

Recollections from more than 20 years of collaboration and friendship

(Contribution to HirschFest)

Jorge C. Romão

Instituto Superior Técnico, Departamento de Física & CFTP

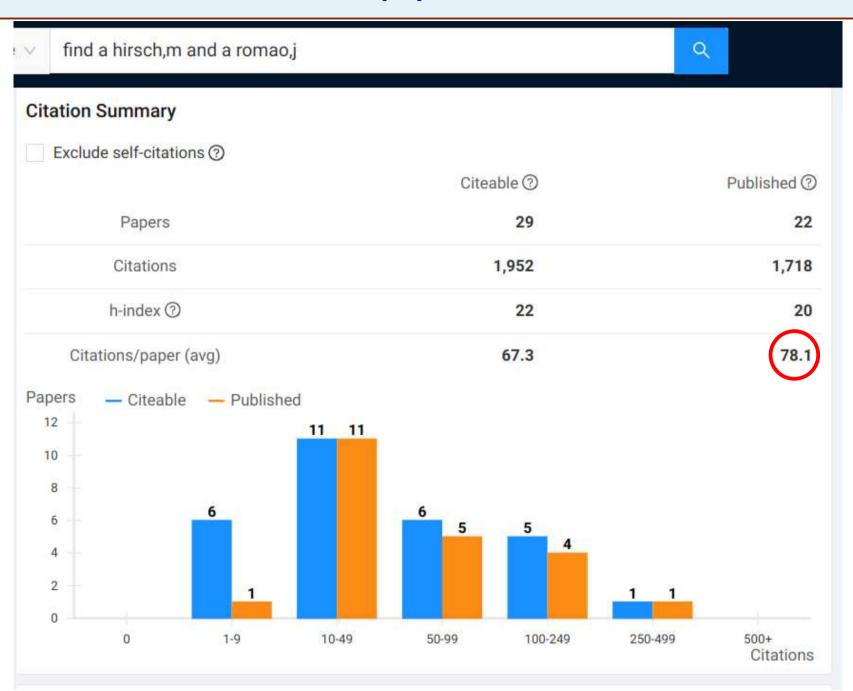
A. Rovisco Pais 1, 1049-001 Lisboa, Portugal

January 2024

Jorge C. Romão HirschFest – 1

M. Hirsch & J.C.Romão papers

Foreword


Breaking R-parity

Seesaw Models

After Martin

Students

Afterword

Jorge C. Romão HirschFest – 2

Some of the topics we studied

Foreword

Breaking R-parity

Seesaw Models

After Martin

Students

- R-Parity Violation and neutrino masses masses
 - Bilinear R-Parity Violation
 - Spontaneous R-Parity Violation
- Testing R-Parity at the colliders
 - SUSY decays
 - Higgs decays
- Lepton Flavour Violation (LFV) and Dark Matter
 - Type I, II and III seesaw
 - Left-Right (LR) model
- Unification in GUT's
 - LR models with sliding scale

Broken R-Parity Models

Foreword

Breaking R-parity

- R-Parity
- BRpV
- Testing @ LHC

Seesaw Models

After Martin

Students

Afterword

 $R_P = (-1)^{2J + 3B + L}$

- **■** BRpV: Explicit R-Parity Violation
 - Bilinear R-Parity Violation
 - Same particle content as the MSSM
- **□** SRpV: **Spontaneously R-Parity Violation**
 - More Complicated Higgs Structure
 - lacktriangle Majoron J
 - Invisible Higgs Decay h o JJ

Rich Phenomenology

Hierarchical Spectrum: No visible $\beta\beta_{0\nu}$

J.W.F. Valle, M. Diaz, M. Hirsch, W. Porod, A. Villanova del Moral, JCR, ...

Neutrino Masses from broken R-parity: The BRpV Model

Foreword

Breaking R-parity

R-Parity

BRpV

• Testing @ LHC

Seesaw Models

After Martin

Students

Afterword

The superpotential of the BRpV model is

$$W^{\mathsf{BRpV}} = W^{\mathsf{MSSM}} + \varepsilon_{ab} \epsilon_i \widehat{L}_i^a \widehat{H}_2^b$$

- The superfield content is as in the MSSM.
- The last term in is the only R-parity violating term. The ϵ_i are parameters with units of mass
- The electroweak symmetry is broken when the two Higgs doublets H_d and H_u , and the neutral component of the slepton doublets \widetilde{L}_i^0 acquire vacuum expectation values.
- The scalar potential is

$$V_{\rm total}^0 = \sum_i \left| \frac{\partial W}{\partial z_i} \right|^2 + V_D + V_{\rm SB}^{\rm MSSM} + V_{\rm SB}^{\rm BRpV}$$

where z_i is any one of the scalar fields in the superpotential

Tree Level Neutrino Masses and Mixings

Foreword

Breaking R-parity

• R-Parity

BRp\

• Testing @ LHC

Seesaw Models

After Martin

Students

Afterword

- The 7×7 neutralino/neutrino mass matrix M_N has two zero eigenvalues. Therefore two of the ν 's remain massless at tree level.
- The values of the parameters ϵ_i needed to account for the neutrino masses and mixings are small compared with the electroweak scale.
- lacktriangle Using this we can approximately bring $oldsymbol{M}_N$ to block diagonal form,

$$m{M}_N \simeq egin{bmatrix} m_{ ext{eff}} & 0 \ 0 & \mathcal{M}_{\chi^0} \end{bmatrix}, m_{ ext{eff}} = rac{M_1 g^2 + M_2 g'^2}{4 \det(\mathcal{M}_{\chi^0})} egin{bmatrix} \Lambda_e^2 & \Lambda_e \Lambda_\mu & \Lambda_e \Lambda_ au \ \Lambda_e \Lambda_\mu & \Lambda_\mu^2 & \Lambda_\mu \Lambda_ au \ \Lambda_e \Lambda_ au & \Lambda_\mu \Lambda_ au \end{bmatrix}$$

where \mathcal{M}_{χ^0} is the neutralino mass matrix and $\Lambda_i \equiv \mu v_i + v_d \epsilon_i$.

It is clear from the the projective nature of $m_{\rm eff}$ that two of the ν 's remain massless at tree level. The non zero neutrino mass is

$$m_{\nu} = \text{Tr}(m_{\text{eff}}) = \frac{M_1 g^2 + M_2 g'^2}{4 \det(\mathcal{M}_{\chi^0})} |\vec{\Lambda}|^2$$

One-Loop Neutrino Masses and Mixings

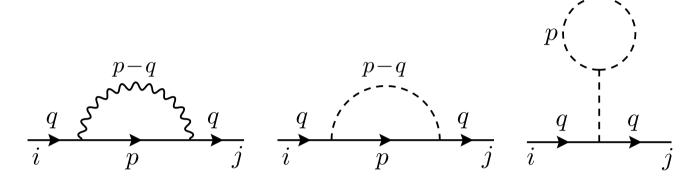
Foreword

Breaking R-parity

• R-Parity

BRpV

• Testing @ LHC


Seesaw Models

After Martin

Students

Afterword

The diagrams contributing to the self-energy include the exchange of gauge bosons as well of scalars.

These diagrams can be calculated in a straightforward way. For instance the W diagram in the $\xi=1$ gauge gives

$$\Sigma_{ij}^{V} = -\frac{1}{16\pi^{2}} \sum_{k=1}^{5} 2 \left(O_{Ljk}^{\text{ncw}} O_{Lki}^{\text{cnw}} + O_{Rjk}^{\text{ncw}} O_{Rki}^{\text{cnw}} \right) B_{1}(p^{2}, m_{k}^{2}, m_{W}^{2})$$

$$\Pi_{ij}^{V} = -\frac{1}{16\pi^{2}} \sum_{k=1}^{5} (-4) \left(O_{Ljk}^{\text{ncw}} O_{Rki}^{\text{cnw}} + O_{Rjk}^{\text{ncw}} O_{Lki}^{\text{cnw}} \right) m_{k} B_{0}(p^{2}, m_{k}^{2}, m_{W}^{2})$$

where B_0 and B_1 are the Passarino-Veltman functions, and O^{cnw} , O^{ncw} are coupling matrices

Fitting the data

Foreword

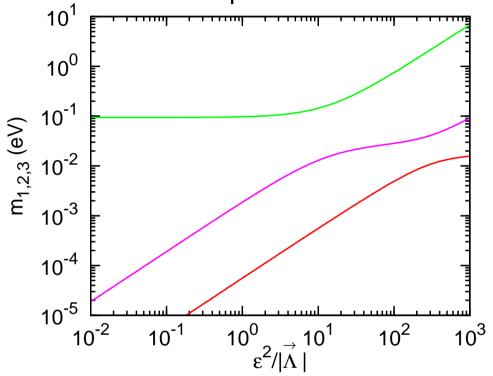
Breaking R-parity

R-Parity

BRpV

• Testing @ LHC

Seesaw Models


After Martin

Students

Afterword

- The BRpV model produces a hierarchical mass spectrum
- The largest mass scale can be estimated by the tree level value
- The solar mass scale can be obtained at one-loop
- The correct mixing angles can be obtained by an appropriate choice of $|\vec{\Lambda}|$ and Λ_i such that

$$\Lambda_e \ll \Lambda_\mu, \Lambda_ au$$

M. Hirsch, M. Diaz, W. Porod, JCR, J.W.F. Valle Phys.Rev.D62:113008,2000

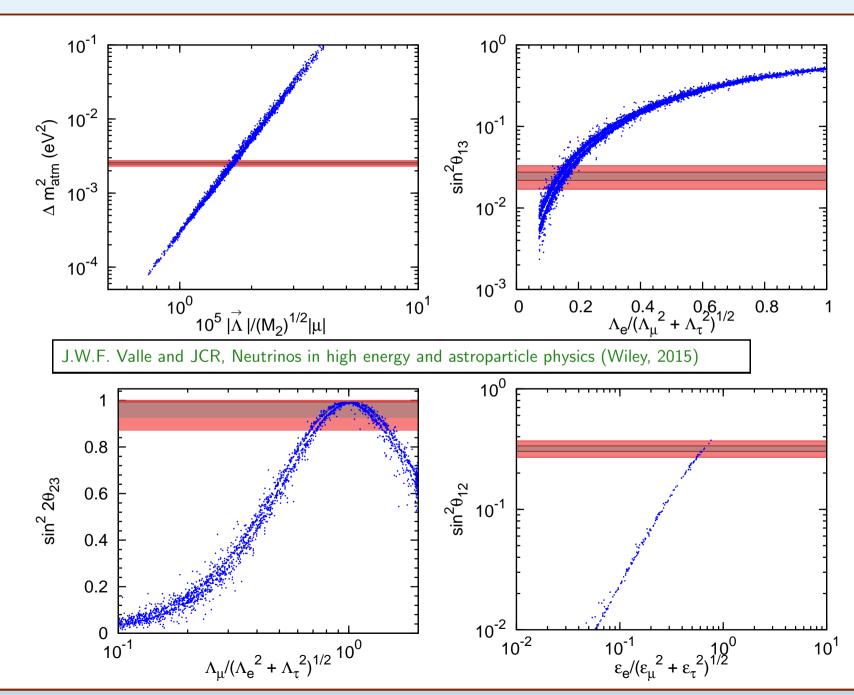
At the time BRpV was proposed the neutrino data was not very well known. It is interesting that with the present high precision data on neutrino physics, the model can still accommodate it.

The mixings θ_{13} , θ_{23} and θ_{12} could be accommodated

Foreword

Breaking R-parity

• R-Parity


BRpV

• Testing @ LHC

Seesaw Models

After Martin

Students

Testing BRpV via SUSY Decays

Foreword

Breaking R-parity

- R-Parity
- BRpV
- Testing @ LHC

Seesaw Models

After Martin

Students

Afterword

LSP Decays: (mSUGRA)

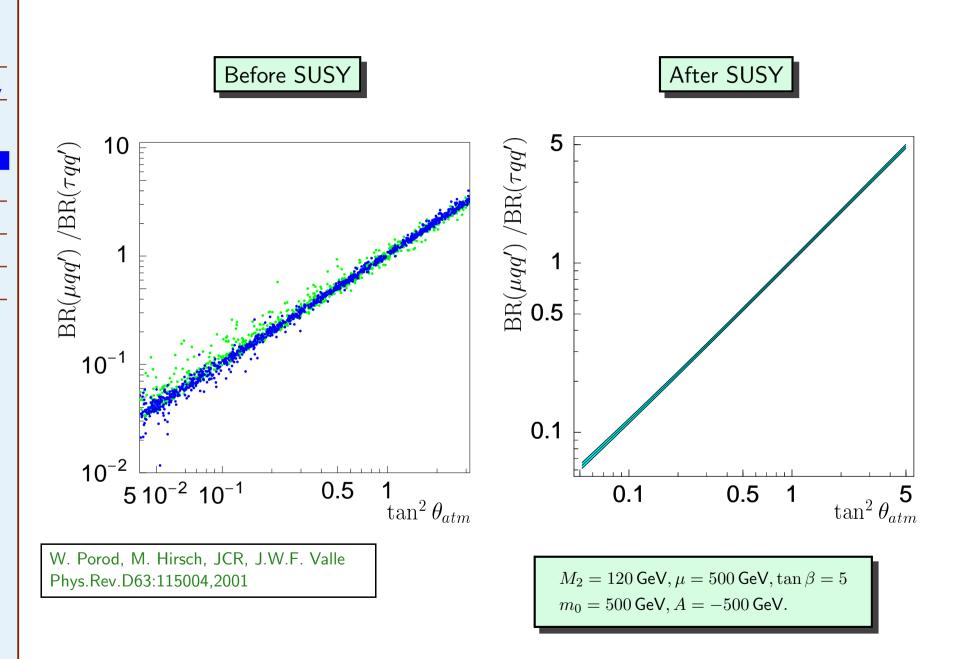
The fact that, in these models, the LSP decays through R-parity violating processes allows it to be either neutral or charged.

- ♦ In most cases the LSP is the lightest neutralino , like in the MSSM.
- For some regions of the parameter space the LSP can also be the scalar tau.
- In both cases we have shown that despite the smallness of m_{ν} the LSP decays inside the detector.
- LSP Decays: (non mSUGRA)

If we depart from mSUGRA then the LSP can be almost any particle. This gives complementary information.

Example: Probing the Atmospheric Angle (old slide)

Foreword


Breaking R-parity

- R-Parity
- BRpV
- Testing @ LHC

Seesaw Models

After Martin

Students

Seesaw models for neutrino masses: Type-I-II-III

Foreword

Breaking R-parity

Seesaw Models

• Type-I-II-III

- LR
- Effect on Spectra
- LFV
- DM & LFV
- $\bullet \mathcal{A}(\mu^+ \rightarrow e^+ \gamma)$

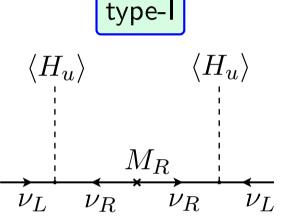
After Martin

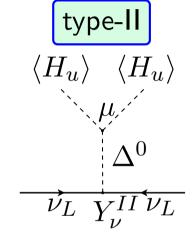
Students

$$\mathcal{L} = \dots + H_u \,\overline{\nu_L} \, Y_{\nu}^{\mathrm{I}} \, \nu_R$$
$$- \frac{1}{2} \nu_R^T \, C^{-1} \, M_R \, \nu_R$$

$$= \dots + H_u \overline{\nu_L} Y_{\nu}^{\mathrm{I}} \nu_R$$

$$- \frac{1}{2} \nu_R^T C^{-1} M_R \nu_R$$


$$= \dots - \frac{1}{2} Y_{\nu}^{\mathrm{II}} \overline{\nu_L^c} i \tau_2 \Delta_L \nu_L$$


$$- \mu H_u^T \Delta_L H_u - M_\Delta^2 \Delta_L^{\dagger} \Delta_L$$

$$= \dots + H_u \overline{W_M} Y_{\nu}^{\mathrm{III}} \nu_L$$

$$- \frac{1}{2} W_M^T C^{-1} M_{W_M} W_M$$

$$\mathcal{L} = \dots + H_u \overline{W_M} Y_{\nu}^{\text{III}} \nu_L$$
$$- \frac{1}{2} W_M^T C^{-1} M_{W_M} W_M$$

type-III
$$\begin{array}{c|c} \langle H_u \rangle & \langle H_u \rangle \\ \hline \downarrow & M_{W_M} \\ \hline \downarrow & W_M & W_M \end{array} \begin{array}{c} \downarrow \\ \nu_L & W_M & V_L \end{array}$$

$$m_{\text{eff}}^{\text{I}} = -(vY_{\nu})M_R^{-1}(vY_{\nu})^T$$

$$m_{\rm eff}^{\rm II} = \frac{v^2 \mu Y_{\nu}^{\rm II}}{M_{\Delta}^2}$$

$$m_{\mathrm{eff}}^{\mathrm{III}} = -(vY_{\nu}^{\mathrm{III}})M_{W_{M}}^{-1}(vY_{\nu}^{\mathrm{III}})^{T}$$

- Exchanged particle: Type-I-III: neutral fermion. Type-II: neutral scalar
- Type-I: gauge singlet. Type-II-III; gauge triplet Stronger running
- $m_{
 u} \sim 1 {\rm eV}$ and $Y_{
 u} \sim \mathcal{O}(1) \longrightarrow M_{\rm Seesaw} \sim \mathcal{O}(10^{12-14}) {\rm GeV}$ Not directly

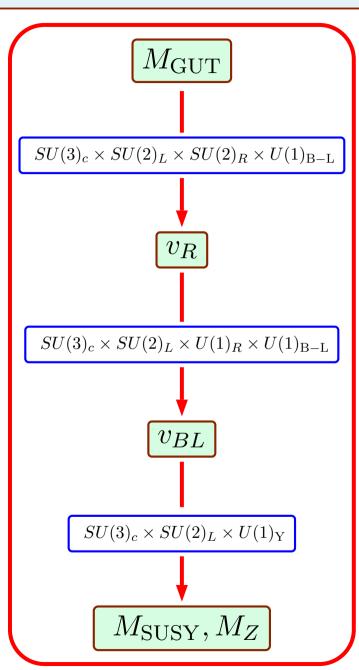
Left-Right Model: breaking scales and neutrino mass

Foreword

Breaking R-parity

Seesaw Models

• Type-I-II-III


LR

- Effect on Spectra
- LFV
- DM & LFV

After Martin

Students

Afterword

Superpotential

$$W = Y_L L \Phi L^c - f_c L^c \Delta^c L^c + \cdots$$

- Y_L and f_c complex 3×3 matrices
- lacksquare Lagrangian at $v_{BL} = \left< \Delta_c^0 \right>$

$$\mathcal{L} = H_u \,\overline{\nu_L} \, Y_{\nu}^{\mathrm{I}} \, \nu_R - \frac{1}{2} \nu_R^T \, C^{-1} \left(f_c v_{BL} \right) \nu_R + \cdots$$

■ Effective neutrino mass matrix (type-I)

$$m_{\text{eff}}^{\text{LR}} = -(vY_{\nu})(f_c v_{BL})^{-1}(vY_{\nu})^T$$

- $Y_{
 u}$ fit $o f_c = 1$, $Y_{
 u}$ arbitrary
- f fit $o Y_
 u = \mathbb{1}$, f_c arbitrary
- Different imprints on RGE running

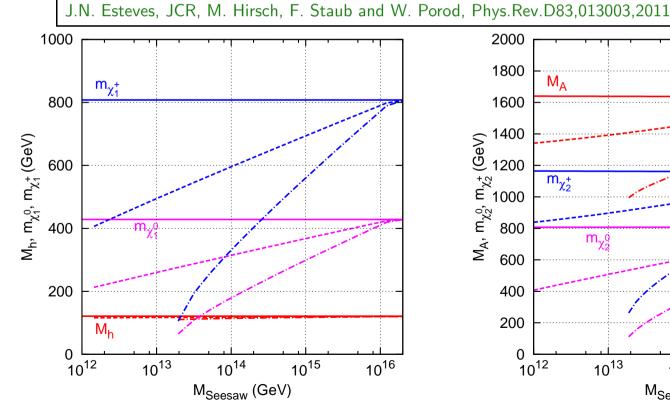
Effects of the heavy particles on the MSSM spectrum

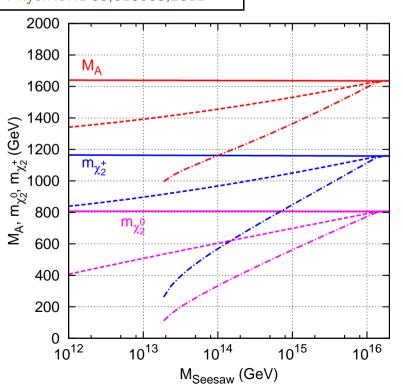
Foreword

Breaking R-parity

Seesaw Models

- Type-I-II-III
- LR


●Effect on Spectra


- LFV
- DM & LFV
- $\bullet \mathcal{A}(\mu^+ \rightarrow e^+ \gamma)$

After Martin

Students

- The appearance of particles with charges under the gauge group at scales between $M_{\rm Seesaw}$ and $M_{\rm GUT}$ leads to changes in the beta functions of the gauge couplings
- Example of spectra at Q=1 TeV versus the seesaw scale
- SUSY parameters $m_0=M_{1/2}=1$ TeV, $A_0=0$, $\tan\beta=10$ and $\mu>0$
- Type-I (full lines), type-II (dashed) and type-III (dash-dotted)

LFV in the slepton sector: Approximate formulas for $\Delta m_{L,E}$

Foreword

Breaking R-parity

Seesaw Models

- Type-I-II-III
- LR
- Effect on Spectra

- DM & LFV
- $\bullet \mathcal{A}(\mu^+ \rightarrow e^+ \gamma)$

After Martin

Students

Afterword

Starting with universal (mSUGRA) boundary conditions @ $M_{
m GUT}$

Seesaw type-I-II-III

$$\Delta m_{L,ij}^2 \simeq -\frac{a_k}{8\pi^2} \left(3m_0^2 + A_0^2 \right) \left(Y_N^{k,\dagger} L Y_N^k \right)_{ij}, \quad L = \ln(\frac{M_{\text{GUT}}}{M_{\text{N}}})$$

$$\Delta m_{E,ij}^2 \simeq 0 \qquad a_{\text{I}} = 1 , \ a_{\text{II}} = 6 \text{ and } \ a_{\text{III}} = \frac{9}{5}$$

Left-Right Model

$$M_{
m GUT}$$

$$v_R$$

$$M_{\text{GUT}} = \frac{1}{4\pi^2} \left(3f f^{\dagger} + Y_L^{(k)} Y_L^{(k) \dagger} \right) \left(3m_0^2 + A_0^2 \right) \ln \left(\frac{M_{\text{GUT}}}{v_R} \right)$$

$$v_R = \frac{1}{4\pi^2} \left(3f^{\dagger} f + Y_L^{(k) \dagger} Y_L^{(k) \dagger} \right) \left(3m_0^2 + A_0^2 \right) \ln \left(\frac{M_{\text{GUT}}}{v_R} \right)$$

$$\Delta m_E^2 \simeq -\frac{1}{4\pi^2} \left(3f^{\dagger} f + Y_L^{(k)} {}^{\dagger} Y_L^{(k)} \right) \left(3m_0^2 + A_0^2 \right) \ln \left(\frac{M_{\text{GUT}}}{v_R} \right)$$

$$v_R$$

$$v_{BL}$$

$$\Delta m_L^2 \simeq -\frac{1}{8\pi^2} Y_\nu Y_\nu^\dagger \left(m_L^2 |_{v_R} + A_e^2 |_{v_R} \right) \ln \left(\frac{v_R}{v_{BL}} \right)$$

$$\Delta m_E^2 \simeq 0$$

$$\Delta m_E^2 \simeq 0$$

Radiative lepton decays $l_i \rightarrow l_j \gamma$: Approximate formulas

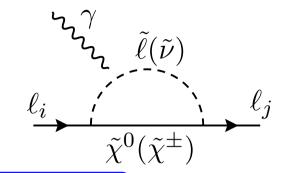
Foreword

Breaking R-parity

Seesaw Models

- Type-I-II-III
- LR
- Effect on Spectra

LFV


- DM & LFV
- $\bullet \mathcal{A}(\mu^+ \rightarrow e^+ \gamma)$

After Martin

Students

Afterword

 \square BR $(l_i \rightarrow l_j \gamma)$: (MEG...)

$$BR(l_i \to l_j \gamma) = \frac{48\pi^3 \alpha}{G_F^2} \left(|A_L^{ij}|^2 + |A_R^{ij}|^2 \right) BR(l_i \to l_j \nu_i \bar{\nu}_j)$$

- \Box For seesaw models: $A_L^{ij} \sim \frac{(\Delta m_L^2)_{ij}}{m_{SUSY}^4}, \quad A_R^{ij} \sim \frac{(\Delta m_E^2)_{ij}}{m_{SUSY}^4}$
 - lack type-I-II-III \longrightarrow only A_L
 - lack Left-Right model: In principle both A_L and A_R
 - ◆ Distinguish models: → Positron polarization asymmetry(MEG)

$$\mathcal{A}(\mu^{+} \to e^{+}\gamma) = \frac{|A_{L}|^{2} - |A_{R}|^{2}}{|A_{L}|^{2} + |A_{R}|^{2}} = \begin{cases} 1 & \text{type-I-II-III} \\ \neq 1 & \text{LR} \end{cases}$$

Low-Energy LFV constraints in SUSY seesaw models: type-I,II

Foreword

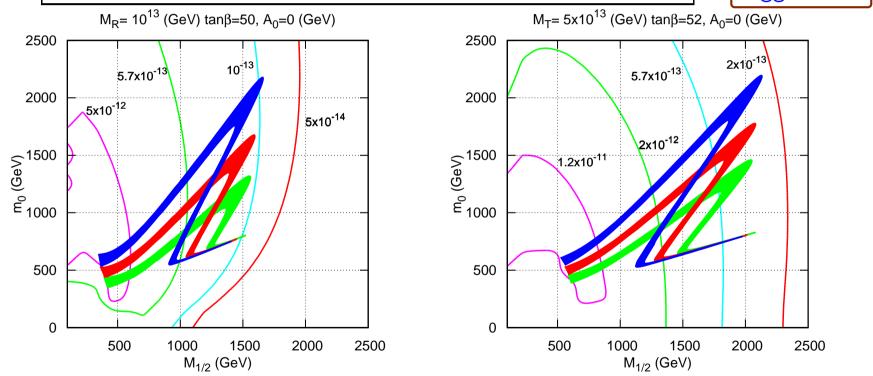
Breaking R-parity

Seesaw Models

- Type-I-II-III
- LR
- Effect on Spectra
- LFV

DM & LFV

After Martin


Students

Afterword

- \square Parameters: SUSY: $\{m_0, M_{1/2}, A_0 = 0, \tan \beta = 10, 52, \operatorname{sign}(\mu) = +\}$
- lacksquare Seesaw: $M_R=10^{13}$ GeV and $M_T=5 imes10^{13}$ GeV
- □ Dark matter region: WMAP (3σ) , $0.081 \le \Omega h^2 \le 0.129$
- SPheno(W.Porod), SARAH(F.Staub)

J.N. Esteves, S. Kaneko, JCR, M. Hirsch, and W. Porod, Phys.Rev.D80,095003,2009

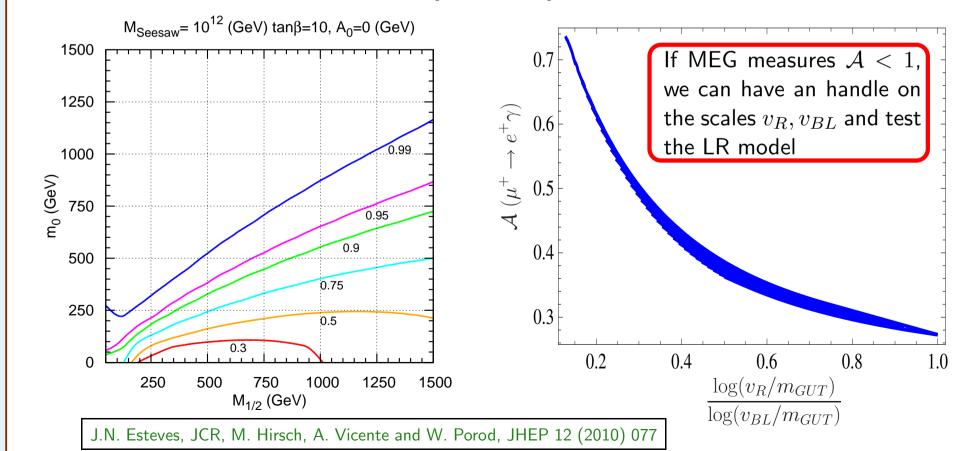
Higgs funnel

- $m_{top} = 169.1 \text{ GeV (blue)}, 171.2 \text{ GeV (red)}, 173.3 \text{ GeV (green)}$
- Superimposed the contour lines for the $Br(\mu \to e\gamma)$. With the present bound of 4.2×10^{-13} most of parameter space shown is excluded

A low-energy observable for Left-Right model: $\mathcal{A}(\mu^+ \to e^+ \gamma)$

Foreword

Breaking R-parity


Seesaw Models

- Type-I-II-III
- LR
- Effect on Spectra
- LFV
- DM & LFV

After Martin

Students

- Positron polarization asymmetry: $\mathcal{A}(\mu^+ \to e^+ \gamma) = \frac{|A_L|^2 |A_R|^2}{|A_L|^2 + |A_R|^2}$
- In seesaw type-I-II-III: $\mathcal{A}(\mu^+ \to e^+ \gamma) = 1$, as $A_R \simeq 0$
- Parameters:
 - SUSY: SPS3 $\{m_0 = 90, M_{1/2} = 400, A_0 = 0, \tan \beta = 10, \operatorname{sign}(\mu) = +\}$
 - LR: $v_{BL} = 10^{15}$ GeV, $v_R \in [10^{14}, 10^{15}]$ GeV, Y_{ν} fit

After Martin: Answering the question Why only 1 Higgs Boson?

Foreword

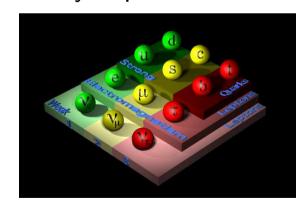
Breaking R-parity

Seesaw Models

After Martin

Multi-Higgs

Students


Afterword

Number of particles with Spin 1

Fixed by the choice of Symmetry Group $SU(3) \times SU(2) \times U(1)$

Properties of the Interactions The strengths of the interactions (forces) are shown relative to the strength of the electromagnetic force for two u quarks separated by the specified distances.				
Property	Gravitational Interaction	Weak Interaction (Electro	Electromagnetic Interaction	Strong Interaction
Acts on:	Mass – Energy	Flavor	Electric Charge	Color Charge
Particles experiencing:	All	Quarks, Leptons	Electrically Charged	Quarks, Gluons
Particles mediating:	Graviton (not yet observed)	W+ W- Z ⁰	γ	Gluons
Strength at $\begin{cases} 10^{-18} \text{ m} \end{cases}$	10 ⁻⁴¹	0.8	1	25
3×10 ⁻¹⁷ m	10 ⁻⁴¹	10-4	1	60

□ Number of Particles with Spin $\frac{1}{2}$ There is no principle. Fixed by experiment

Number of particles with Spin 0
There is no principle. Therefore should be fixed by experiment!

NHDM: Many chalenges

Foreword

Breaking R-parity

Seesaw Models

After Martin

Multi-Higgs

Students

- Theory
 - Perturbative Unitarity
 - Bounded From Below
 - Precision observables
 - CP violation and EDM constraints
 - Contributions to $b \to s\gamma$
 - Many parameters: Symmetry constrained models
 - Dark Matter
 - Flavor changing neutral interactions (FCNI)
 - **•** . . .
- Experiment
 - Confronting LHC data
 - Confronting the new limits on the EDM
 - Checking flavor constraints
 - ♦ ... Also lots of fun in the last 10 years ...

Students and postdocs of the collaboration Valencia-Lisbon

Foreword

Breaking R-parity

Seesaw Models

After Martin

Students

Afterword

These are the students and postdocs that I have shared with Martin:

- Albert Villanova del Moral
- Solveig Skadhauge
- Cyril Hugonie
- João N. Esteves
- Satoru Kaneko
- Thomas Kernreiter
- Avelino Vicente
- Carolina Arbelaez
- Renato M. Fonseca

Afterword

Foreword

Breaking R-parity

Seesaw Models

After Martin

Students

Afterword

- ☐ It has been a lot of fun to work all these years with Martin
- ☐ We have established a very strong link between the Valencia and Lisbon groups, with the exchange of many students.
- I hope that the next years will be as rewarding as the ones that have elapsed.

Thank you Martin

Multi-Higgs 2024 in Lisbon

Foreword

Breaking R-parity

Seesaw Models

After Martin

Students

Afterword

Multi-Higgs Workshops

Jorge C. Romão HirschFest – 23