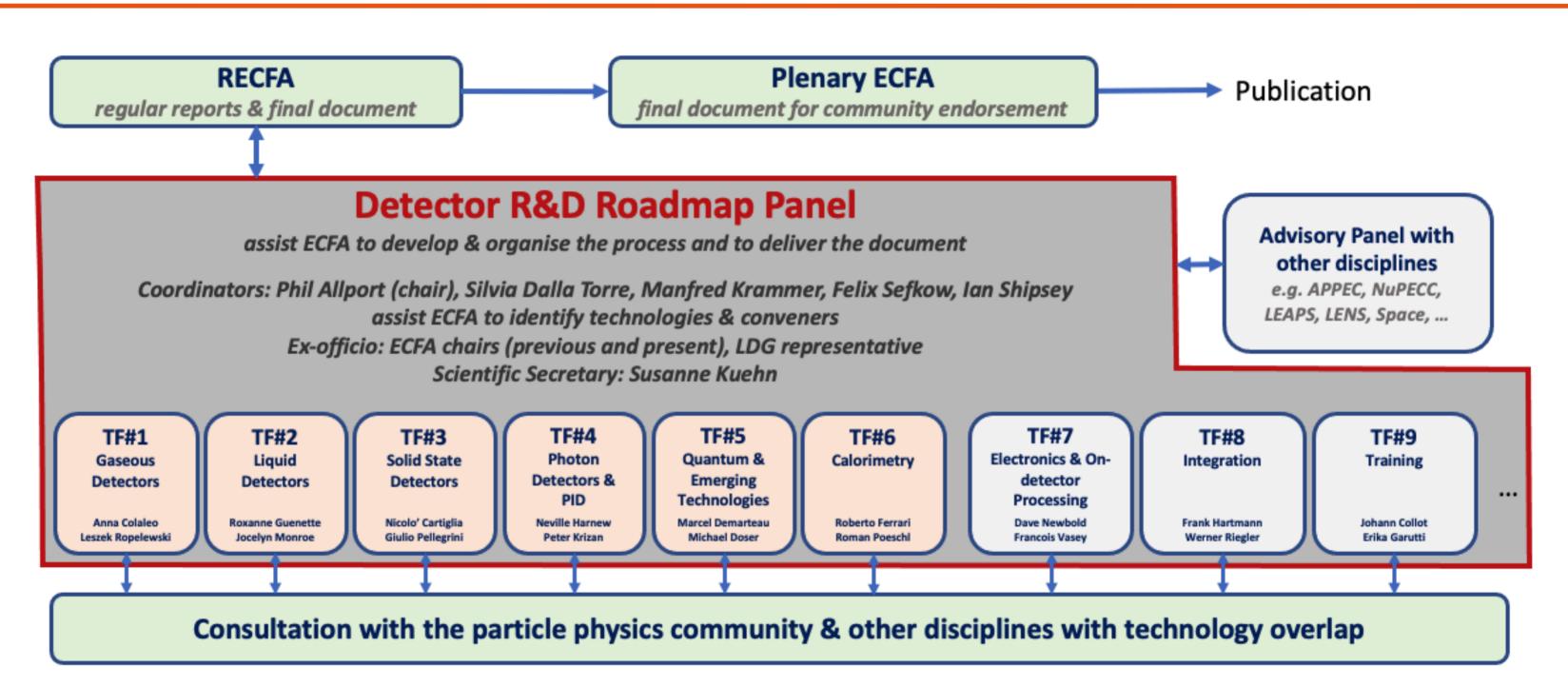
ECFA

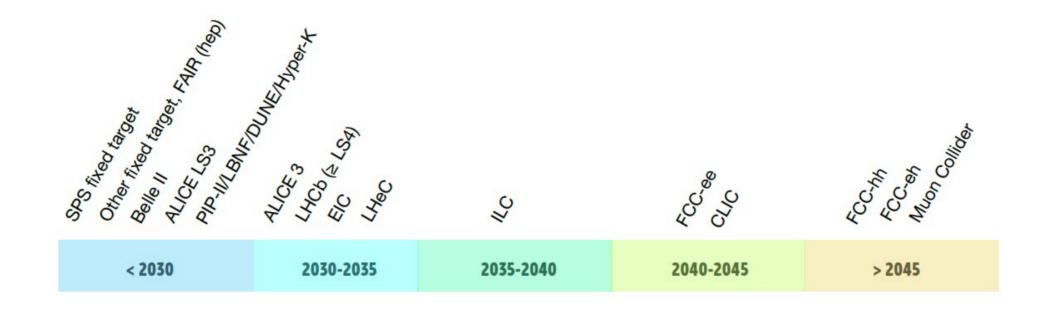


Detector R&D Roadmap Panel

Roadmap document(s)

- ECFA R&D Roadmap
 - CERN-ESU-017
 - 248 pages full text and 8 page synopsis
- Endorsed by ECFA and presented to CERN Council in December 2021

Roadmap identified:

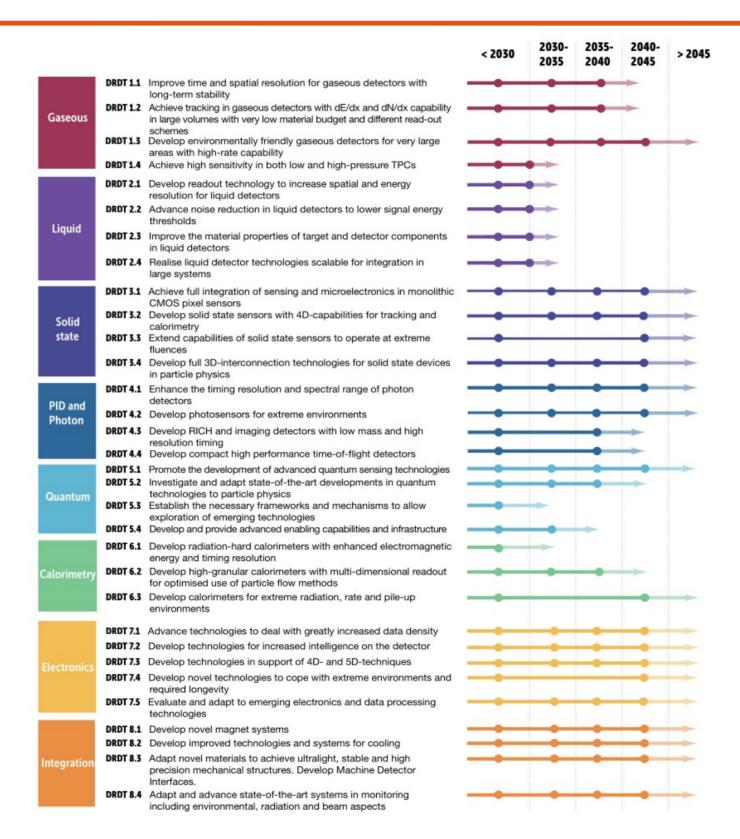

- General Strategic Recommendations (GSRs)
- Detector R&D Themes (DRDTs) per task-force topic
- Concrete R&D Tasks

Timescale of proposed future facilities

Timescale of projects as approved by European Lab Director Group (LDG)

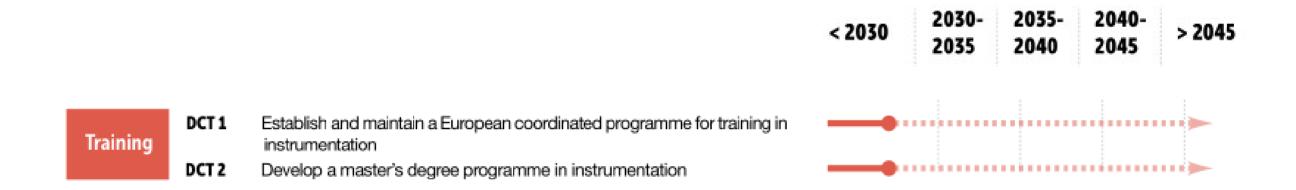
Timescale of proposed future facilities

Timescale of projects as approved by European Lab Director Group (LDG)



guiding principle: project realisation must NOT be delayed by detectors

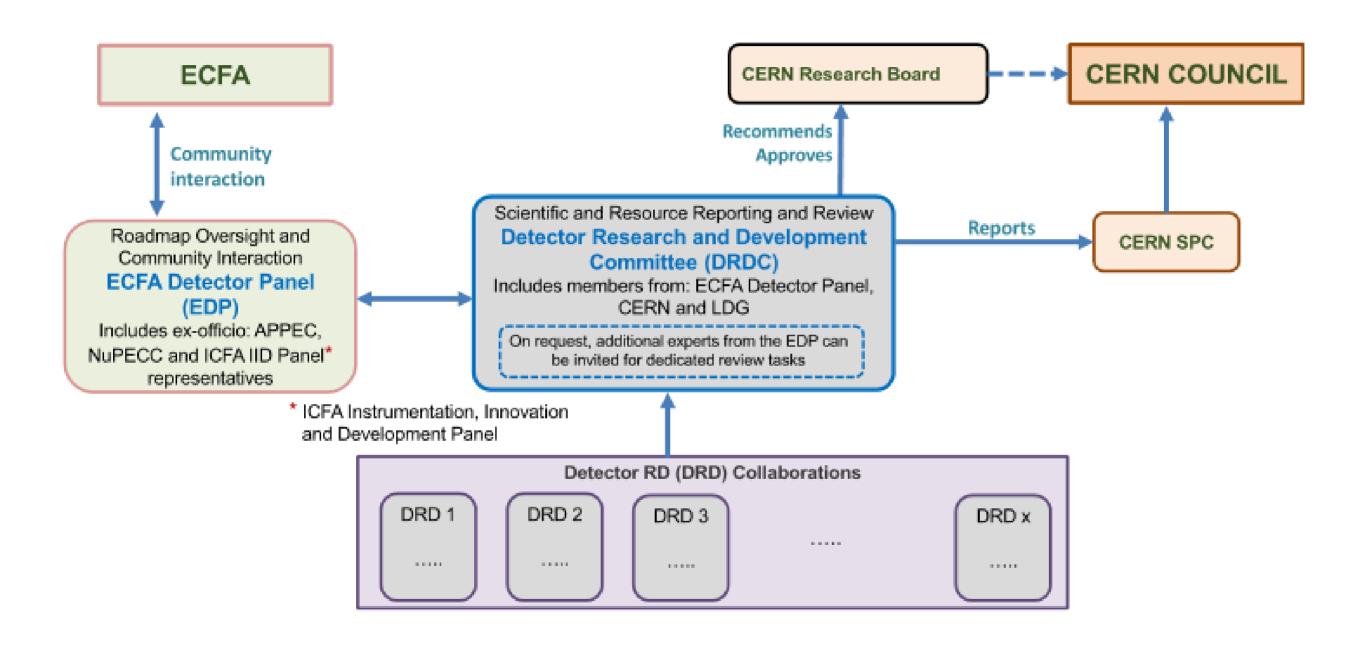
Detector R&D Themes



Detector Community Themes

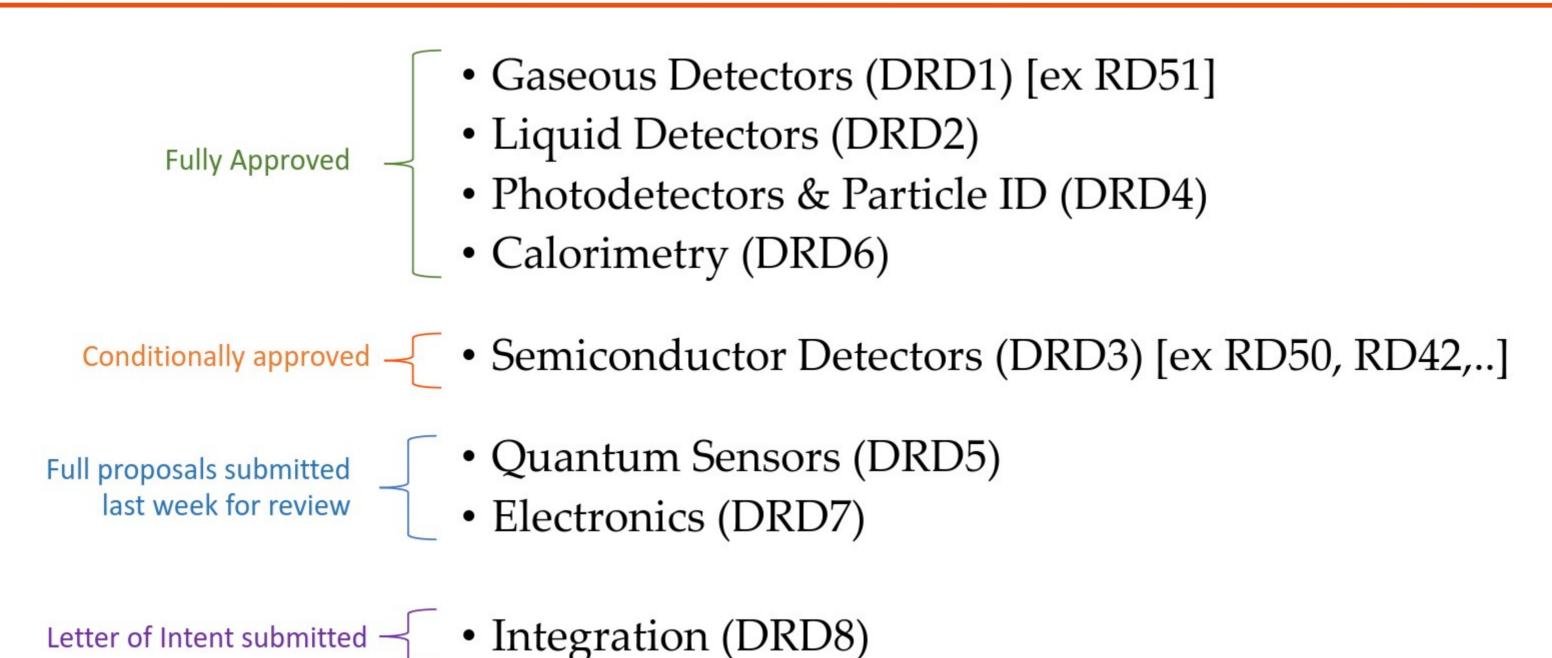
w/ key focus on inclusivity and diversity

Generic Strategic Recommendations



- GSR1- Supporting R&D facilities
- GSR2- Engineering support for detector R&D
- GSR3- Specific software for instrumentation
- GSR4- International coordination and organisation of R&D activities
- GSR5- Distributed R&D activities with centralised facilities
- GSR6- Establish long-term strategic funding programmes
- GSR7- Blue-sky R&D
- GSR 8 Attract, nurture, recognise and sustain the careers of R&D experts
- GSR 9 Industrial partnerships
- GSR 10 Open Science

Implementation



Detector R&D Collaborations

DRD Collaborations

- World-wide collaborations
- Built upon established detector R&D communities (RD50, RD51, Calice, Crystal Clear, ...) as well as (proto-)colloaborations for present or proposed facilities
- As inclusive as possible
- Identify and/or develop synergies → minimise duplications / optimise resource utilisation
- Try to assure that nothing was left or fell out ...
- Huge programme with short-term, middle-term, long-term targets

DRD Collaborations (2)

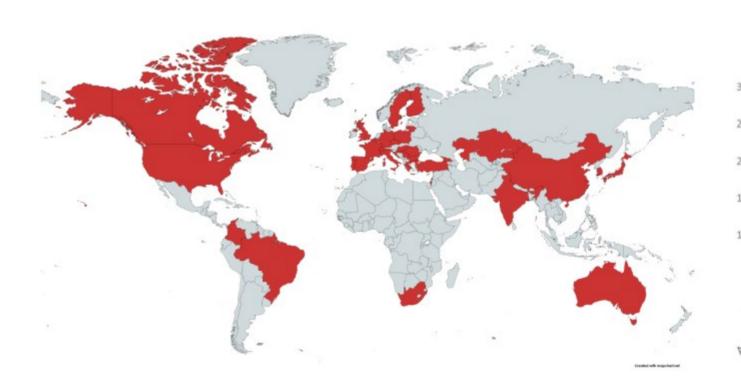
- Community-driven "resource-loaded" Work Packages (WPs) w/ dedicated (independent) funding lines
- Scientific organisation in Working Groups (Wgs): forum for sharing expertise and identifying joint projects
- Common projects (in case): short-term blue-sky R&D or common tool development

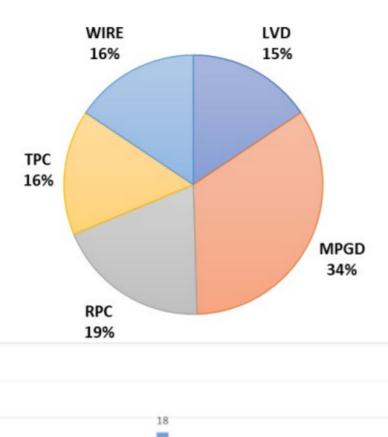
Each DRD independently formed & organised → community-driven process

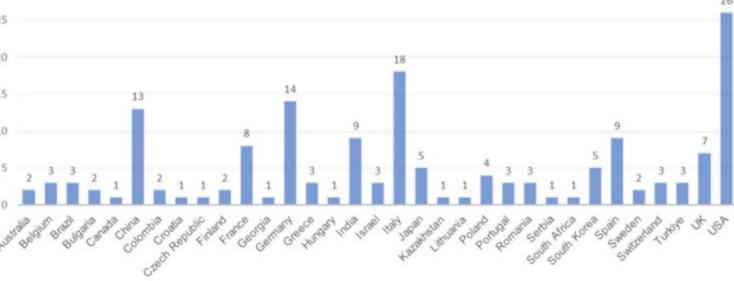
Breakdown

Technology driven → gaseous detectors, liquid detectors, ... but calorimetry

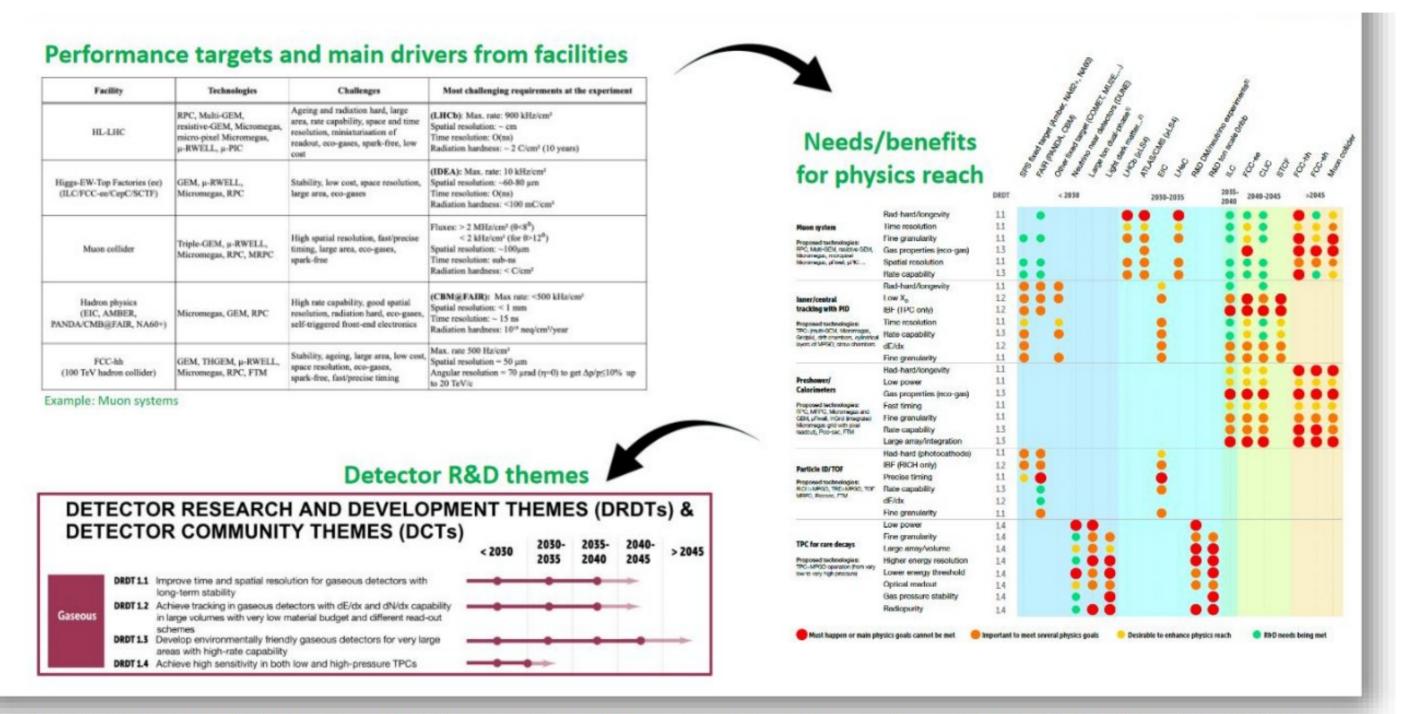
- → calorimeters: big, complex systems with system issues
 - → strong bidirectional relations with other DRDs




DRD1 – Gaseous Detectors

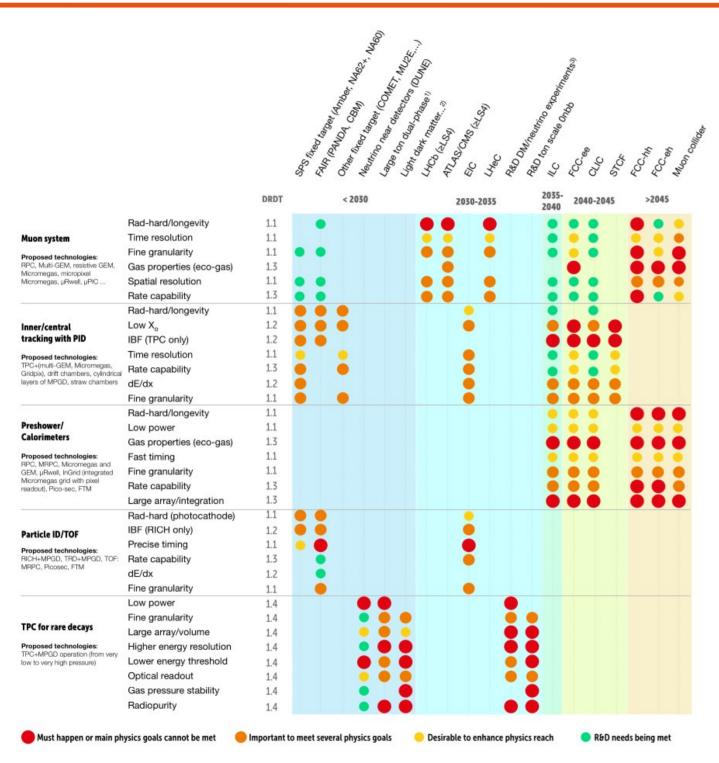

ECFA Gaseous Detectors (DRD1) – Large and diversified community

- 161 Institutes
- 5 Industrial, Semi-Industrial and Research Foundations
- 33 Countries
- More than 700 members



Countries of DRD1 Institutes (today)

ECFA Detector R&D Roadmap (TF1)



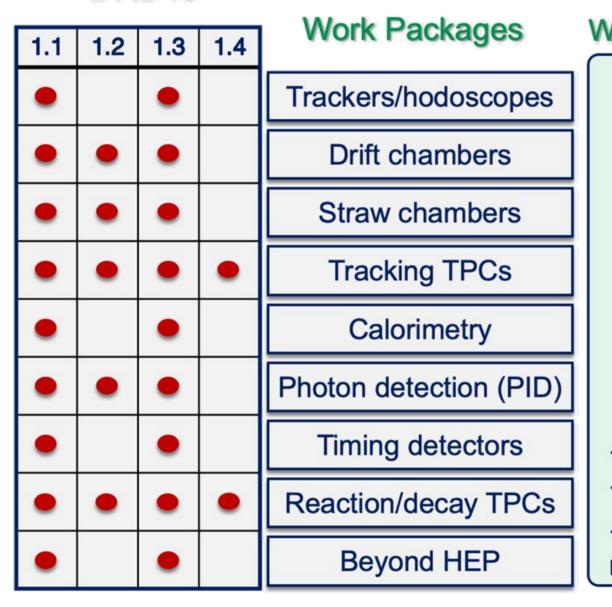
P. Gasik, DRD1 Proposal: Development of Gaseous Detectors Technologies, 1st meeting of the DRDC 4 Dec 2023, CERN

R&D needs

- Most severe needs for hadr. coll.s
 (radiation hardness, rate, granularity, ...)
- •e+e-: IBF (TPC), PID (dE/dx, dN/dx), low X₀
- •Search rare decays → high sensitivity TPCs
- Precise timing for TOF detectors
- •General requirement: ecocompatible gases
- Exploit more and more MPGDs

DRD1 organisation

WG2 WG3 WG4


software

and

Strategic R&D and long-term funding based on Work Packages

DRDTs

Technologies Applications

Gas and material studies

Detector physics, simulations

tools
Electronics for gaseous detectors

Detector production

Common test facilities

WG5 WG6 WG7

WG8

dissemination

and

Training

R&D framework based on Working Groups (scientific organisation)

RD51 (2008-2023) - DRD1 forerunner

Seven working groups (WG) defined through set of tasks. Working-group convenors coordinate R&D tasks of respective working groups

Early list of RD51 Working Group convenors

RD51 – Micropattern Gas Detectors WG1 WG2 WG4 WG7 WG3 WG5 WG6 **New Structures** Detector Modelling of Production and **Common Test** Electronics for Training and Physics and Physics Processes and **Facilities** Dissemination **MPGDs** Industrialisation & Software Tools Technologies Performance Common test Design standards Development of Objectives Organisation of Readout Sharing of optimization common Development dissimination and electronics common of cost-effective software and Characterization training events for optimization and infrastructure Development of and understanding documentation technologies and the MPGD integration with for detector for MPGD new geometries of physical industrialization MPGD detectors characterization community simulations and techniques phenomena in MPGD FE electronics Common Test requirements Large Area Topical Standards Algorithms Common definition **MPGDs** Workshops Production Facility Testbeam General Purpose Discharge Facility Pixel Chip Protection Schools Design Simulation (Eletronics, Optimization Improvements Large Area Simulation, ...) **New Geometries** Ageing & Systems with Fabrication Radiation **Pixel Readout** Industrialization Hardness Academy-Common Platform Industry Development Charging up (Root, Geant4) Portable Multi-Matching of Rad-Hard and Rate Channel System **Events** Detectors Irradiation Capability Facility Collaboration Dissimination Development with **Electronics** Discharge Study of Avalanche of MPGD Industrial Partners of Portable Protection Modeling **Statistics** applications Detectors **Strategies**

DRD1 Working Group tasks

The collaborative structure of DRD1 keeps RD51 structure in Working Groups

Working-group conveners coordinate R&D tasks of the respective working groups. Two coordinators elected through a nomination process, approved by MB and CB

WG 1	WG 2	WG 3	WG 4	WG 5	WG 6	WG 7	WG 8
Technologies	Applications	Gas and material studies	Detector physics, simulations, and software tools	Electronics	Detector production	Common test facilities	Training and dissemination
orge Volume Detectors (Drift chambers, TPCs)	Trackers/Hodoscope	Measurement of Gas Properties	Garfield++	Front-End Electronics for Gaseous Detectors	Common Production Facilities and Equipments	Detector Laboratories Network	Knowledge Exchange and Facilitating Scientific Collaborations
MPGDs	Inner and Cenral Tracking with PID Capabilities: - Drift Chambers - Straw tubes - TPC	Studies on Eco-friendly Mixtures	Simulation of Large Charges and Space Charge	Modernised Readout Systems (DAQ): high performances	QA/QC	Test Beam Common Facilities	Training and Dissemination Initiatives
RPCs, MRPCs	Calorimetry	Ageing and Outgassing studies	Simulation of Detectors with Resistive Elements	Modernised Readout Systems (DAQ); FE Integration	Collaboration with Industrial Partner	Irradiation Common Facilities	Career Promotion
TPC	Photon Detector (PID)	Gas sytems	Modelling and Simualtion of Eco-friendly Mixtures	Modernised Readout Systems (DAQ): portability	Gaseous Detector FORUM (know-how)	Specialized laboratories (outgassing/ageing, gas analysers, photocathodes)	Outreach and Education
Straw tubes, TGC, CSC, drift chambers, and other wire detectors	Timing Detectors (PID & Trigger)	Materials studies: - novel material (nanomaterial) - new material for wire - new converter	Optimization of Simulations (time, hw/sw resources)	Instrumentation (e.g. HV,LV, monitoring)		Common instrumentation and sofware	
New amplifying structures	TPC as reaction and decay chambers	Photocathodes	Specific Proceses (e.g. Electroluminescence)				
	Beyond HEP - Medical Application - Neutron Science - Muography - Space Applicatios - Oher (Dosimetry, Beam Monitoring, Cultural Heritage, Homeland Security,)	Precision Mechanics					

04.12.2023

P. Gasik, DRD1 Proposal: Development of Gaseous Detectors Technologies, 1st meeting of the DRDC 4 Dec 2023, CERN

DRD-1 Working Groups

WG1: Technologies

WG2: Applications

WG3: Gas and material studies

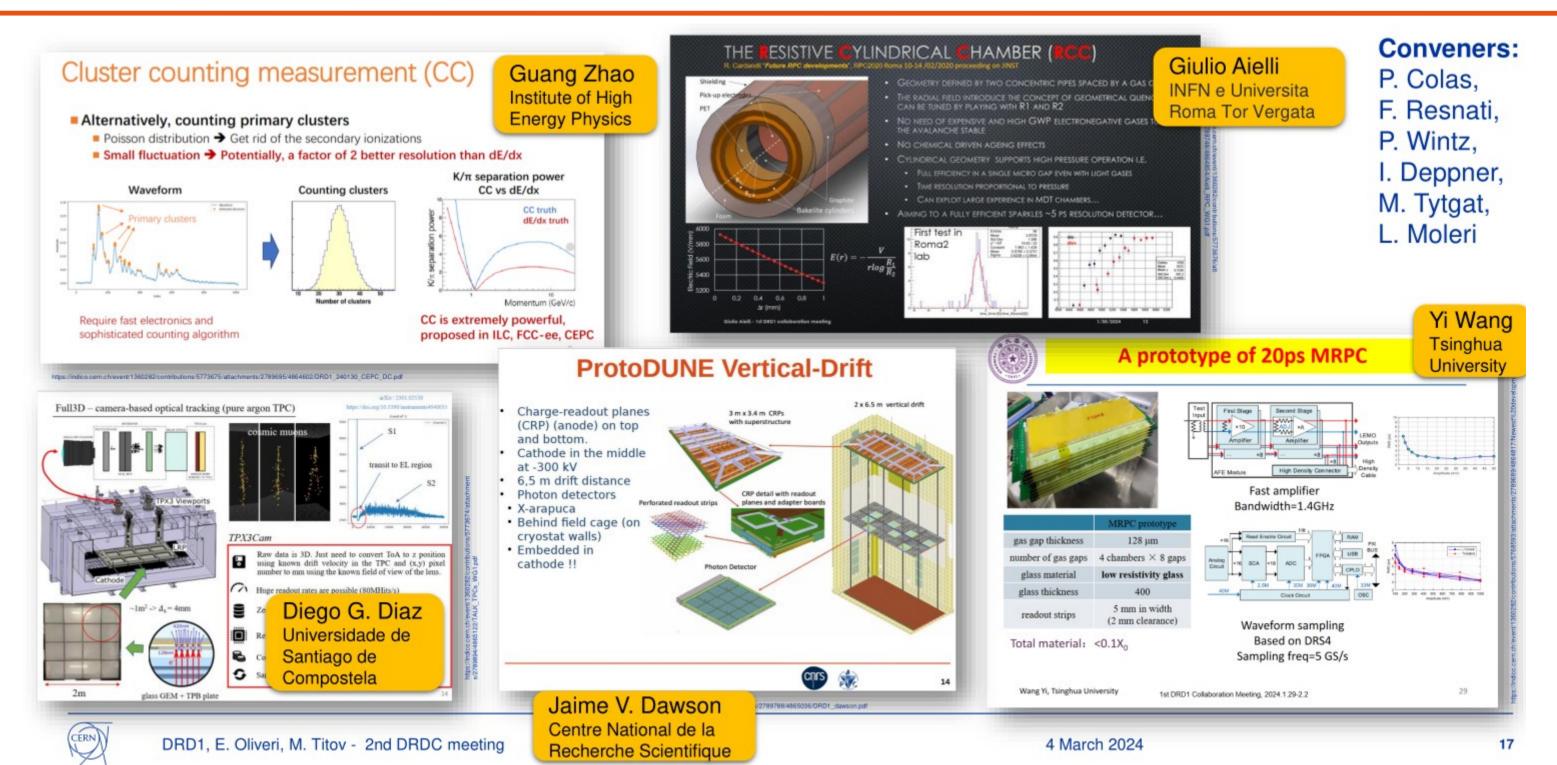
WG4: Detector physics, simulations and sw tools

WG5: Electronics for gaseous detectors

WG6: Detector production

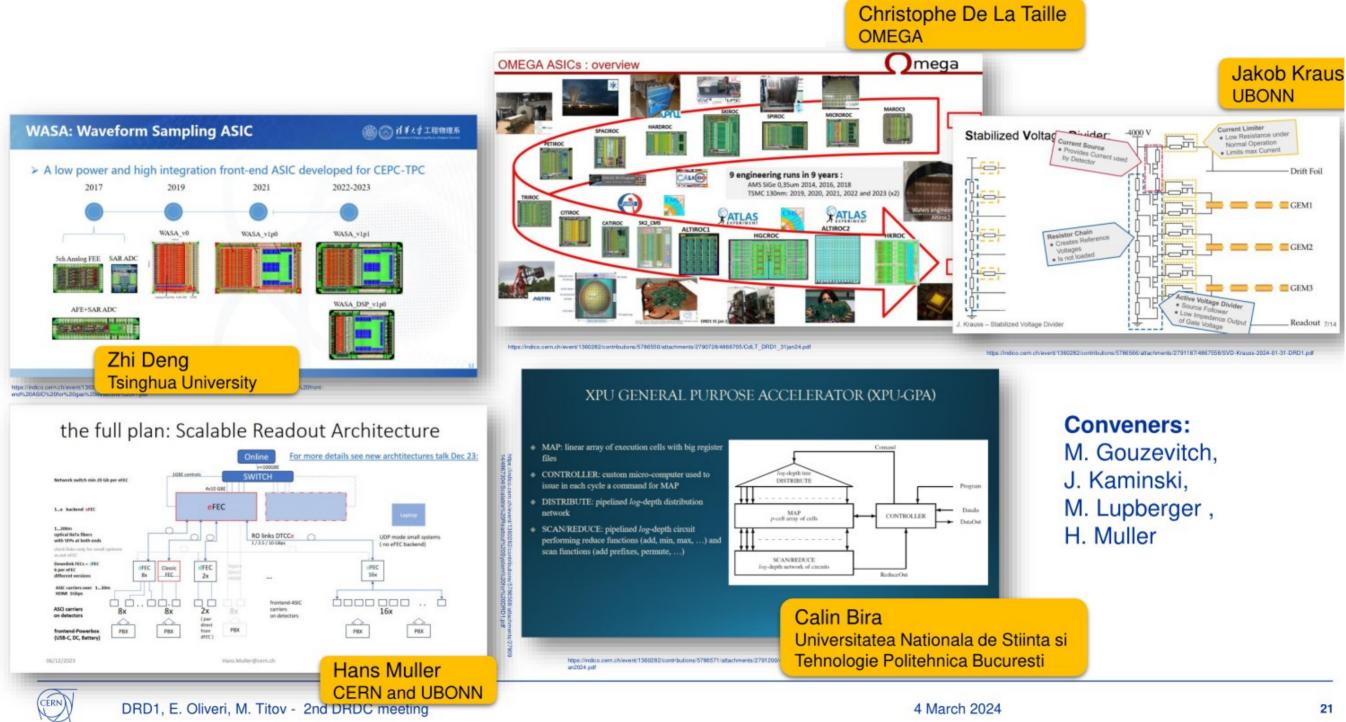
WG7: Common test facilities

WG8: Training and dissemination

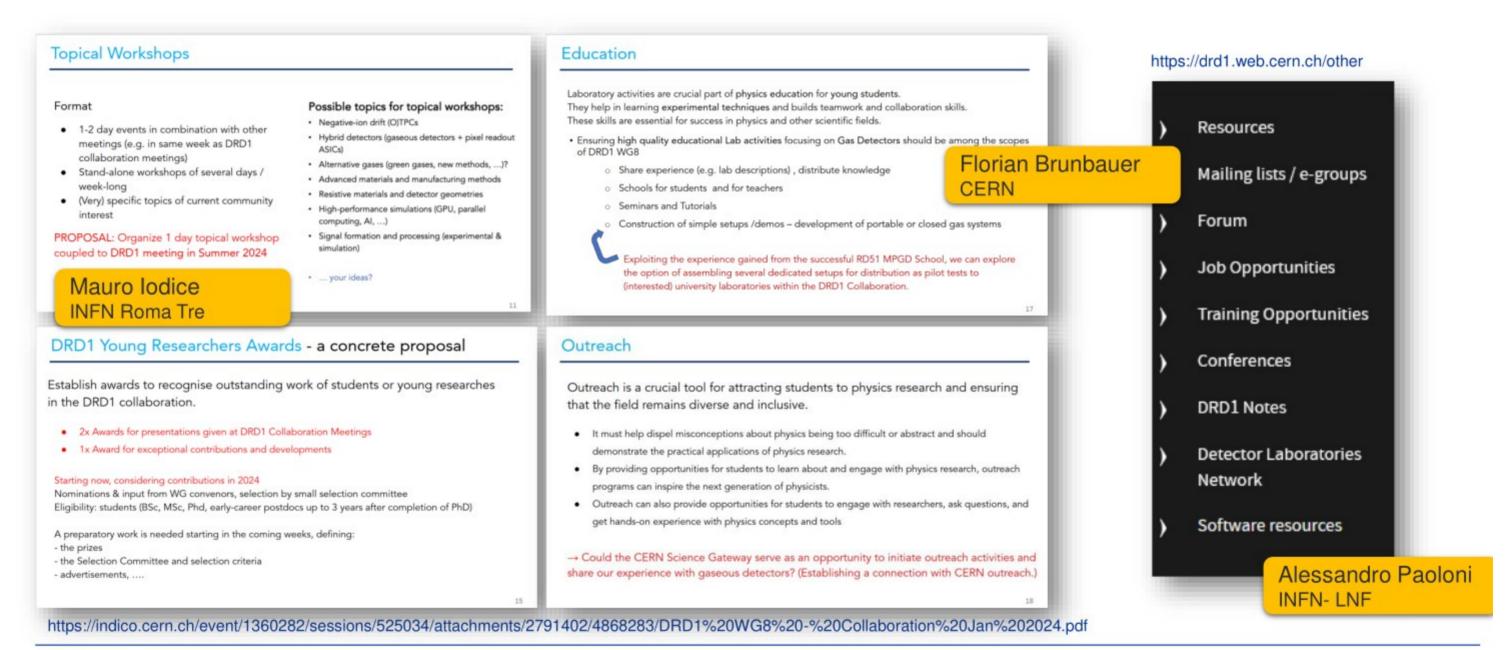

Examples of Working Group activities

(contributions at 1st DRD1 Collaboration Meeting)

WG1 - Technologies



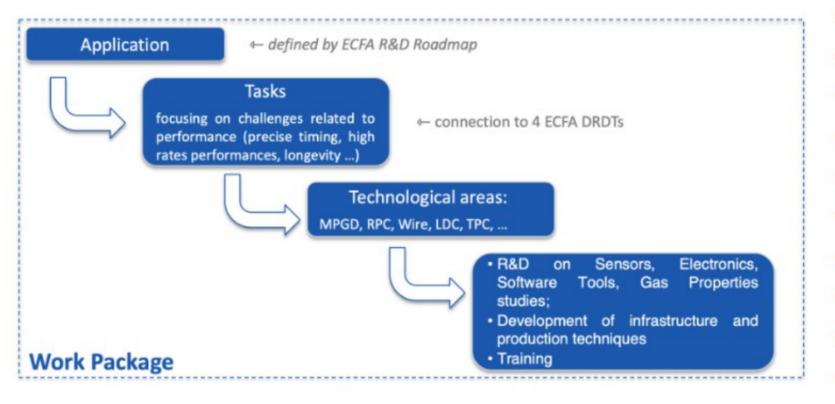
WG5 - Electronics



WG8 - Knowledge Transfer, Training, Career Promotion

Conveners: F. Brunbauer, M. Iodice, E. Baracchini, B. Liberti, A Paoloni

4 March 2024



Work Packages

Strategic R&D (according to the ECFA Detector R&D Roadmap) is organized in Work Packages

group activities of the Institutes with shared research interests around Applications with a focus on a specific task(s) devoted
to a specific DRDT challenge, typically related to specific Detector Technologies and to the development of specific tools or
infrastructure

Currently envisaged WPs:

- WP1: Trackers/hodoscopes
- · WP2: Drift chambers
- WP3: Straw chambers
- WP4: Tracking TPCs
- WP5: Calorimetry
- WP6: Photo-detectors
- WP7: Timing
- WP8: Reaction/Decay TPCs
- WP9: Beyond HEP

· There is no obligation to participate in a WP to be a member of DRD1.

P. Gasik, DRD1 Proposal: Development of Gaseous Detectors Technologies, 1st meeting of the DRDC 4 Dec 2023, CERN

Examples of Work Packages and interplay/synergies with Working Group activities

WP1: Trackers/hodoscopes

WP1: Genuine trackers/hodoscopes (large area muon systems,

inner tracking/vertexing)

https://drd1.web.cern.ch/wp/wp1

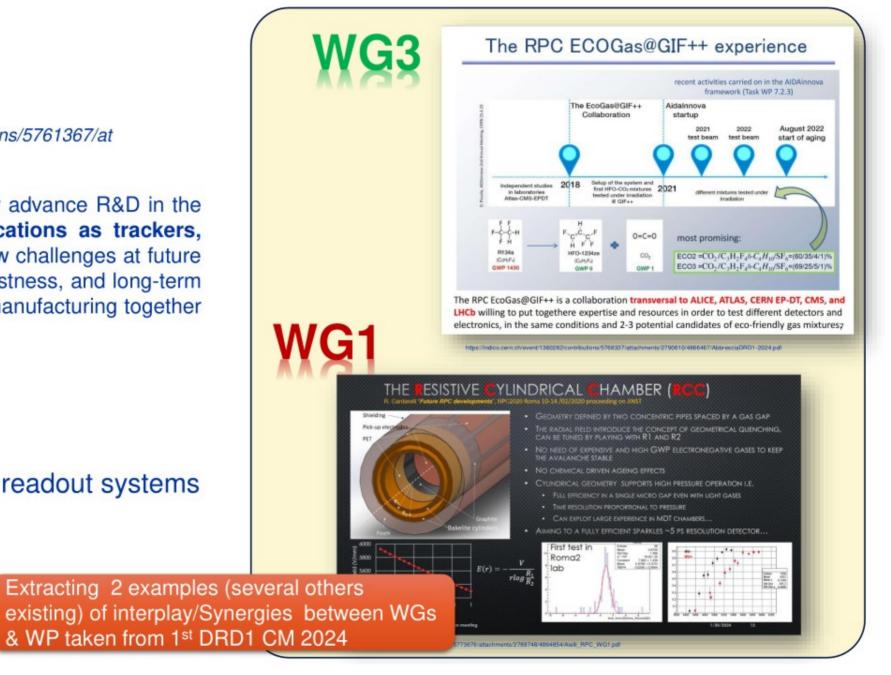
StatusUpdate:https://indico.cern.ch/event/1360282/contributions/5761367/at tachments/2789107/4863480/DRD1_WP1_29Jan2024_v1.pdf

The primary objective of the project is to strategically advance R&D in the domain of resistive gaseous detectors for applications as trackers, hodoscopes, and large-area muon systems for new challenges at future facilities. The goal is to strengthen their stability, robustness, and long-term performance, as well as to optimize a cost-effective manufacturing together with industrial partners.

T1: New RPC Structures

T2: New Resistive MPGD Structures

T3: New Front-end electronics


T4: Optimization of scalable multichannel readout systems

T5: Eco-friendly gases

T6: Manufacturing

T7: Longevity on large detector areas

T8: New detector structures

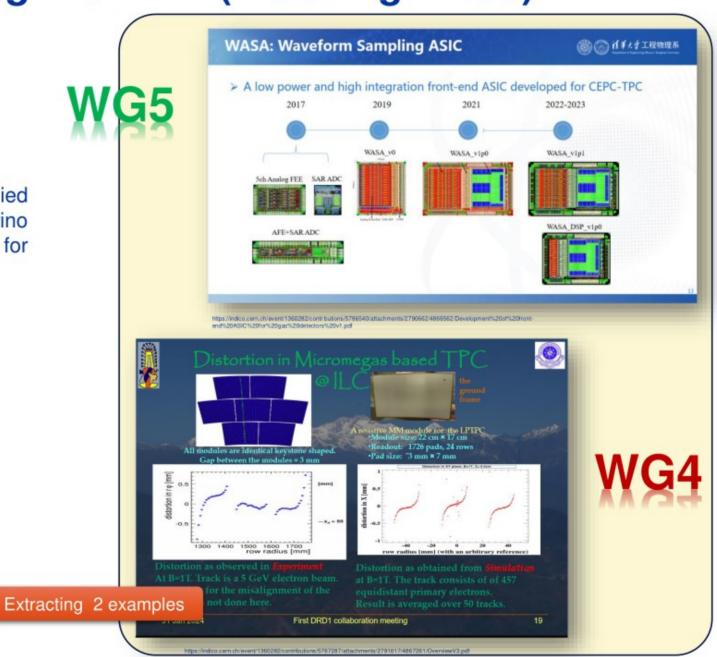
WP4: Tracking TPCs

WP4: Inner and central tracking with PID (Tracking TPCs)

https://drd1.web.cern.ch/wp/wp4

StatusUpdate:https://indico.cern.ch/event/1360282/contributions/5761372/attachments/2789303/4863818/WP4_presentation.pdf

Time Projection Chambers (TPCs) have been extensively studied and used in many fields especially in particle, nuclear and neutrino physics experiments. Also smaller size TPCs are a good choice for beam diagnostics operating in high particle rate environments.


T1: IBF reduction

T2: pixel TPC development

T3: Optimization of the amplification stage and its mechanical structure, and development of low X/X0 field cages

T4: FEE for TPCs

T5: Gas mixture

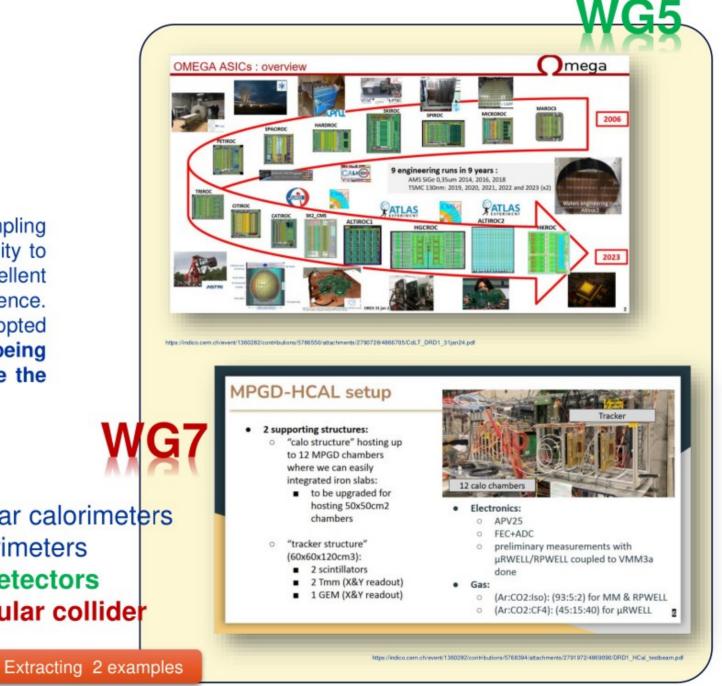
WP5: Calorimetry

WP5: Calorimetry

https://drd1.web.cern.ch/wp/wp5

StatusUpdate:https://indico.cern.ch/event/1360282/contributions/5761374/attachments/2789352/4864124/WP5_kick-off.pdf

Gaseous detectors have been playing an important role in sampling calorimeters since the birth of this kind of instruments. The possibility to produce large area detectors at affordable cost but still with excellent efficiency and high spatial precision make of them a choice of reference. Although many sampling calorimeters of the LHC experiments have opted for scintillators-based active media, gaseous detectors are being proposed again to equip future sampling calorimeters that use the Particle Flow Algorithm (PFA) concept.


T1 : Construction of large gaseous detectors for granular calorimeters

T2 : Timing performance of gaseous detectors for calorimeters

T3: Readout electronics for calorimeter gaseous detectors

T4: High-rate capability gaseous detectors for circular collider

calorimeters

Some challenges for tracking ...

Drift chambers:

- high rate, unique volume, high granularity, low mass
- hydrocarbon-free gas mixture for long-term and high-rate operation
- prove cluster-counting principle
- wiring procedure, wire materials
- integration: accessibility for repairing

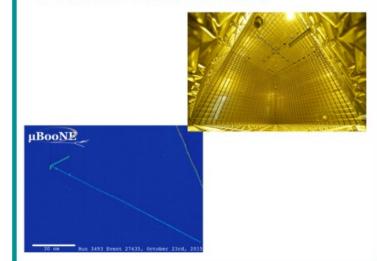
TPCs:

- R&D on detector sensor to suppress IBF ratio
- optimise IBF & energy resolution
- gain optimisation
- response uniformity
- gas mixture: stability, drift velocity, ion mobility, ageing
- influence of magnetic field on IBF
- high spatial resolution
- very low material budget (few %) but robust and stable mechanics
- integration: cooling

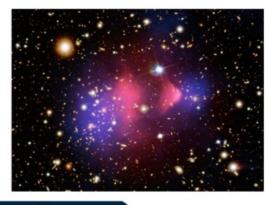
Main drivers for muon systems

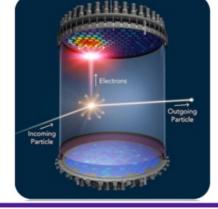
Facility	Technologies	Challenges	Most challenging requirements at the experiment
HL-LHC	RPC, Multi-GEM, resistive-GEM, Micromegas, micro-pixel Micromegas, μ-RWELL, μ-PIC	Ageing and radiation hard, large area, rate capability, space and time resolution, miniaturisation of readout, eco-gases, spark-free, low cost	(LHCb): Max. rate: 900 kHz/cm ² Spatial resolution: ~ cm Time resolution: O(ns) Radiation hardness: ~ 2 C/cm ² (10 years)
Higgs-EW-Top Factories (ee) (ILC/FCC-ee/CepC/SCTF)	GEM, μ-RWELL, Micromegas, RPC	Stability, low cost, space resolution, large area, eco-gases	(IDEA): Max. rate: 10 kHz/cm ² Spatial resolution: ~60-80 μm Time resolution: O(ns) Radiation hardness: <100 mC/cm ²
Muon collider	Triple-GEM, μ-RWELL, Micromegas, RPC, MRPC	High spatial resolution, fast/precise timing, large area, eco-gases, spark-free	Fluxes: > 2 MHz/cm ² (θ<8 ⁰) < 2 kHz/cm ² (for θ>12 ⁰) Spatial resolution: ~100μm Time resolution: sub-ns Radiation hardness: < C/cm ²
Hadron physics (EIC, AMBER, PANDA/CMB@FAIR, NA60+)	Micromegas, GEM, RPC	High rate capability, good spatial resolution, radiation hard, eco-gases, self-triggered front-end electronics	(CBM@FAIR): Max rate: <500 kHz/cm ² Spatial resolution: < 1 mm Time resolution: ~ 15 ns Radiation hardness: 10 ¹³ neq/cm ² /year
FCC-hh (100 TeV hadron collider)	GEM, THGEM, μ-RWELL, Micromegas, RPC, FTM	Stability, ageing, large area, low cost, space resolution, eco-gases, spark-free, fast/precise timing	Max. rate 500 Hz/cm ² Spatial resolution = 50 μ m Angular resolution = 70 μ rad (η =0) to get $\Delta p/p \le 10\%$ up to 20 TeV/c

DRD2 – Liquid Detectors

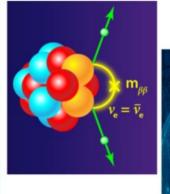


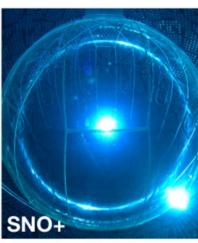
Liquid Detectors – scientific landscape


Neutrinos


- Oscillation precision measurements (δ_{CP}, mass ordering, θ₂₃ octant, sterile vs)
- Neutrino interactions (from CEvNS to DIS)
- Astro neutrinos

Dark Matter


Direct detection
 (WIMPs, ...)



<u>Ονββ</u>

 Search for Majorana neutrinos

Liquid Detectors – scientific requirements

Neutrinos

- thresholds down to ~1MeV to enhance oscillation physics, supernovae vs study, to enable solar vs ...
- Unambiguous readout

Scalability

Dark Matter

- Push Energy
 thresholds down to
 1 meV/10 eV/1 keV
 to enable low mass
 DM/1 GeV DM/
 WIMPs.
- Reduce background rates

Scalability

<u>Ονββ</u>

Improve Energy Resolution to sub-% FWHM

· Reduce background rates

· Scalability

J

Liquid Detectors – current ecosystem

Neutrinos

- Current generation:
 - ✓ MicroBooNE & SBN
 - **√** LArIAT
 - ✓ protoDUNEs
 - **✓ CAPTAIN**
 - **✓ COHERENT**
 - √ Borexino
 - **√**SK
 - ✓ Antares
 - ✓ KM3Net
- Future generation:
- **✓DUNE** modules 1 & 2
- **✓DUNE** near detectors
- ✓ DUNE modules 3 & 4
- **√HK**
- ✓Future neutrino telescopes

Dark Matter

- Current generation:
- √LUX/LZ
- ✓ XENON 10/100/1T/nT
- ✓ Dark Side 50/20k
- ✓ DEAP-3600
- ✓ Panda-X

- Future generation:
 - **√XLZD**
 - ✓GADMC/Argo
 - **√**HeRALD
- **√SBC**

0νββ

- Current generation:
 - ✓ EXO-200
 - ✓ KamLand-Zen
 - √SNO+

- n: Future generation:
 - **√**nEXO
 - ✓KL-Z+
 - ✓ Upgrades to SNO+

4

R&D Roadmap for Liquid Detectors (DRD2)

DRDT 2.1 Develop readout technology to increase spatial and energy resolution for liquid detectors

DRDT 2.2 Advance noise reduction in liquid detectors to lower signal energy thresholds

DRDT 2.3 Improve the material properties of target and detector components in liquid detectors

DRDT 2.4 Realise liquid detector technologies scalable for integration in large systems

Higher energy resolution

Lower energy threshold Expand wavelength

dE/dx (combine modalities: charge, light, heat, acoustics)

sensitivity

(87 - 290K)

Low power

High pressure

Detector services (e.g. cryogenics) and integration

Large arrays (sensors)

and background mitigation

Fine granularity

Readout

Measure-


Target

properties

challenges

Many very hard channels: light dark matter & CNB detectors!

Liquid Detectors – proposed structure

Work Packages, Tasks & Drafting Team Leaders

- Coordinators: Roxanne Guenette & Jocelyn Monroe
- Proposal Work Package Writing leads:

Charge Readout Conveners

Pixels & charge+light
Group leaders

J. Asaadi (US) & E.Gramellini(UK)

Charge-to-light,
electroluminescence
& amplification
Group leaders

A. Deisting (DE) & K. Mavrokoridis (UK)

Ion detection Group leaders

No current representation, but topic to consider for future

Light Readout Conveners

Increased sensor quantum efficiency Group leaders

J. Monroe(UK), F. Retiere (CA) & P. Agnes(IT)

Higher efficiency
WLS and collection
Group leaders

C. Cuesta (ES), M. Kuzniak (PO) & J. Martin-Albo (ES) Improved sensors

for LS & WC Group leaders

M. Bongrand (FR) &

T. Lachenmaier (DE)
Entirely covered by DRD4,
serves as liaison

Target Properties Conveners

Target properties and isotope loading of LS & WC

S. Schopmann (DE), H.Steiger (DE) & M. Wurm(DE)

Target properties and isotope loading of noble elements Group leaders

C. Franco (FR), M.C. Piro (CA), A. Szelc(UK) & A. Zani (IT)

Scaling-up Challenges Conveners

Radiopurity & background mitigation

Group leaders

J. Dobson (UK) & R. Santorelli (ES)

Detector and target procurement/production & purification
Group leaders

W. Bonivento (IT) & Y. Meh (US)

Large-area readouts
Group leaders

J. Crespo (ES) & G. Fiorillo (IT)

Material properties

Group leaders

No current representation, but topic to consider for future

WP2 – Light Readout

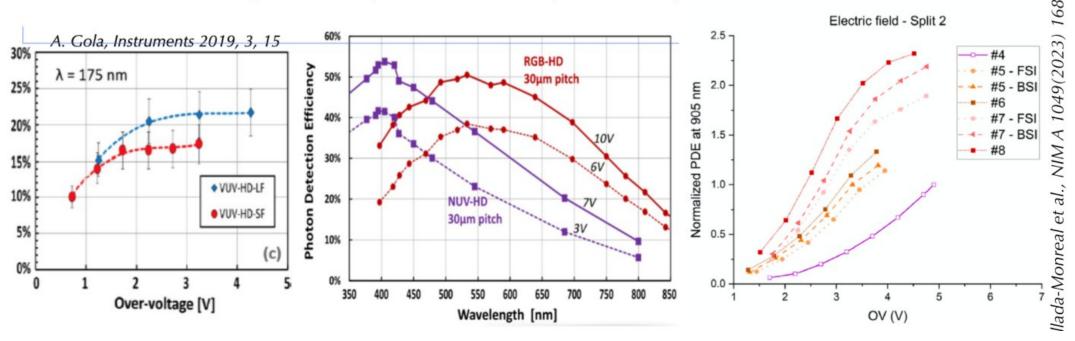
Liquid Detectors WP2 - Light Readout

O(0.1-10) kT experiments are, and are planned, to use liquid noble targets which scintillate in the VUV wavelength range (Ar, He, Xe)

Aim: photon readouts reaching O(100 m²), cryogenic temperature
 Conventional strategy: either accept photon detection efficiency << in visible range, or, wavelength shift using thin films with ~isotropic emission

 Key challenges: decrease reflectivity, increase collection efficiency, increase quantum efficiency

Exploration of new materials, i.e. better wavelength shifters, light traps with dichroic filters, coatings optimised for range of angles of incidence, metalenses, and new processes (i.e. BSI-SPAD + passivation)

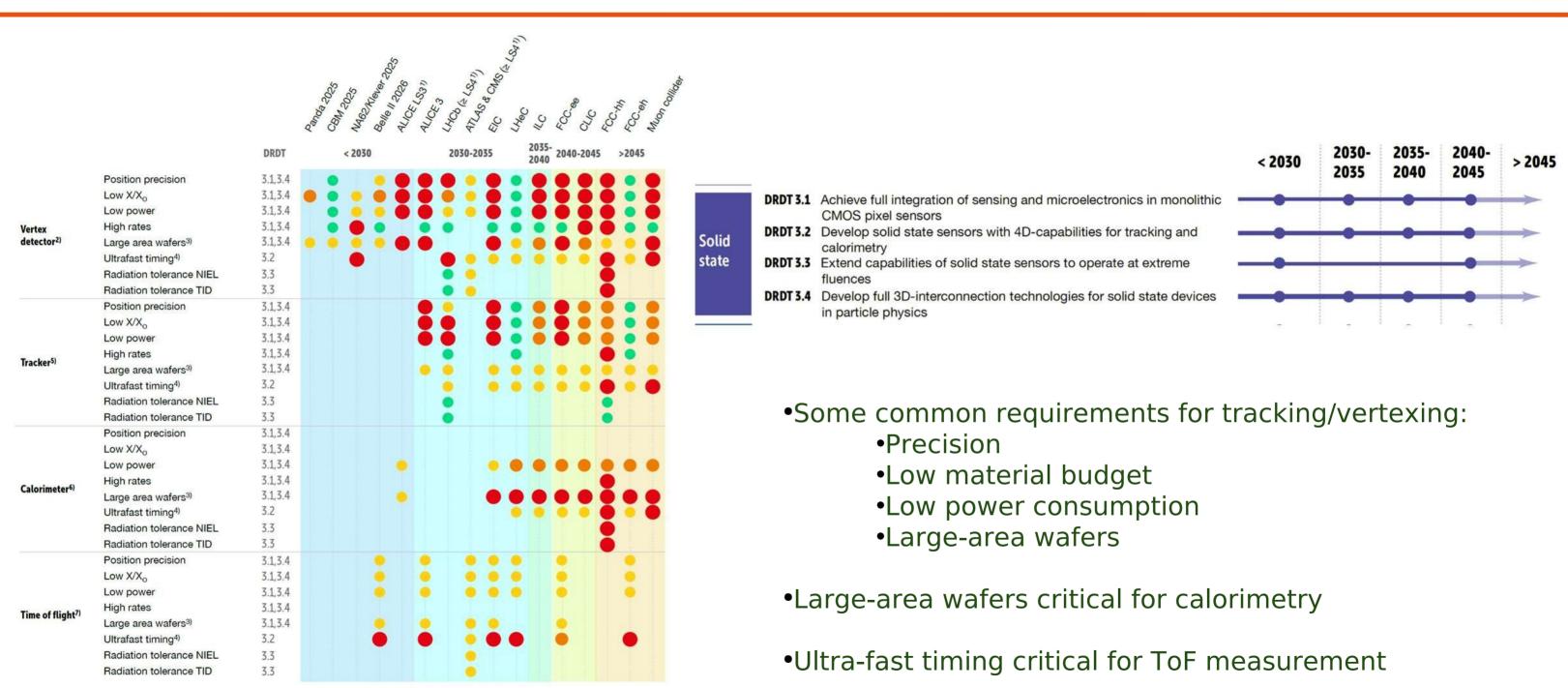


Increased sensor quantum efficiency Group leaders

Higher efficiency
WLS and collection
Group leaders

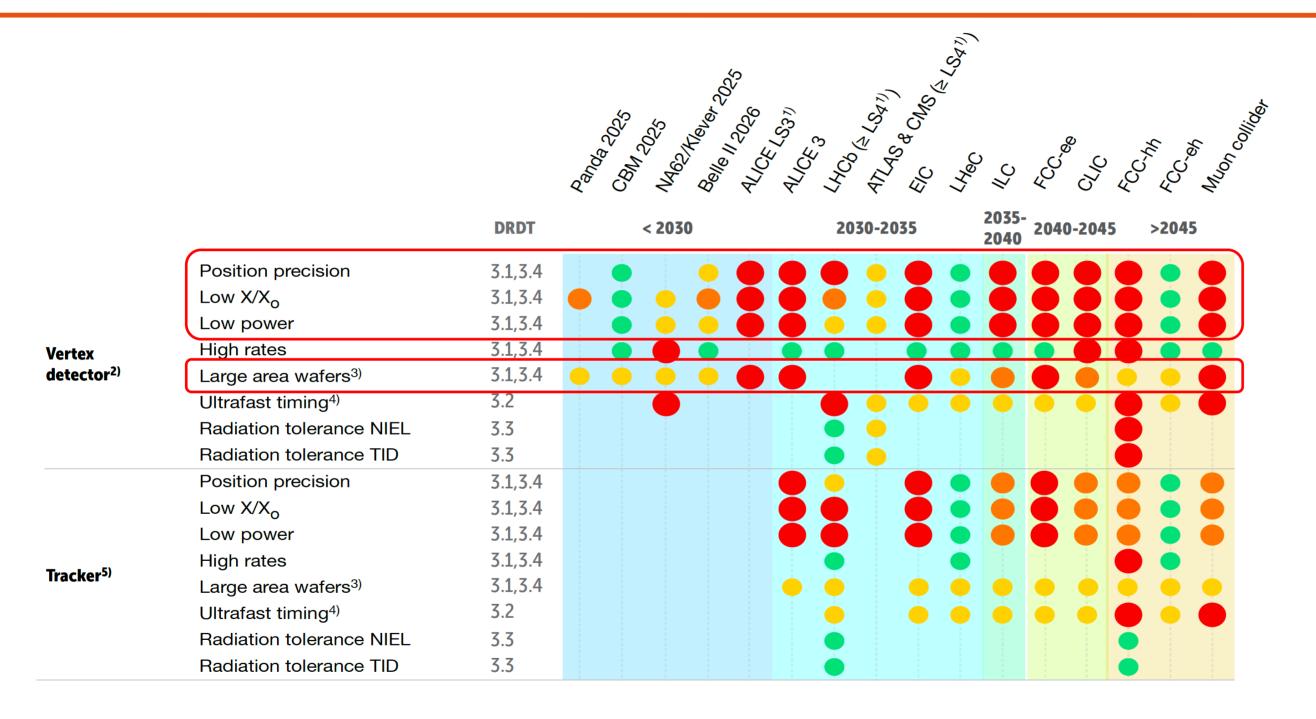
Improved sensors for LS & WC Group leaders

DRD4


DRD3 – Semiconductor Detectors

🕽 Must happen or main physics goals cannot be met 🛑 Important to meet several physics goals 👴 Desirable to enhance physics reach 🔵 R&D needs being met

Semiconductor Detectors (DRD3) – R&D needs

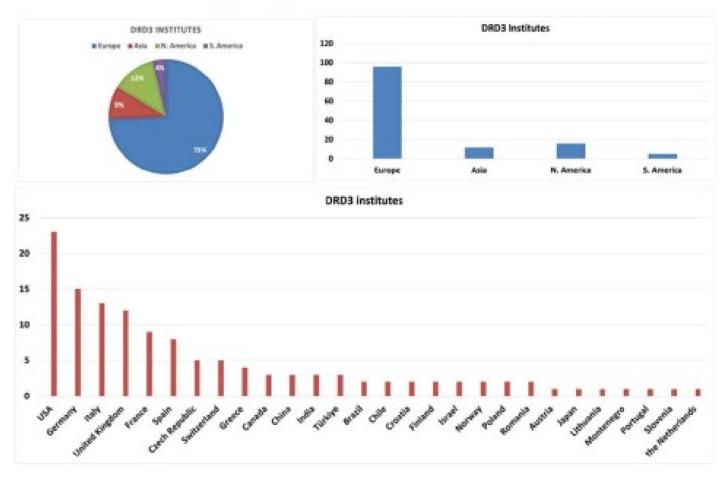


Semiconductor Detectors (DRD3) – R&D needs

Vertex Detector and Tracker – Requirements

"Technical" Start Date of Facility (This means, where the dates are not known, the earliest technically feasible start date is indicated - such that detector R&D readiness is not			- 2020			2030-2035				2035 - 2040	2040-2045		> 2045						
	the delaying factor)			Panda 2025	CBM 2025	NA62/Klever 2025	Belle II 2026	AUCE LS3 1)	ALICE 3	LHCb (≳LS4) ¹⁾	ATLAS/CMS (≥ LS4) ¹⁾	EIC	инес	ILC 2)	FCC-ee	CUC ²⁾	FCC-hh	FCC-eh	Muon Collider
			Position precision σ _{hit} (μm)		≃ 5		≲ 5	≃ 3	≲3	≲ 10	≲15	≲3	≃ 5	≲3	≲3	≲3	≃ 7	≃ 5	≲ 5
l		DRDT 3.1 DRDT 3.4	X/X _o (%/layer)	≲ 0.1	≃ 0.5	≃ 0.5	≲ 0.1	≃ 0.05	≃ 0.0 5	≃ 1		≃ 0.05	≲ 0.1	≃ 0.05	≃ 0.05	≲ 0.2	≃ 1	≲ 0.1	≲0.2
E.	CMOS		Power (mW/cm²)		≃ 60			≃ 20	≃ 20			≃ 20		≃ 20	≃ 20	≃ 50			
Vertex Detector ³⁾	MAPS Planar/3D/Passive C LGADs	0 0	Rates (GHz/cm²)	25	≃ 0.1	≃ 1	≲ 0.1		≲ 0.1	≃ 6		≲ 0.1	≃ 0.1	≃ 0.05	≃ 0.05	≃ 5	≃ 30	≃ 0.1	
ertex D			Wafers area (") ⁴⁾					12	12			12			12		12		12
Š		DRDT 3.2	Timing precision σ _t (ns) ⁵⁾	10		≲ 0.05	100		25	≲ 0.05	≲ 0.05	25	25	500	25	≃ 5	≲ 0.02	25	≲0.02
		DRDT3.3	Radiation tolerance NIEL (x 10 ¹⁶ neq/cm ²)							≃ 6	≃ 2						≃ 10 ²		
			Radiation tolerance TID (Grad)							~ 1	≃ 0.5						≃ 30		
		LGADs DRDT 3.1	Position precision σ_{hit} (μm)						≃ 6	≃ 5		≃ 6	≃ 6	≃ 6	≃ 6	≃ 7	≃ 10	≃ 6	
l			X/X _o (%/layer)						≃ 1	≃ 1		≃ 1	≃ 1	≃ 1	≃ 1	≃ 1	≲2	≃ 1	
l	MAPS Planar/3D/Passive CMOS LGADs		Power (mW/cm²)						≲100	≈ 100		≲ 100		≲ 100	≲ 100	≲ 150			
Tracker ⁶⁾			Rates (GHz/cm²)							≃ 0.16									
Trac			Wafers area (") ⁴⁾						12			12		12	12	12	12		12
		DRDT 3.2	Timing precision σ _t (ns) ⁵⁾						25	≲ 25		25	25	≲ 0.1	≲0.1	≲ 0.1	≲ 0.02	25	≲0.02
		DRDT3.3	Radiation tolerance NIEL (x 10 ¹⁶ neq/cm ²)	w 20						≃ 0.3			8				≲1		
		DRD	Radiation tolerance TID (Grad)				-		3 V	≈ 0.25							≅ 1		

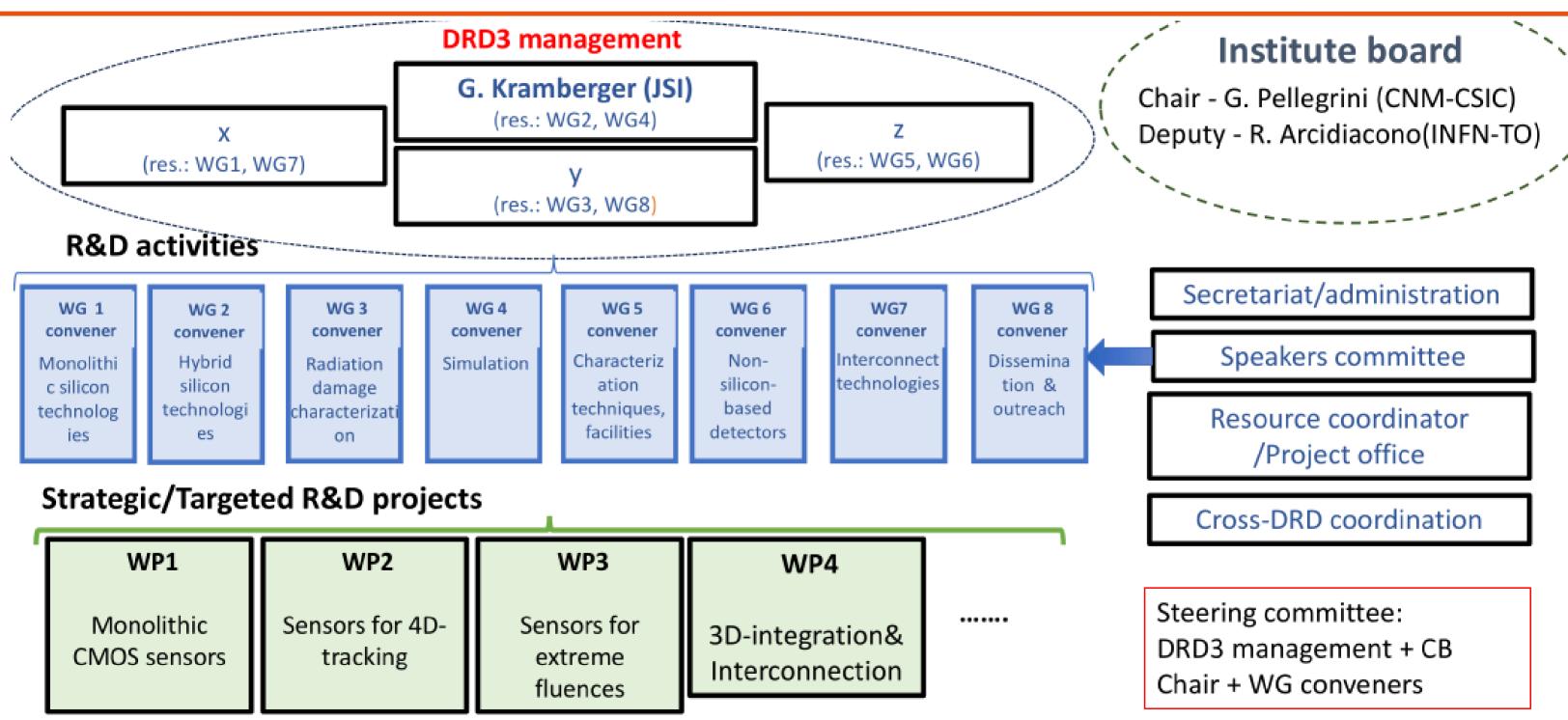

DRD3 Collaboration



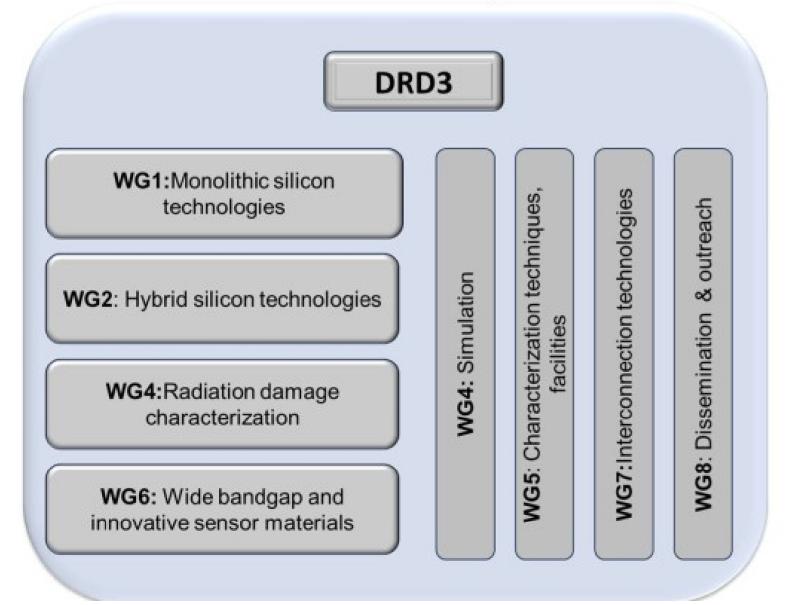
The size of the collaboration

As of yesterday:

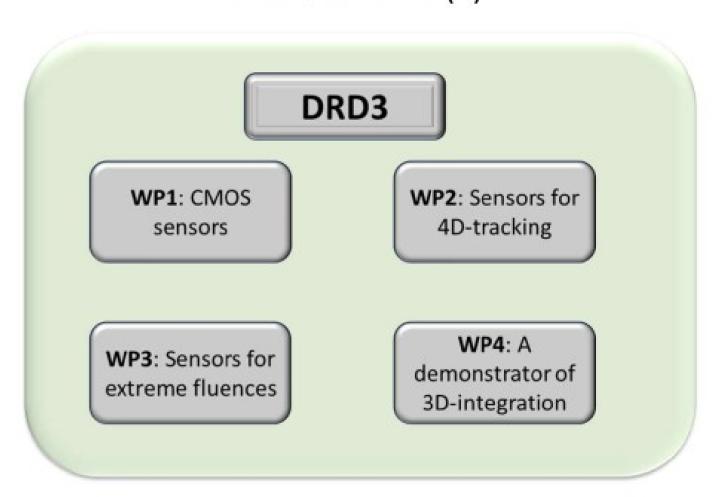
- 537 people have subscribed to the CERN drd3-community-subscribers mailing list
- 132 Institutes have subscribed to the CERN DRD3 institute egroup.



DRD3 Structure



DRD3 WGs and WPs



Working group (WG) long term R&D activity linked to certain technology/purpose/application/method aiming to fulfil the research goals

Work Packages (WP)

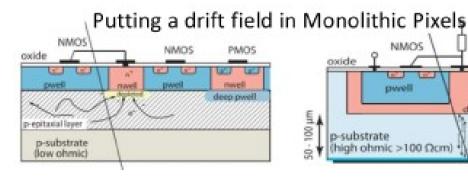
Strategic/Targeted R&D activities linked to DRDT (4).

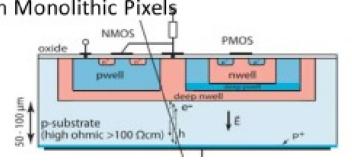
The number of WP projects is not limited

DRD3 Research projects

			Working Groups								
		Work Package Projects	WG1- Monolithic silicon technologies	WG2- Hybrid silicon technologies	WG3- Radiation hardening	WG4- Simulation	WG5- Characterization techniques, facilities	WG6- Wide bandgap and innovative sensor materials	WG7- Interconnection technologies	WG8-Outreach and dissemination	
	WP1 - CMOS sensors	1.1 Spatial resolution									
		1.2 Timing resolution									
		1.3 Read-out architectures									
		1.4 Radiation tolerance							,		
		1.5 Low-cost large-area CMOS sensors									
	WP2- Sensors for 4D- tracking	2.1 3D sensors									
		2.2 LGAD									
	WP3- Sensors for extreme fluences	3.1 wide band-gap materials (SiC, GaN)									
		3.2 diamond-based detectors									
		3.3 Extreme fluence: silicon detectors									
	WP4- 3D- integration and Interconnecti on	4.1 Integration: fast and maskless interconnect									
		4.2 3D In house post- processing for hybridization									
		4.3 Advanced interconnection techniques for detectors									
		4.4 Mechanics and cooling									

WG1 - Monolithic silicon sensors




Aim is to advance the performance of monolithic CMOS, combining sensing and readout elements, for future

tracking applications, tackling the challenges of:

- very high spatial resolution;
- Good timing performances;
- high data rate;
- high radiation tolerance;
- keeping an affordable cost;
- low mass;
- covering large areas;
- reducing power;
- and ultimately combining these requirements in one single sensor device.

WG1 research goals <2027							
	Description						
RG 1.1	Spatial resolution: ≤3 µm position resolution						
RG 2.2	Timing resolution: towards 20 ps timing precision						
RG 1.3	Readout architectures: towards 100 MHz/cm ² , 1 GHz/cm ² with 3D stacked monolithic sensors, and on-chip reconfigurability						
RG 1.4	Radiation tolerance: towards $10^{16} n_{eq}/cm^2 NIEL$ and 500 MRad						
RG 1.5	Low-cost large-area CMOS sensors						

Maurice Garcia-Sciveres and Norbert Wermes 2018 Rep. Prog. Phys. 81 066101 Peric I 2007, Nucl. Instrum. Methods A 582 876-85

WG6 – Wide bandgap and innovative sensor materials

WG6 is well aligned with the DRDT3.2 and DRDT3.3 since WBG semiconductors can be used for **timing applications** due to the high carrier saturation velocity, and their **radiation hardness** make them suitable materials to be used at extreme fluences with the added advantage that they can be operated without cooling.

WG6 research goals < 2027							
	Description						
RG 6.1	3D diamond detectors, cages / interconnects, base length 25 μm , impact ionization						
RG 6.2	Fabrication of large area SiC and GaN detectors, improve material quality and reduce defect levels.						
RG 6.3	Improve tracking capabilities of WBG materials						
RG 6.4	Apply graphene and/or other 2D materials in radiation detectors, understand signal formation.						

DRD3 – Synergies with other DRDs

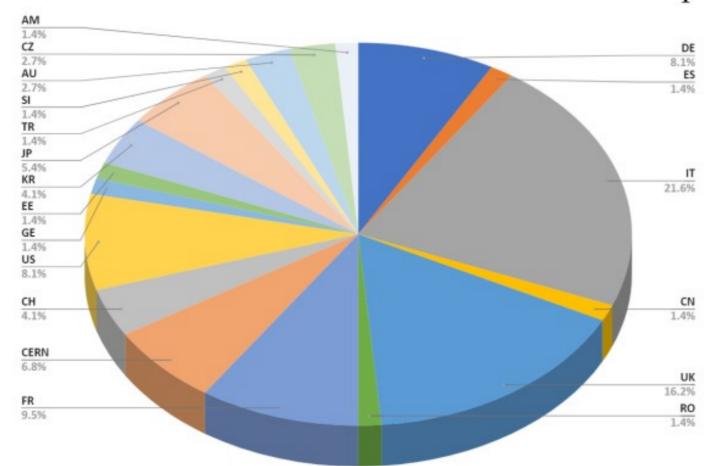
Strong synergies between DRD3 and DRD7

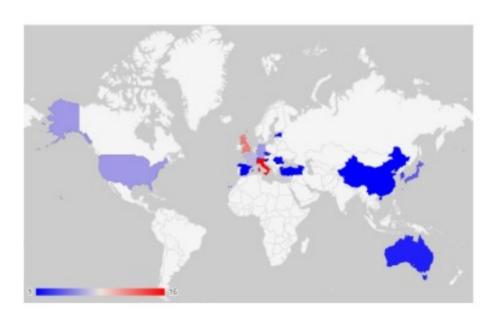
Cross-DRD coordination

- Development of readout ASICs/architectures;
- Evaluation (e.g. evaluate the readout ASIC with the sensor connected).

Possible joint developments

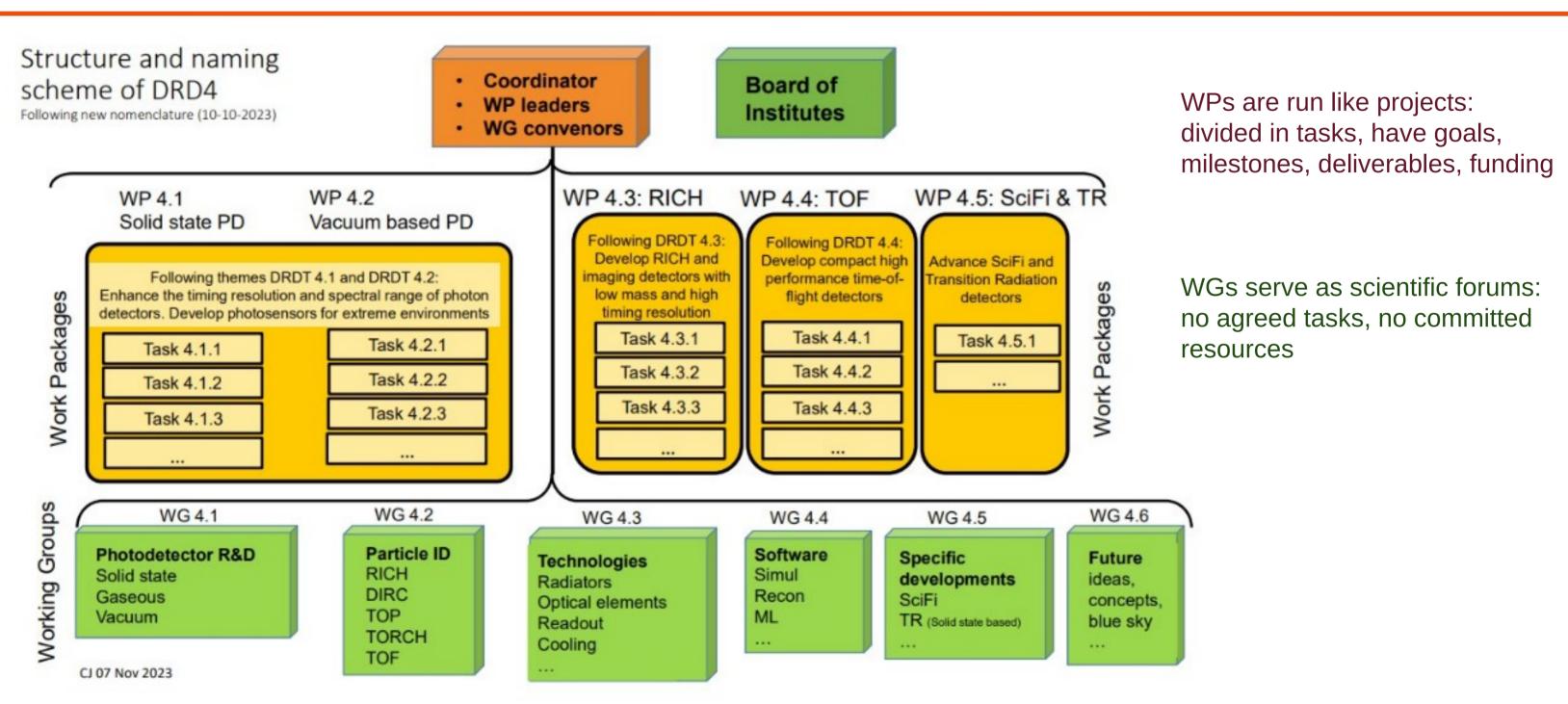
- Designs and joint submissions in TPSCo 65 nm, and perhaps in other technologies too;
- Development of complex readout architectures that eventually could be ported to other technologies (e.g. digital blocks in 65 nm TPSCo ported to another technology process);
- An independent digital chip for 3D integration with a sensitive CMOS chip;
- Stitching;


DRD4 – Photodetectors and Particle ID



DRD4 - Collaboration

- 74 institutes wanted to join the DRD4 collaboration at the time of the Proposal (more in the pipeline)
 - 19 nationalities
 - Many small groups, many with no prior experience in large R&D collaborations
 - Includes 7 industrial and semi-industrial partners (very important asset)



DRD4 – Structure

DRD4 WG1 - Photodetectors

- Scientific forum for studies and development of novel photodetectors with focus on PID for future experiments (59 groups)
- Topics (selection):
 - Radiation hardness; timing resolution; high-rate capabilities; longevity
 - Extreme conditions: e.g., cryogenic and high magnetic field
 - Large-area (e.g. SiPMs arrays, LAPPDs, etc.)
 - Fine granularity detectors for future high-rate experiments
 - New technologies: CMOS-SPADs, new SiPM structures, BSI SiPMs
 - New photocathode structures and materials
 - Novel materials for photon detection: e.g., Ge-on-Si APDs;
 - Hybrid photon detectors
 - Read-out electronics for extreme environments, fast timing and high channel density; optimal sensors and R/O electronics integration
 - Simulations of photo-detector response
- Standardization of procedures for photodetectors characterization
- Regular knowledge exchange with other DRDs

DRD4 WG5 – SciFi and TR Detectors

- R&D of segmented detectors based either on scintillating fibers or on pixelated semiconductor detectors for high precision tracking, eventually exploiting the transition radiation for PID (17 groups)
- WG5.A Scintillating Fibers
 - Novel fast & radiation-hard scintillating fibers
 - Tracking with photon timing information in high occupancy environments
 - Micro-lenses on SiPMs
 - Fiber ribbon and detector plane production techniques (flexible ribbons)
 - Cryogenic cooling of SiPMs
- WG5.B Transition Radiation Detectors
 - Development of a novel TRD based on highly segmented pixel semiconductor detectors (Si, GaAs, CdTe) for measuring both the energies and the emission angles of TR X-rays, for hadron ID in the TeV range

DRD4 WP1 – Solid-State Photodetectors

- Task 1 SSPD with new configurations and modes (16 groups)
 - Development of back-side illuminated SiPM (potential for better PDE and radiation tolerance); development of ultra-granular SiPM that integrates with the electronics by using 2.5D or 3D interconnection techniques; development of CMOS-SPAD light monolithic sensors for HEP; study of new materials for light detection
- Task 2 Fast radiation hard SiPMs (17 groups)
 - Standardize procedures for quantification of radiation effects; irradiated SiPMs characterization in wide temperatures range (down to -200 °C); study of annealing; study and quantify other measures enabling the use of SiPM in highly irradiated areas (e.g. smaller SiPMs, macro- and micro-light collectors)
- Task 3 Timing of SSPD, including readout electronics (16 groups)
 - Study and improve the timing of SiPMs; co-design of a multi-ch. readout ASIC exploiting the timing potential; integration and packaging with integrated cooling; vertical integration of SiPM arrays to FEE (better timing via reduction of interconnections' parasitic inductances and capacitances)

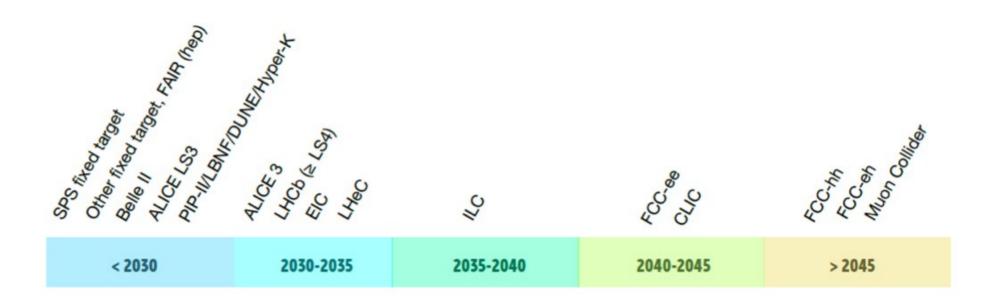
DRD4 WP3 – RICH and Other Imaging Detectors

- Task 1 New Materials Radiators and Components (11 groups)
 - Gas alternatives; optimized aerogel modules; precise interferometric measurement of refractive index
- Task 2 Development of new RICH detector concepts for improved performance (6 groups)
 - High-pressure gas radiator; fast timing, combined RICH/TOF; cryo-RICH; modular RICH; technological demonstrators & proof of concepts
- Task 3 Prototype Single-Photon Sensitive Module for Imaging Arrays from sensor to DAQ and self-calibration systems (12 groups)
 - Fully functional autonomous modules (SiPM, LAPPD); scalable R/O electronics; integration to arrays with cooling; on-detector calibration/alignment/monitoring
- Task 4 Study of RICH detectors for future e⁺e⁻ colliders (3 groups)
 - Prototype a cell for the ARC concept
- Task 5 Software and Performance (11 groups)
 - Fast simulation; reconstruction for high occupancy, high background

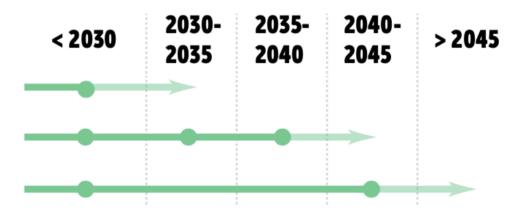
WP3 Leader: Roberta Cardinale (Genova)

DRD4 WG and WP activities

- Scientific activity is starting even without signature of the MoU (which might still need several weeks)
 - First WP/WG meetings organized
- These meetings allow building our community, enabling discussion of planned activities and the spread of information
 - Scientific and technological interests; expertise in the specific topics;
 expected contributions
 - For WP only: discussion on available and needed resources (persons, materials, equipment, funds); milestones and deliverables; sharing of responsibilities and synergies among the various groups
 - Availability (and/or need) of equipment and infrastructures for specific activities (and possibility of sharing or use by other DRD4 members)
- Monitor progress and proper inclusion of new teams and members



DRD6 – Calorimetry

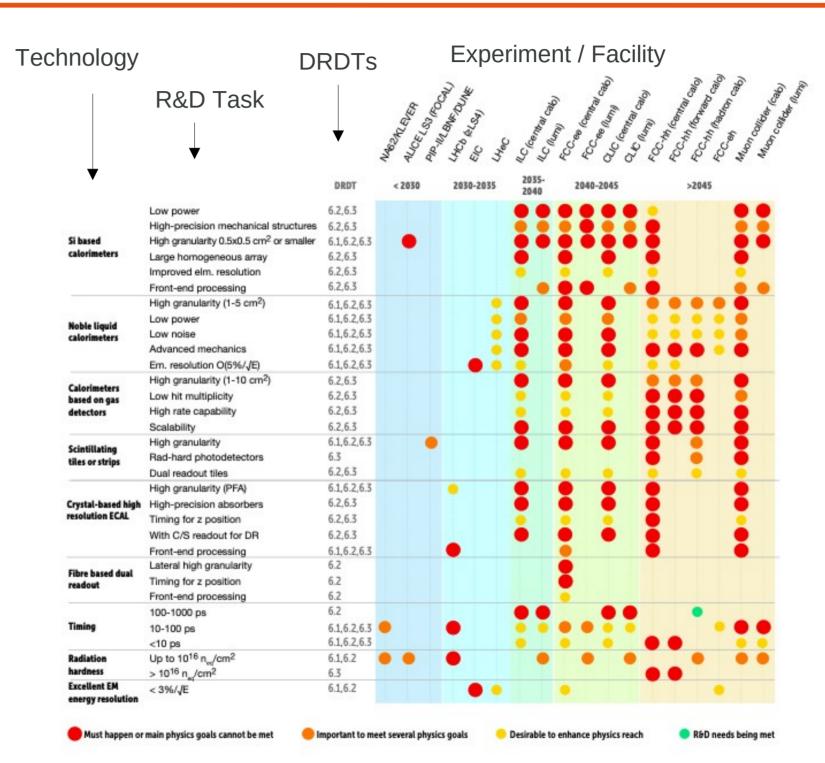

DRD6 - Future facilities and DRDTs for calorimetry

- **DRDT 6.1** Develop radiation-hard calorimeters with enhanced electromagnetic energy and timing resolution
- **DRDT 6.2** Develop high-granular calorimeters with multi-dimensional readout for optimised use of particle flow methods
- **DRDT 6.3** Develop calorimeters for extreme radiation, rate and pile-up environments

- DRDTs and (provisional) time scale of facilities set high-level boundary conditions
- Both as well as GSRs should be taken into account when formulating R&D proposals few details in next slides

DRD6 – Calorimetry overview table

Project	~Earliest Start of data taking	Current Calorimeter options					
		Solid state	Scintilling tiles/strips	Crystals	Fibre based r/o (including DR)	Gaseous	Liquid Noble Gas
HL-LHC (>LS4)	2030			V	•		
SuperKEKb (>2030)	2030			•			
ILC	2035	•	•			~	
CLIC	2045	•	✓				
CEPC	2035	~	~	V	V	V	~
FCC-ee	2045	•	•	~	✓	✓	✓
EiC	2030		✓	~	V		
FCC-hh (eh)	>2050	•	•				•
Muon Collider	> 2050	~	~	~	~	✓	
Fixed target	"continous"		•	•	•		•
Neutrino Exp.	2030		•				(~)


in most cases, final choices still to be made

DRD6 – Identified key technologies and R&D tasks

- Key technologies and requirements identified in roadmap
 - Si based calorimeters
 - Liquid Noble Gas calorimeters
 - Calorimeters based on gas detectors
 - Scintillating tiles and strips
 - Crystal based high-resolution ECal.s
 - Fibre-based dual readout
- R&D should in particular enable
 - Precision timing
 - Radiation hardness
 - High granularity
- R&D Tasks grouped into
 - Must happen
 - Important
 - Desirable
 - Already met

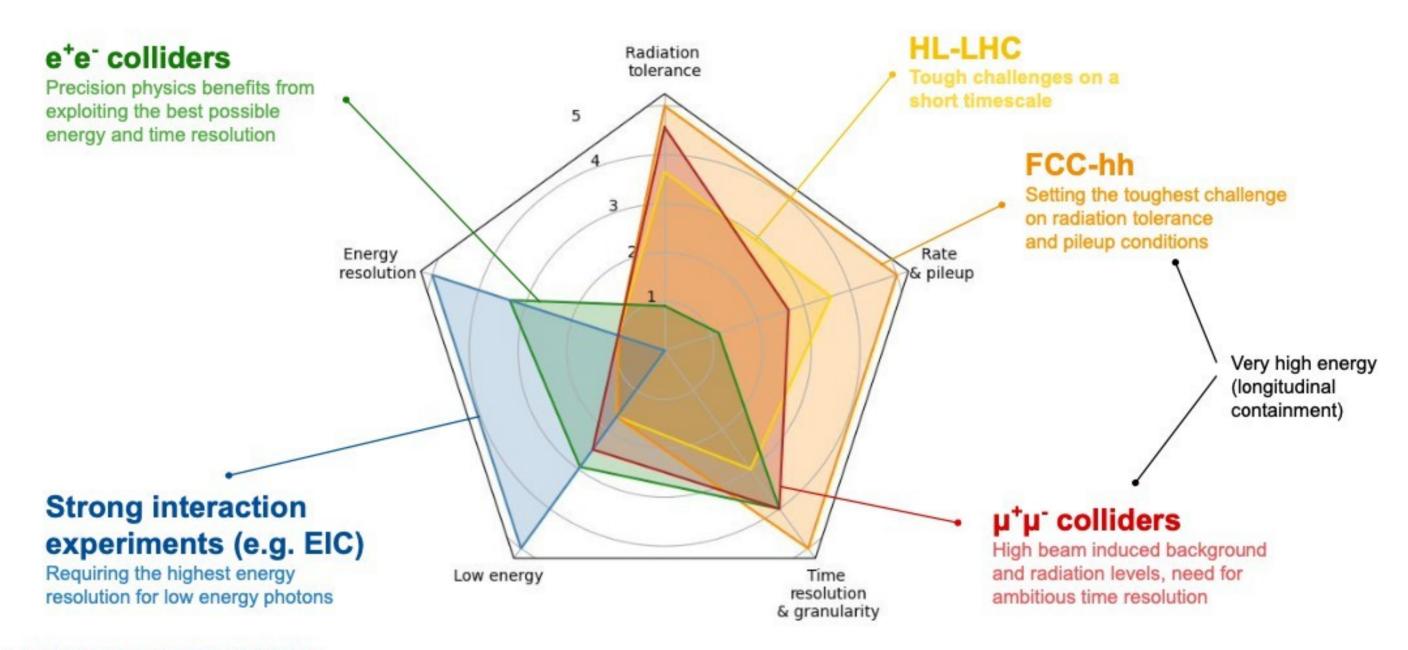
DRD6 – Reminder on today's "ecosystem" for calorimetry

- European projects such as AIDAinnova and EURO-Labs
- CERN EP-Programme
- Existing collaborations (LHC Experiments, Belle II, DUNE, NA62, KLEVER, ...)
- R&D Collaborations and communities (CALICE, FCAL, Crystal Clear, GranuLAr, CalVision, ...)
- Proto collaborations (ILD, SiD, CLICdp, FCC Detector with LAr, IDEA, EpIC, ...)

→ ongoing DRD process must successfully integrate existing R&D activities

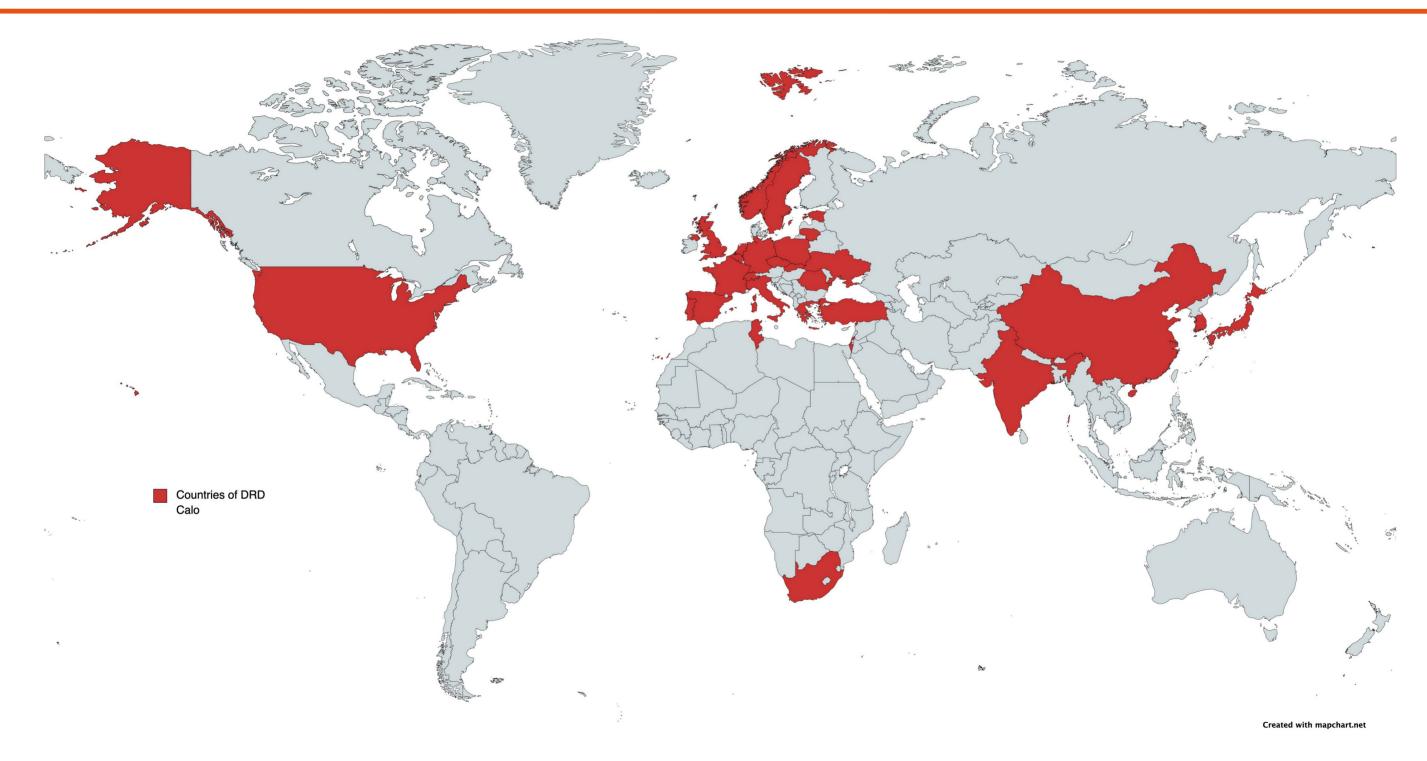
DRD6 – Few common keywords from input proposals

High granularity → critical for PFA (but not only)


Timing resolution → critical for hadron colliders (but not only)

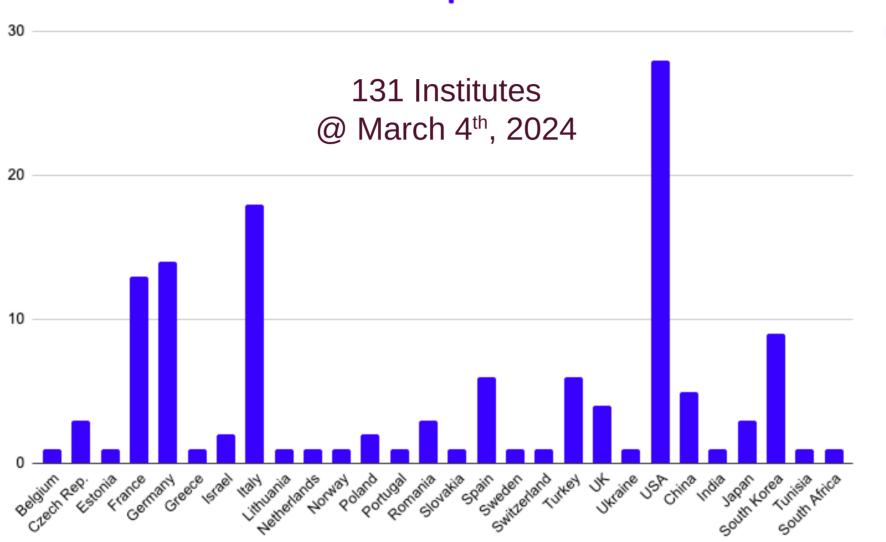
Hadronic energy resolution → critical for lepton colliders

DRD6 – Requirements for calorimetry at future colliders

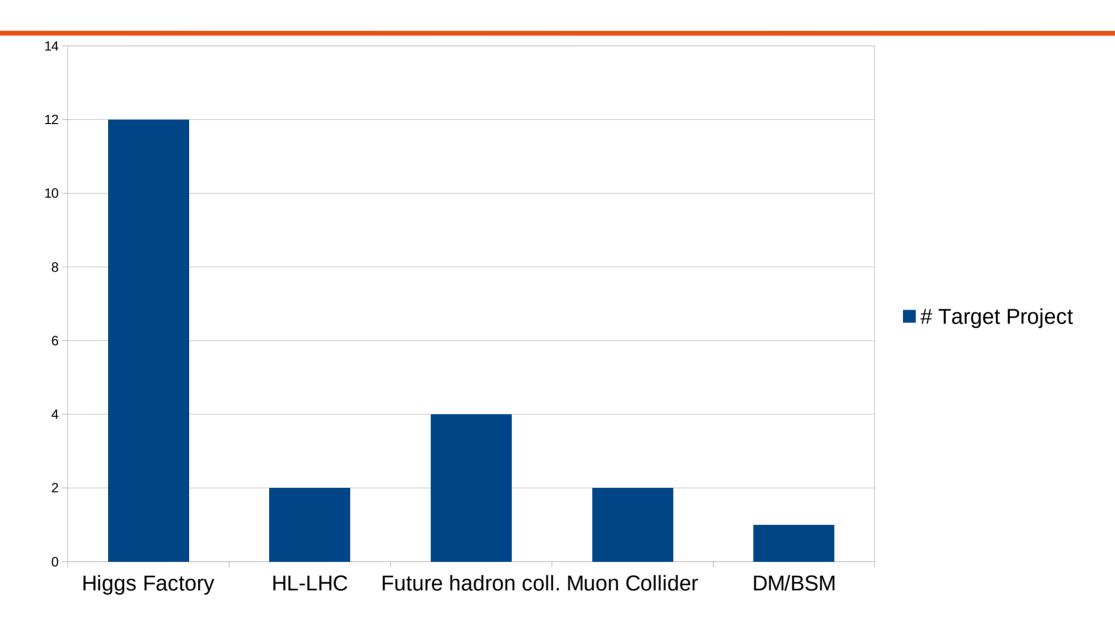


Inspired from https://indico.cern.ch/event/994685/

DRD6 Collaboration

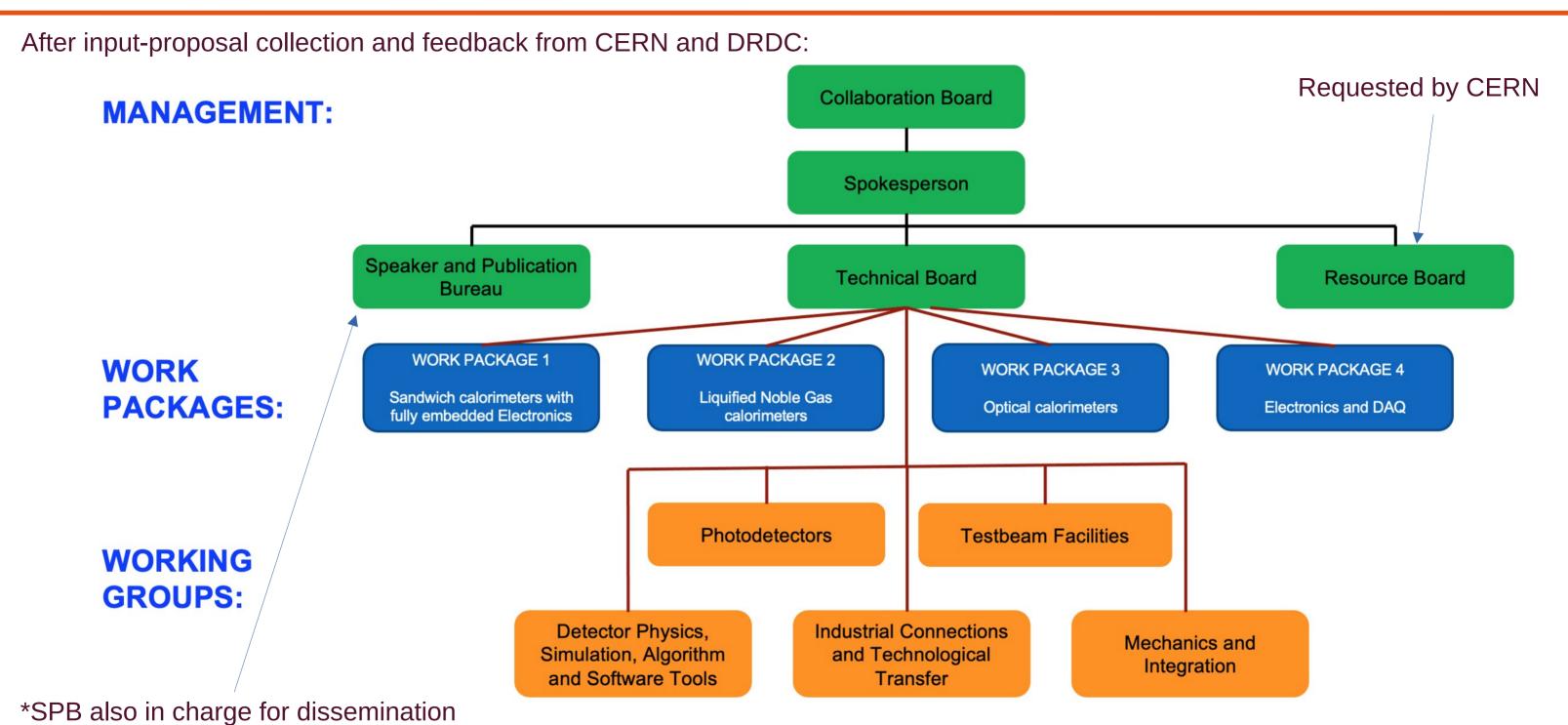


DRD6 Collaboration


Institutes per Countries

- Mainly European Groups but interest from all over world (37%)
 - US biggest single participation → close contact to emerging effort in US
 - Very visible Asian participation

DRD6 – Target projects



- Higgs factories dominate → heavy-flavour physics programme often requires superb em energy resolutions
- Already now, orientation towards future hadron collider and muon collider

DRD6 – Proposed structure

DRD6 – Work Packages and Tasks

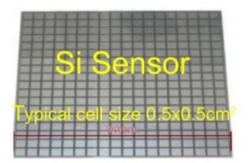
- WP 1: Sandwich calorimeters with fully embedded electronics
 - » Task 1.1: Highly pixelised electromagnetic section (4 sub-tasks)
 - » Task 1.2: Hadronic section with optical tiles (2 sub-tasks)
 - » Task 1.3: Hadronic section with gaseous readout (3 sub-tasks)
- WP 2: Liquefied-noble-gas calorimeters
- WP 3: Optical calorimeters: scintillating-based sampling and homogeneous calorimeters
 - » Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters (3 sub-tasks)
 - » Task 3.2: Innovative sampling EM calorimeters (3 sub-tasks)
 - » Task 3.3: Hadronic sampling calorimeters (2 sub-tasks)
 - » Task 3.4: Materials (2 sub-tasks)
- WP 4: Electronics and DAQ

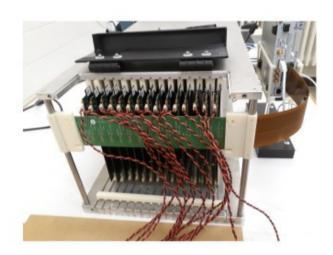
DRD6 – WP1 Tasks and Subtasks (→ Projects)

Elm. sections

sections

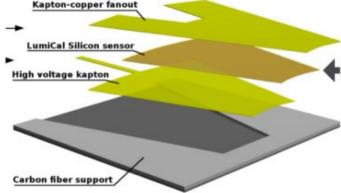
Hadronic


Task/Subtask	Sensitive Material/ Absorber	DRDT
Task 1.1: Highly pixelised electromagnetic section		
Subtask 1.1.1: SiW-ECAL	Silicon/ Tungsten	6.2
Subtask 1.1.2: Highly compact calo	Solid state (Si or GaAs)/Tungsten	6.2
Subtask 1.1.3: DECAL	CMOS MAPS/Tungsten	6.2, 6.3
Subtask 1.1.4: Sc-Ecal	Scintillating plastic strips/Tungsten	6.2
Task 1.2: Hadronic section with optical tiles		
Subtask 1.2.1: AHCAL	Scintillating plastic tiles/Steel	6.2
Subtask 1.2.2: ScintGlassHCAL	Heavy glass tiles/Steel	6.2
Task 1.3: Hadronic section with gaseous readout		
Subtask 1.3.1: T-SDHCAL	Resistive Plate Chambers/Steel	6.2
Subtask 1.3.2: MPGD-HCAL	Multipattern Gas Detectors/Steel	6.2, 6.3
Subtask 1.3.3: ADRIANO3	Resistive Plate Chambers+Scintillating plastic tiles/ Heavy Glass	6.1, 6.2, 6.3



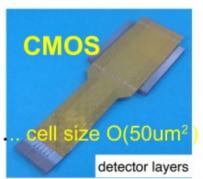
DRD6 Task 1.1 - Highly pixelised e.m. section

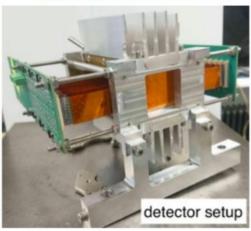
Silicon W(olfram) ECAL



Main R&D Topics

- High level integration
- Power pulsing <-> continuous operation
- · Reduction of power consumption;
- · Cooling?
- · Timing, if and how
- Real-size layers

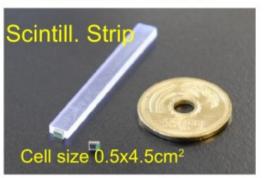




Main R&D Topics

- Testing of sensors with readout strips
- · High level integration
- · Study of conductive glue
- · Wireless data transfer

Digital ECAL



Main R&D Topics

- CMOS MAPS-based optimised for calorimetry
- Reduction of the power consumption to 1mW/cm²
- Stitching technologies for large surfaces

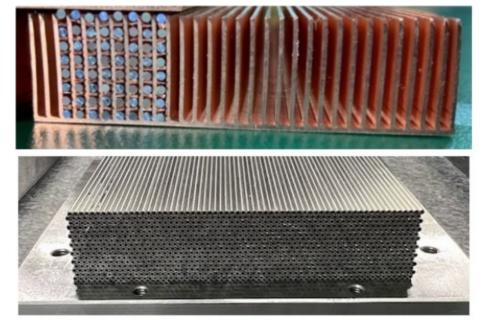
Scintillator ECAL

Main R&D Topics

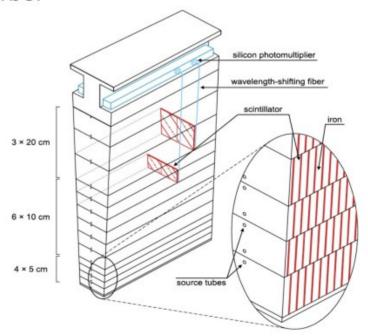
- Power pulsing <-> continuous operations
- Reduction of power consumption
- Cooling?
- Timing, if and how
- Real-size layers

DRD6 – WP3 Tasks and Subtasks (→ Projects)

Project	Scintillator/WLS	Photodetector	\mathbf{DRDTs}	Target		
Task 3.1: Homogeneous and quasi-homogeneous EM calorimeters						
HGCCAL	BGO, LYSO	SiPMs	6.1, 6.2	e^+e^-		
MAXICC	PWO, BGO, BSO	SiPMs	6.1, 6.2	e^+e^-		
Crilin	PbF_2 , $PWO-UF$	SiPMs	6.2, 6.3	$\mu^+\mu^-$		
Task 3.2: Innovat	Task 3.2: Innovative Sampling EM calorimeters					
GRAiNITA	ZnWO ₄ , BGO	SiPMs	6.1, 6.2	e^+e^-		
SpaCal	GAGG, organic	MCP-PMTs,SiPMs	6.1, 6.3	$\mathrm{e^{+}e^{-}/hh}$		
RADiCAL	LYSO, LuAG	SiPMs	6.1, 6.2, 6.3	e^+e^-/hh		
Task 3.3: (EM+)Hadronic sampling calorimeters						
DRCal	PMMA, plastic	SiPMs, MCP	6.2	e^+e^-		
TileCal	PEN, PET	SiPMs	6.2, 6.3	$\mathrm{e^{+}e^{-}/hh}$		
Task 3.4: Materials						
ScintCal	-	-	6.1, 6.2, 6.3	$e^{+}e^{-}/\mu^{+}\mu^{-}/hh$		
CryoDBD Cal	TeO, ZnSe, LiMoO NaMoO, ZnMoO	n.a.	-	DBD experiments		


DRD6 Task 3.3 – (EM+) Hadronic Sampling Calorimeters

Task 3.3: (EM+)Hadronic sampling calorimeters					
DRCal	PMMA, plastic	SiPMs, MCP	6.2	e^+e^-	
TileCal	PEN, PET	SiPMs	6.2, 6.3	$\mathrm{e^{+}e^{-}/hh}$	


DRCal

- High resolution Electromagnetic and hadronic calorimeter based on Dual-Readout Technique
- Organic scintillating fibres in brass or steel absorber (different solutions under development).
- SiPM or MCP-PMT photon detectors integration of a large number of SiPMs

TileCal

- Hadron calorimeter with scintillating tiles and WLS fibre readout and SiPMs
- Cost-effective production of tiles, radiation hardness for FCC-hh
- Organic scintillating tiles, Steel (+Pb for FCC-hh) absorber

DRD6 WP3 – Milestones and deliverables

	Milestone	Deliverable	Description	Due date
	M3.1		Specifications of crystal, SiPM and electronics for highly granular	
			EM crystal calorimeter prototype	2024
		D3.1	Development of 1-2 crystal EM modules to be exposed to beam tests	2024
	M3.2		Beam tests characterisation of a full containment highly granular	2025
HGCCAL	272.20 0		EM crystal calorimeter prototype	
	M3.3		A first mechanical design for a final detector with crystal modules	2025
	M3.4		New reconstruction software for the long-bar design and updated PFA	2026
		D3.2	Large crystal module for hadronic performance, system integration	
	#15-000 (species		studies and combined testbeam with HCAL	>2026
	M3.5		Completion of qualification tests on components and selection	2025
			of crystal, filter and SiPM candidates for prototype	
	M3.6		Report on the characterisation of crystal, SiPM and optical filter	2025
MAXICC			candidates and their combined performance for Cherenkov readout	
MAAICO		D3.3	Full containment dual-readout crystal EM calorimeter	2026
			prototype and testbeam characterisation	
	M3.7		Joint testbeam of EM module prototype with dual-readout	>2026
			fibre calorimeter prototype (DRCAL)	
		D3.4	Acquisition and tests of crystals and SiPMs;	2024
			design and production of electronics boards;	
			design and production of the mechanical components	
Crilin		D3.5	Calorimeter fully assembled	2025
	M3.8		Beam test characterisation of a full containment	2025
			EM calorimeter prototype	
	M3.9		Report on testbeam results	2026
	M3.10		Characterisation of materials, wavelength shifters	2024
GRAiNITA			and SiPMs and identification of best technological choices	
GRAINITA		D3.6	Development of a GRAiNITA demonstrator as EM calorimeter	2026
			prototype for e+e- collider (full shower containment)	
		D3.7	Tungsten and lead absorbers for module-size prototypes	2024
	M3.11		Design of optimised light guides	2025
		D3.8	Set of crystal samples, SPIDER ASIC prototype	2026
SpaCal	M3.12		Specification of photon detector and	2026
			improved simulation framework available	
		D3.9	Module-size prototypes (significantly larger than EM showers)	>2026
			built and validated in beam tests	
		D3.10	Single module with prototype scintillating crystals, SiPMs and front-end	2024
			electronics cards built and tested.	
DAD:CAL		D3.11	3x3 array of RADiCAL modules built and tested	2026
RADiCAL	M3.13		Paper on beam-test results for EM shower position, timing and energy	2026
	M3.14		Continue beam testing with alternative scintillation and	>2026
			wavelength shifting materials - for improved cost/performance.	
		D3.12	Construction of full-scale dual readout module with hadronic shower	2025
DDG 1			containment	
DRCal	M3.15		Testbeam campaign to assess module performance: result paper	2026
	M3.16		Continue beam testing with alternative readout elx	>2026
	M3.17		Characterisation of PEN- and PET-based scintillating tiles	2025
			including optimisation of readout with WLS fibres and SiPMs	
m:1 G 1		D3.13	Construction of up to 3 prototypes of a sampling tile calorimeter	2026
TileCal			module with WLS fibres and SiPM readout (for beam tests after 2026)	
	M3.18		Paper on beam test results	>2026
		D3.14	Full hadron-shower containment prototype built and tested	>2026
ScintCal	2120 190		Dataset of scintillation and radiation hardness properties of various	0.2002000
	M3.19		scintillation materials studied	2026
		D3.15	Samples of a set of scintillators produced and characterised	2026
		D3.16	Samples of most promising glasses produced and characterised	>2026
	M3.20	20.10	Material selected for future detectors	>2020
	50505 100		Report crystals in terms of optimisation of growing/doping	/2023
	M3.21		procedures	2024
			Scintillating polymer for 3D-printing, with optimal mechanical and	
CryoDBDCal				

3 Milestones and 4 deliverable in 2024

Milestones

- Task 3.1
 - HGCCAL: Specifications of crystal, SiPM and electronics for highly granular EM crystal calorimeter prototype
- Task 3.2
 - GRAiNITA: Characterisation of materials, wavelength shifters and SiPMs and identification of best technological choices
- Task 3.4
 - CryoDBDCal: Report crystals in terms of optimisation of growing/doping procedures

Deliverables

- Task 3.1
 - HCCCAL: Development of 1-2 crystal EM modules to be exposed to beam tests
 - Crilin: Acquisition and tests of crystals and SiPMs; design and production of electronics boards; design and production of the mechanical components
- Task 3.2
 - SpaCal: Tungsten and lead absorbers for module-size prototypes
 - Radical: Single module with prototype scintillating crystals,
 SiPMs and front-end electronics cards built and tested

DRD6 WP4 – Electronics and DAQ

Name	Track	Active media	readout
LAr	2	LAr	cold/warm elx"HGCROC/CALICElike ASICs"
ScintCal	3	several	SiPM
Cryogenic DBD	3	several	TES/KID/NTL
HGCC	3	Crystal	SiPM
MaxInfo	3	Crystals	SIPM
Crilin	3	PbF2	UV-SiPM
DSC	3	PBbGlass+PbW04	SiPM
ADRIANO3	3	Heavy Glass, Plastic Scint, RPC	SIPM
FiberDR	3	Scint+Cher Fibres	PMT/SiPM,timing via CAENFERS, AARDVARC-v3,DRS
SpaCal	3	scint fibres	PMT/SiPMSPIDER ASIC for timing
Radical	3	Lyso:CE, WLS	SiPM
Grainita	3	BGO, ZnWO4	SiPM
TileHCal	3	organic scnt. tiles	SiPM
GlassScintTile	1	SciGlass	SiPM
Scint-Strip	1	Scint.Strips	SiPM
T-SDHCAL	1	GRPC	pad boards
MPGD-Calo	1	muRWELL,MMegas	pad boards(FATIC ASIC/MOSAIC)
Si-W ECAL	1	Silicon sensors	direct withdedicated ASICS (SKIROCN)
Si/GaAS-W ECAL	1	Silicon/GaAS	direct withdedicated ASICS (FLAME, FLAXE)
DECAL	1	CMOS/MAPS	Sensor=ASIC
AHCAL	1	Scint. Tiles	SiPM
MODE	4	-	-
Common RO ASIC	4	-	common R/O ASIC Si/SiPM/Lar

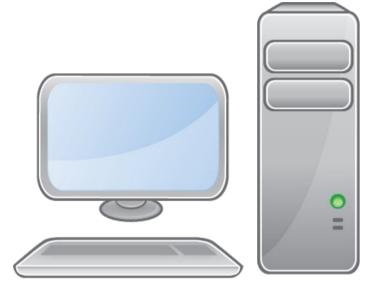
Diffferent calorimeter technology but similar challenges:

- # channels,
- Power budget (cooling?)
- Noise
- Data reduction

DRD6 WP4 – Electronics and DAQ

- Avoid parallel developments
 - Take CALICE as example
- ASICs needed for prototypes >2025/26 possibly produced in common MPW run serving more projects
 - ASICs should be available ~ one year before data taking at latest
 - → common ASIC production: overarching goal of DRD Calo
- Evoke possibility to hook onto production for other large projects (EiC?)
 - Agree on sharing among DRD Calo institutes and maybe with MPW runs in other DRDs
- Requires close communication with DRD3 and DRD7 (and maybe also DRD4)

DRD6 Working Groups – general scope


- Working Groups will address work that is common to all work packages in the DRD
- They thus ensure coherence and synergy of the scientific program of the DRD itself
- In general Working Groups ensure that scientific goals can be reached
 - Funds and personpower need to be included in the budget of the corresponding Work Packages
- Some Working Groups cover service tasks
 - Organisation and conduction of beam tests, if possible in a dedicated beam line for calorimetry
 - Software tools
 - The funding of these service tasks should be the subject of dedicated discussions in the course or shortly after the formation of the DRD
- The detailed organisation of the work within each working group is under the responsibility of dedicated coordinator(s) or directly under the responsibility of Technical Coordination

DRD6 Working Groups – Testbeams

Generic equipment and tools

Beam line infrastructure

Your favorite
Calo Prototype(s)

- Many items are common to all projects
- Common coordination will streamline beam test programme

Overall planning

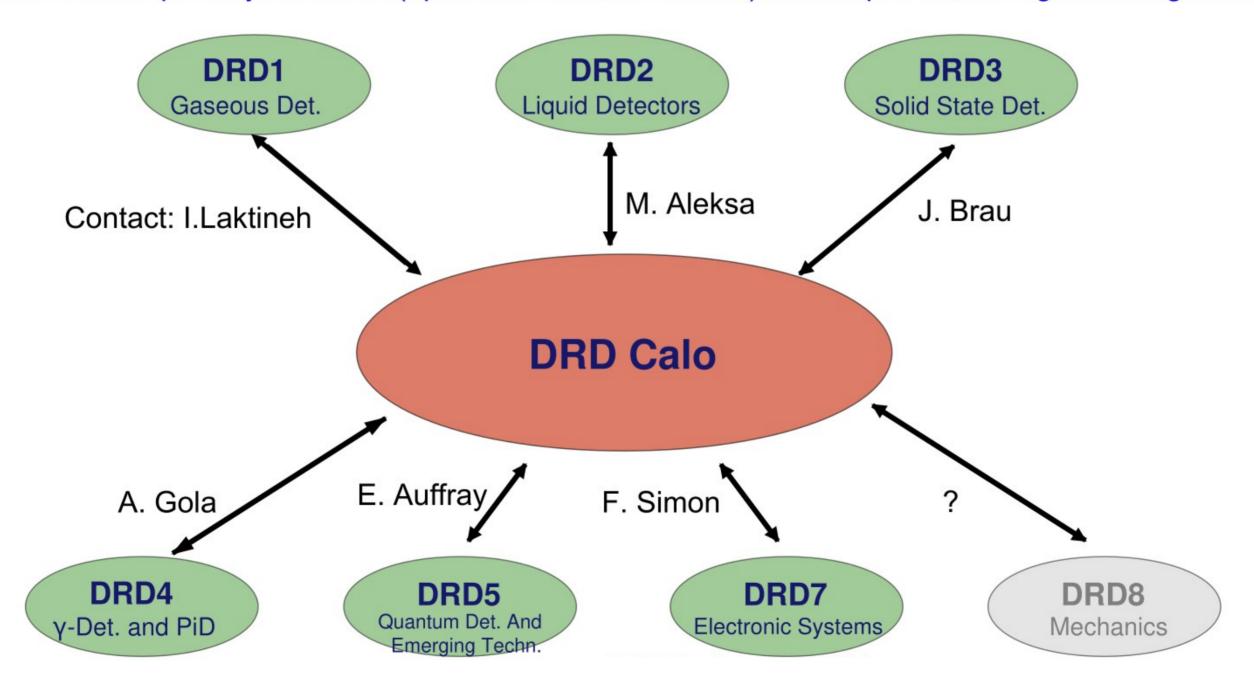
Communication with operators

DRD6 Working Groups – Testbeams

Calorimetric beam tests → small experiment, quite common requirements:

wide energy range several kinds of beam particles beam purity and energy beam instrumentation for time, position and PID big moving tables for big detectors magnetic field

coordination of beam requests coordination of and support for data taking


- → dedicated calorimetry beamline (in dedicated time slots) ?
- → default facility: SPS

DRD6 – Interplay with other DRDs

No R&D on primary elements (apart from scint. materials) but adaptation, tuning and integration

Conclusions

Following the EU particle physics strategy update and the ECFA detector R&D roadmap, 8 new collaborations have been formed:

- Bottom-up process with a worldwide participation
- Common basis
- Custom implementation (depending on community experience and story)
- Structure based on Work Packages (resource loaded) and Working Groups (NO resource load)
- All future facilities in the focus
- Setting up the collaboration NOW

Whoever would like to join, is welcome

Backup

ECFA Detector R&D Roadmap: General Strategic Recommendations European Strategic

GSR 1 - Supporting R&D facilities

It is recommended that the structures to provide Europe-wide coordinated infrastructure in the areas of: test beams, large scale generic prototyping and irradiation be consolidated and enhanced to meet the needs of next generation experiments with adequate centralised investment to avoid less cost-effective, more widely distributed, solutions, and to maintain a network structure for existing distributed facilities, e.g. for irradiation

GSR 2 - Engineering support for detector R&D

In response to ever more integrated detector concepts, requiring holistic design approaches and large component counts, the R&D should be supported with adequate mechanical and electronics engineering resources, to bring in expertise in state-of-the-art microelectronics as well as advanced materials and manufacturing techniques, to tackle generic integration challenges, and to maintain scalability of production and quality control from the earliest stages.

GSR 3 - Specific software for instrumentation

Across DRDTs and through adequate capital investments, the availability to the community of state-of-the-art R&D-specific software packages must be maintained and continuously updated. The expert development of these packages - for core software frameworks, but also for commonly used simulation and reconstruction tools - should continue to be highly recognised and valued and the community effort to support these needs to be organised at a European level.

GSR 4 - International coordination and organisation of R&D activities

With a view to creating a vibrant ecosystem for R&D, connecting and involving all partners, there is a need to refresh the CERN RD programme structure and encourage new programmes for next generation detectors, where CERN and the other national laboratories can assist as major catalysers for these. It is also recommended to revisit and streamline the process of creating and reviewing these programmes, with an extended framework to help share the associated load and increase involvement, while enhancing the visibility of the detector R&D community and easing communication with neighbouring disciplines, for example in cooperation with the ICFA Instrumentation Panel.

ECFA Detector R&D Roadmap: General Strategic Recommendations European Strategy

GSR 5 - Distributed R&D activities with centralised facilities

Establish in the relevant R&D areas a distributed yet connected and supportive tier-ed system for R&D efforts across Europe. Keeping in mind the growing complexity, the specialisation required, the learning curve and the increased cost, consider more focused investment for those themes where leverage can be reached through centralisation at large institutions, while addressing the challenge that distributed resources remain accessible to researchers across Europe and through them also be available to help provide enhanced training opportunities.

GSR 6 - Establish long-term strategic funding programmes

Establish, additional to short-term funding programmes for the early proof of principle phase of R&D, also long-term strategic funding programmes to sustain both research and development of the multi-decade DRDTs in order for the technology to mature and to be able to deliver the experimental requirements. Beyond capital investments of single funding agencies, international collaboration and support at the EU level should be established. In general, the cost for R&D has increased, which further strengthens the vital need to make concerted investments.

GSR 7 – "Blue-sky" R&D

It is essential that adequate resources be provided to support more speculative R&D which can be riskier in terms of immediate benefits but can bring significant and potentially transformational returns if successful both to particle physics: unlocking new physics may only be possible by unlocking novel technologies in instrumentation, and to society. Innovative instrumentation research is one of the defining characteristics of the field of particle physics. "Blue-sky" developments in particle physics have often been of broader application and had immense societal benefit. Examples include: the development of the World Wide Web, Magnetic Resonance Imaging, Positron Emission Tomography and X-ray imaging for photon science.

ECFA Detector R&D Roadmap: General Strategic Recommendations European Strategy

GSR 8 - Attract, nurture, recognise and sustain the careers of R&D experts

Innovation in instrumentation is essential to make progress in particle physics, and R&D experts are essential for innovation. It is recommended that ECFA, with the involvement and support of its Detector R&D Panel, continues the study of recognition with a view to consolidate the route to an adequate number of positions with a sustained career in instrumentation R&D to realise the strategic aspirations expressed in the EPPSU. It is suggested that ECFA should explore mechanisms to develop concrete proposals in this area and to find mechanisms to follow up on these in terms of their implementation. Consideration needs to be given to creating sufficiently attractive remuneration packages to retain those with key skills which typically command much higher salaries outside academic research. It should be emphasised that, in parallel, society benefits from the training particle physics provides because the knowledge and skills acquired are in high demand by industries in high-technology economies.

GSR 9 - Industrial partnerships

It is recommended to identify promising areas for close collaboration between academic and industrial partners, to create international frameworks for exchange on academic and industrial trends, drivers and needs, and to establish strategic and resources-loaded cooperation schemes on a European scale to intensify the collaboration with industry, in particular for developments in solid state sensors and micro-electronics.

GSR 10 – Open Science

It is recommended that the concept of Open Science be explicitly supported in the context of instrumentation, taking account of the constraints of commercial confidentiality where these apply due to partnerships with industry. Specifically, for publicly-funded research the default, wherever possible, should be open access publication of results and it is proposed that the Sponsoring Consortium for Open Access Publishing in Particle Physics (SCOAP3) should explore ensuring similar access is available to instrumentation journals (including for conference proceedings) as to other particle physics publications.

DRD6 - Common issues - lot of room for collaboration

New active materials:

- Fast, high-density, low-cost, scintillating materials
- Fast and rad-hard WLS fibres

Sensors + FE elx:

- Low x-talk, low-noise, low-power budget
- High granularity → high integration → embedded FE elx
- High-precision timing → from O(100) ps down to O(10) ps
- Radiation hardness
- Si/GaAs sensors: high integration, very-front-end integration, sensor bonding
- CMOS sensors: MAPS, digital SiPMs
- Photosensor architecture: MCP-PMTs, SiPMs, LGADs, ...,
- Photosensor performance: dynamic range, light yield, timing, UV sensitivity, ...
- ASICs: architecture, timing performance
- Components / connectors reliability
- High data rate → on-chip processing (DNN) for data selection and compression

DRD6 - Common issues - lot of room for collaboration (2)

Mechanics / production issues:

- Low-material budget
- High mechanical precision
- Industrialisation, engineering, scalability → relation w/ industry
- High-density absorber (e.g. W) production → (e.g.) 3D-printing

Services:

- Cooling
- Powering and control
- Clock distribution for O(10) ps timing

Others:

- Beam test infrastructure, setup & DAQ software (EUDAQ)
- Beam line features + common beam requests
- MC samples → common benchmarks
- Software tools (DD4hep, EDM4hep, Key4hep, ...), event-data format (?)
- Test benches, but also ... PFA and dual readout

add transversal package to cover overarching topics?

DRD6 – External synergies

With respect to other DRDs:

- Gaseous Detectors (TF1) for hadron calorimetry
- Solid State Detectors (TF3) for CMOS sensors
- PID and Photon Detectors (TF4) for all optical readout calorimetry
- Electronics and On-detector Processing (TF7)
- Integration (TF8) for cooling

Other fields: above all, medical imaging

DRD6 – Short-term applications

Several Phase-II and Phase-III HL-LHC upgrades:

CMS ECAL, LHCb ECal, ALICE FoCal

and also:

LUXE (XFEL), BELLE II ECal, EIC EEMCal

but ... all, except FoCal, EM calorimeters

DRD6 – Short-term applications (2)

High-performance hadron calorimetry only relevant for future Higgs/EWK factories?

Only rate capability and radiation hardness look to matter for hadron colliders (not surprising)