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qLimitation of conventional RF cavities

q Dielectric Assist Accelerating (DAA) cavity

qDielectric Disk Accelerating (DDA) cavity

q Conclusion and next steps
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Limits of conventional accelerators
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q Synchrotrons:
o Few RF cavities -> No need for very high electric fields
o Many bending magnets -> Energy loss by synchrotron radiation

q Linear accelerators
o Few bending magnets -> No energy 

loss by synchrotron radiation

o Many RF cavities -> High accelerating 
gradient or large machines.

By Chetvorno - Own work, CC0, https://commons.wikimedia.org/w/index.php?curid=68477306

Key constraint for light particles

Gradients limited around 100 MV/m 
due to surface breakdown 



Surface breakdown phenomenology
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Walter Wuensch – CAS RF School: https://indico.cern.ch/event/1212689/contributions/5377907/
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Surface breakdown initiation
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Stage 2: Field emitter Thermal Runaway
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Stage 3: Ionization 
runaway & Plasma onset
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Stage 5: Burning arc, crater 
formation

Andreas Kyritsakis et al. University of Tartu, MeVArc 2022: https://indico.cern.ch/event/1099613/contributions/4969668/



RF Conditioning
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There is a saturation point 
for Estate for a given 

material (Esat).

The field level to which the 
device has been 
conditioned (Estate). 

We have an operating field 
(Eoperate).

Lee Millar, CERN. MeVArc 2022: https://indico.cern.ch/event/1099613/contributions/4969646/ 

o Start at low electromagnetic field level.
o Gradually increase field keeping a safe 

breakdown rate.
o Reach field saturation.



Complexity of surface breakdown
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• Simulation: ns, nm, simple systems

• x

• Experiment: sec, mm, complex systems

Post-mortem analysis 

Conditioning curves & history

Molecular Dynamics FEMOCS

Andreas Kyritsakis et al. University of Tartu, MeVArc 2022: https://indico.cern.ch/event/1099613/contributions/4969668/



Conventional RF 
cavities

Dielectric Loaded RF 
cavities

Dielectric laser –
driven acceleration

(DLA)

Plasma / Laser 
wakefield

acceleration (PWFA / 
LWFA)

Plasmonic acceleration
Solid-state plasma 

Wakefield acceleration

Based on
Normal / 

superconducting
cavities

Metallic and 
dielectric

Quartz / silicon
structure

Gaseous plasma Excitation of plasmons
Crystals, nano-channels, 

Carbon Nanotubes

Max. 
longitudinal 
electric field

~100 MV/m ~100 MV/m (?) ~10 GV/m ~100 GV/m ~100 GV/m ~1 − 100 TV/m
(prediction)

Limitation Surface breakdown
Multipactor and 
breakdown (?)

Damage threshold Wave breaking
Beam matching with

excited plasmonic 
oscillations

Wave breaking

Novel accelerators

9Hard to get high quality beams
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Standing Wave Acceleration Cavities
P RF in
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Synchronization condition

𝛽: particle velocity
d: distance between cells
fRF: RF frequency
c: speed of light in vacuum

Cylindrical single (or multiple cavities) working
on the TM010-like mode are used

Figures of merit:

q Shunt impedance: efficiency 
of the acceleration mode.

q Quality factor: efficiency to 
store RF energy .

q R/Q: pure geometric 
qualification factor.
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Copper structure single cell
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Accelerating cavity mode 𝑇𝑀!#!

Electric field Magnetic fieldElectric field Magnetic field

Pillbox cavity 𝑇𝑀!#!

Optimization

o High losses in metallic walls: low RF efficiency.
o High peak electric field in metal: field emission and RF breakdown.



Dielectric Assist Accelerating (DAA) cavity
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Copper

Dielectric:
o High 𝜖-
o Low tan δ

D. Satoh, M. Yoshida, and N. Hayashizak, "Dielectric assist accelerating structure." Physical Review Accelerators and Beams, vol. 19, 1, pp. 1011302, 2016
Investigations Into X-Band Dielectric Assist Accelerating Structures for Future Linear Accelerators. Yelong Wei, Alexej Grudiev.

Resonant frequency for the mode depends on 
the combination of 𝑎#, 𝑏#, 𝑐#

Working under 𝑇𝑀!% − 𝜋 mode:
o High 𝑄!.
o Dielectric helps to decrease cavity size.
o Low electric field in metal.
o Axial symmetry 

Low 𝜷 particles S-bandStanding wave
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Energy range for hadrontherapy
o Protons: 70 − 230 MeV → 𝛽 ∶ 0.37 − 0.6
o #%𝐶./: 100 − 430 MeV/u → 𝛽 ∶ 0.43 − 0.73

Bencini, V. (2020). Design of a novel linear accelerator for carbon ion therapy (Doctoral dissertation, Rome U.).

𝑝/ 𝑝/𝐶./ 𝐶./

q Design compared with a
normal cooper cavity for
proton therapy (purple).

q Factor 1.5 to 100
improvement depending
on the material and
characteristics.
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Challenges
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Challenges
q Finding the right material (high 𝝐𝒓 and small 𝒕𝒂𝒏 𝜹).
q Mechanize the geometry within the tolerances 

required.
q Mitigation of non-linear EM phenomena such as 

multipactor.
q Field singularities at triple point junctions. 
q Cooling of the ceramic

Dielectric

Copper

DOI: 10.3389/fphy.2024.1345237

https://doi.org/10.3389/fphy.2024.1345237
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Dielectric Disk Accelerating (DDA) cavity
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Advantages:
o Simpler geometry
o Less sensitive to 

material

Challenges:
o Multipactor
o Fabrication

q Goal: design a prototype to test dielectric cavities.

DDA structure with 
D50 material for 
𝜷 = 𝟎. 𝟒 is a 
promising solution.



Dielectric Disk Loaded Accelerating (DDA) Cavity
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Pros:
o Coupling can be adjusted easily
o Low coupling to other modes
o Low magnetic field in coupling cavity 
o Low electric field on coupling metallic iris.
o More symmetry.

Input power

Cons:
o Mode launcher needed.

𝑇𝐸#!

Laboratory output: 
Rectangular waveguide

Cavity input: 
Circular waveguide

𝑇𝑀!#



Mode Launcher
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Input power

Output 
power

o Minimize reflection: 𝑆(1,1)

o Minimize transmission to 𝑇𝐸##: 𝑆(2: 1,1)

o Maximize transmission to 𝑇𝑀!#: 𝑆(2: 2,1)



Conclusions and next steps
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q DAA results are promising but difficult to realize.

o Paper published!!

q DDA prototype designed: good performance and easier fabrication

Next steps:
o Multipactor mitigation

o Material testing and structure fabrication

o Mode launcher fabrication



Conclusions and next steps
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q DAA results are promising but difficult to realize.

o Paper published!!

q DDA prototype designed: good performance and easier fabrication

Next steps:
o Multipactor mitigation

o Material testing and structure fabrication

o Mode launcher fabrication

New year resolution: Write PhD thesis



Back up



q Electrons are emitted by tunneling due to High surface electric 
fields following Fowler-Nordheim equation.

q Electron currents burn protrusions evaporating ion 
atoms.

q Ions and electron cloud interact with electromagnetic 
fields prouducing reflection effects.

q Electrons interaction with walls translates into high 
radiation dose due to bremsstrahlung photon emission.

Field Emission

RF Breakdown

Radiation

Non Linear effects



Fowler-Nordheim equation: Electrons are emitted through tunneling due to high surface electric field.

Surface roughness:
Local enhacement factor β for
different geometries of 
idealized metallic
microprotusions: Eid = β · E
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q Work function 𝜙: depends on material and geometry.

Field emission
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Δ𝑇 ∝ 𝐻#$ 𝑡%,
𝜟𝑻𝐦𝐚𝐱 = 𝟓𝟎𝐨𝐂

𝐸# = 200
𝑀𝑉
𝑚

Modified Poynting vector: 
𝑆! = 𝑅𝑒 𝑆 + "

# |𝐼𝑚 𝑆 |
5 𝑀𝑊/𝑚𝑚$

q Surface magnetic field 
Pulsed surface heating produced material fatigue -> cracks.

q RF power flow
RF power flow and/or iris aperture has a strong impact on
achievable Eacc and on surface erosion.

q Field emission due to surface electric field
§ RF breakdowns; Electron emission initiates vacuum arcs. The exact

mechanism is still unclear.
§ Breakdown rate (BD/pulse.m) -> Operation efficiency;
§ Local plasma triggered by field emission -> Erosion of surface;
§ Dark current capture -> Efficiency reduction, detector backgrounds.

Iris

Cell wall

[W. Wuensch et al. Phys. Rev. ST 
Accel. Beams 12, 102001 (2009)]

High-Gradient limitation



RF breakdown criteria
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Jan Paszkiewicz, CERN. HG2021: https://indico.fnal.gov/event/22025/contributions/209953/

time

voltage current

power

Field emission, 
no plasma, tiny currents

Onset of breakdown 
and plasma formation

Fully formed plasma
Voltage collapse

Peak power demand during 
breakdown onset!

q Kilpatrick’s Criterion.

o Underestimation

q 𝑃/𝐶

o Only valid for travelling wave

q Modified Poynting Vector: 𝑆, < 5 MW/mm2

o Exceptions found (Crab cavity)

𝑓 = 1.64 𝑀𝐻𝑧 𝐸1 𝑀𝑉/𝑚 % exp
−8.5

𝐸1 𝑀𝑉/𝑚

𝑃 =
𝑣2𝑎
𝜔
𝑄
𝑅 𝐸3,,

% C: Circumference of iris 

𝑆, = 𝑅𝑒 𝑺 +
1
6 𝐼𝑚(𝑺)

q Local Power Coupling



DAA cavity single cell design
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Resonant frequency for the mode depends on the combination of 𝑎#, 𝑏#, 𝑐#:
q Scan for 𝑎#, 𝑐# and we look for the value of 𝑏# that makes 𝑓 = (3000 ± 2) MHz.
q Look for the values of 𝑎#, 𝑏#, 𝑐# that maximizes 𝑍'44 , 𝑄!

Example for ideal material: 𝜖- = 16.66, tan 𝛿 = 0 and 𝛽 = 0.6



DAA cavity single cell iris optimization
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Scan in iris thickness: 𝑑! = 𝜆!/(4 𝜖-)
Iris thickness = 𝑑!𝜉

𝜖- = 16.66, 𝛽 = 0.6

High Power Test Results of X-Band Dielectric Disk Accelerating Structures. Ben Freemire

𝛽 = {0.4, 0.5, … , 1}

𝑑!𝜉



DAA cavity single cell solution
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Electric field Electric Energy

1st: Parallel boundary

2nd : 𝐷 is conserved along the dielectric

3rd : Perpendicular boundary

𝐸 is constant

𝐷 = 𝜖𝐸

High 𝐷 inside dielectric

𝐷 is constant

High 𝐸 in vacuum

𝐸∥,# = 𝐸∥,%

𝐷7,# = 𝐷7,%



Coating losses

29

real
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DDA prototype
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Electric coupling Magnetic coupling

I

II

Circular
waveguide

Rectangular
waveguide



Dielectric Disk Loaded Accelerating (DDA) Cavity
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Electric coupling I

Pros:
o Coupling can be adjusted easily
o Low coupling to other modes

Cons:
o High magnetic field in coupling 

cavity: lower 𝑄
o High electric field on coupling 

metallic iris.
o Mode launcher needed.

Input power

Metallic 
wall

Coupling cell
Regular cell



Dielectric Disk Loaded Accelerating (DDA) Cavity
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Magnetic coupling

I II III Pros:
o Low magnetic field in coupling 

cavity: 
o Low electric field on coupling 

metallic iris.
o No need for mode launcher.

Cons:
o Low coupling to mode
o Similar coupling to other modes



Dielectric Disk Loaded Accelerating (DDA) Cavity
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D50, 𝛽 = 0.4, 𝜖8 = 50.14, tan 𝛿 = 8×10"9 𝜉 = 1.5, 𝑔𝑎𝑝 = 0.2 𝑐𝑚, 𝛼 = 45+ , 𝑟 = 0.1 𝑐𝑚

Electric coupling II

Input power

Parameter value

𝑄! (regular cell) 21503

𝑄'() 22070

𝑄* 11380

𝑄! (total) 23494

𝑄* =
𝑓-'1
𝐵𝑊 = 11197

Eigenmode solver

𝑓-'1 = 3.0063 GHz


