

Supersymmetric leptogenesis with stau (slepton) NLSP, decaying to gravitino.

We must require Dirac gaugino masses to avoid washout of the asymmetry in staus.

Can we decouple this process with large M_χ ??

$$\Gamma(\tilde{\tau}_R + \tilde{\tau}_R \rightarrow \tau\tau) \sim \frac{\tilde{m}^3}{z^{3/2}\pi^2} e^{-z} \frac{4\pi\alpha^2}{M^2} \approx H \sim \frac{(100)^{1/2} m_{\tilde{\tau}}^2}{z^2 M_{Pl}}$$

with $z = m/T$, so that lepton number transfer from the SM to $\tilde{\tau}_R$ s stops at T_b

$$z = \frac{\tilde{m}}{T_b} \approx \ln \left[10^9 \frac{\tilde{m}}{\text{TeV}} \frac{(10\text{TeV})^2}{M^2} \right] \sim 21 + \ln \left[\frac{\tilde{m}}{\text{TeV}} \frac{(10\text{TeV})^2}{M^2} \right]$$

Can we decouple this process with large M_χ ??

$$\Gamma(\tilde{\tau}_R + \tilde{\tau}_R \rightarrow \tau\tau) \sim \frac{\tilde{m}^3}{z^{3/2}\pi^2} e^{-z} \frac{4\pi\alpha^2}{M^2} \approx H \sim \frac{(100)^{1/2} m_{\tilde{\tau}}^2}{z^2 M_{Pl}}$$

with $z = m/T$, so that lepton number transfer from the SM to $\tilde{\tau}_R$ s stops at T_b

$$z = \frac{\tilde{m}}{T_b} \approx \ln \left[10^9 \frac{\tilde{m}}{\text{TeV}} \frac{(10\text{TeV})^2}{M^2} \right] \sim 21 + \ln \left[\frac{\tilde{m}}{\text{TeV}} \frac{(10\text{TeV})^2}{M^2} \right]$$

But stau asymmetry exponentially suppressed:

$$\frac{Y_X - \overline{Y_X}}{Y_x - \overline{Y_x}} \approx \frac{6\sqrt{\pi/2} z_b^{3/2} e^{-z_b}}{\pi^2} \quad , \quad z_b = \tilde{m}/T_b$$

Can we decouple this process with large M_χ ??

$$\Gamma(\tilde{\tau}_R + \tilde{\tau}_R \rightarrow \tau\tau) \sim \frac{\tilde{m}^3}{z^{3/2}\pi^2} e^{-z} \frac{4\pi\alpha^2}{M^2} \approx H \sim \frac{(100)^{1/2} m_{\tilde{\tau}}^2}{z^2 M_{Pl}}$$

with $z = m/T$, so that lepton number transfer from the SM to $\tilde{\tau}_R$ s stops at T_b

$$z = \frac{\tilde{m}}{T_b} \approx \ln \left[10^9 \frac{\tilde{m}}{\text{TeV}} \frac{(10\text{TeV})^2}{M^2} \right] \sim 21 + \ln \left[\frac{\tilde{m}}{\text{TeV}} \frac{(10\text{TeV})^2}{M^2} \right]$$

But stau asymmetry exponentially suppressed:

$$\frac{Y_{\tilde{\chi}} - \overline{Y_{\tilde{\chi}}}}{Y_{\tilde{\chi}} - \overline{Y_{\tilde{\chi}}}} \approx \frac{6\sqrt{\pi/2} z_b^{3/2} e^{-z_b}}{\pi^2} \quad , \quad z_b = \tilde{m}/T_b$$

⇒ No Majorana masses allowed!!

Dirac Asymmetric Dark Matter: to be done...

- Stau decay before nucleosynthesis.
- Low Reheating temperature to avoid gravitino overproduction.
- Allowed Supersymmetric spectrum with $\tilde{\tau}$ NLSP and satisfy LHC bounds.
- Complete calculation of Asymmetry distribution in particles and sparticles through chemical potential...

Dirac Asymmetric Dark Matter: to be done...

- Stau decay before nucleosynthesis.
- Low Reheating temperature to avoid gravitino overproduction.
- Allowed Supersymmetric spectrum with $\tilde{\tau}$ NLSP and satisfy LHC bounds.
- Complete calculation of Asymmetry distribution in particles and sparticles through chemical potential...

keep tuned...