Light Fermion Dark Matter

Ernest Ma

Physics and Astronomy Department University of California Riverside, CA 92521, USA

Contents

- \bullet SM + B L
- Dark Matter Interactions
- Universal Softly Broken Symmetry
- Freeze-In Dark Matter from Higgs Decay

SM + B - L

Add to the SM under gauge B-L the following: Three $N_R \sim -1$ and one Higgs $\chi \sim 2$.

 $\langle \chi \rangle \neq 0$ breaks SM + B - L to SM, and gives large masses to N_R .

Add now a singlet fermion S and a real singlet scalar σ , both ~ 0 under B-L.

S will be freeze-in light dark matter from SM Higgs decay.

Dark Matter Interactions

After integrating out the heavy χ , the scalar potential of σ and the SM Φ is

$$V = -\mu_0^2 \Phi^{\dagger} \Phi + \frac{1}{2} \lambda_0 (\Phi^{\dagger} \Phi)^2 + \frac{1}{2} m_1^2 \sigma^2 + \frac{1}{6} \mu_1 \sigma^3$$

$$+\frac{1}{24}\lambda_1\sigma^4 + \mu_2\sigma\Phi^{\dagger}\Phi + \frac{1}{2}\lambda_{01}\sigma^2\Phi^{\dagger}\Phi,$$

with
$$\mathcal{L}_S = \frac{1}{2}m_2SS + \frac{1}{2}f\sigma SS + H.c.$$

Universal Softly Broken Symmetry

(arXiv:2311.05859) Consider Z_4 with

$$A_{\mu} \sim 1, \quad \phi \sim -1, \quad \psi_L \sim i, \quad \psi_R \sim -i,$$

then all dim-2 and dim-4 terms of any Lagrangian are invariant under it. As for the dim-3 terms, i.e.

$$\phi^3$$
, $\bar{\psi}_L\psi_R$, $\psi_L\psi_L$, $\psi_R\psi_R$,

they break Z_4 explicitly but softly to Z_2 . Hence their couplings (with dimension of mass) may be naturally

assumed to be small compared to that of the quadratic scalar mass terms.

Spontaneous breaking of Z_4 also occurs from $\langle \phi \rangle \neq 0$. However, this is usually triggered by only the quadratic and quartic scalar terms which are allowed by Z_4 . Hence the dim-3 terms resulting from this breaking are of order the scalar quadratic mass. Nevertheless, it does not affect the claim that the explicit Z_4 breaking terms may be chosen small.

The SM has no dim-3 terms before symmetry breaking, so there are no small mass parameters to be discussed.

Freeze-In Dark Matter from Higgs Decay

Back to S and σ , using Z_4 , it is assumed that the parameters μ_1, μ_2, m_2 are small. With $\mu_0^2, m_1^2 > 0$, the spontaneous breakings of ϕ^0 and σ occur:

$$\langle \phi^0 \rangle = v_0 \simeq \sqrt{\frac{\mu_0^2}{\lambda_0}}, \quad \langle \sigma \rangle = v_1 \simeq \frac{-\mu_2 v_0^2}{m_1^2 + \lambda_{01} v_0^2}.$$

Note the important fact that v_1 is now proportional to the Z_4 breaking μ_2 term, unlike v_0 which is of order the allowed μ_0 term.

The mass of S is now $m_S=fv_1+m_2$ which remains small. Another small parameter appears because of this $Z_4\to Z_2$ breaking, i.e. the mixing between the SM Higgs boson h and the new σ shifted by v_1 .

The square of their masses are $m_h^2=2\lambda_0 v_0^2$, $m_\sigma^2\simeq m_1^2+\lambda_{01}v_0^2$, with mixing

$$\theta_{h\sigma} \simeq \frac{\sqrt{2}\mu_2 v_0}{m_1^2} \simeq \frac{-\sqrt{2}v_1}{v_0},$$

where $m_{\sigma}^2 \simeq m_1^2 >> m_h^2$ has been assumed.

If $m_2 << fv_1$ is also assumed, then the coupling of h to SS is determined to be

$$f_h = f\theta_{h\sigma} \simeq \frac{-\sqrt{2}m_S}{v_0}.$$

The decay rate of $h \to SS + \bar{S}\bar{S}$ is

$$\Gamma_h = \frac{f_h^2 m_h}{8\pi} \sqrt{1 - 4r^2} (1 - 2r^2),$$

where $r=m_S/m_h$. The correct S relic abundance is obtained for $f_h\sim 10^{-12}r^{-1/2}$, implying $m_S\sim 1.2$ keV.

Martin Hirsch = Shirt Rich Man