

Introduction

Analysis
overview

Results

τ Decay Mode Identification in a Liquid Argon Electromagnetic Calorimeter at the FCC-ee

Katinka Wandall-Christensen

Supervisor:
Mogens Dam

Niels Bohr Institute
University of Copenhagen

February 2nd 2024

τ polarisation measurements at FCC-ee

Introduction

Analysis
overview

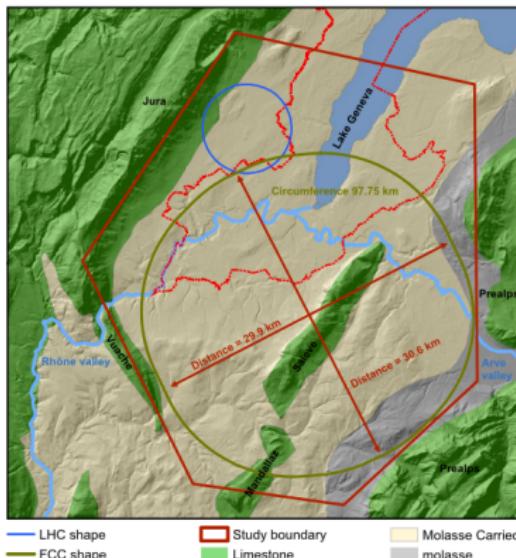
Results

Motivation for measurements of τ polarisation:

Allows for testing $e - \tau$ universality and provides the numerical value of the weak mixing angle

τ polarisation measurements at FCC-ee

Introduction


Analysis
overview

Results

Motivation for measurements of τ polarisation:

Allows for testing $e - \tau$ universality and provides the numerical value of the weak mixing angle

The FCC-ee:

At the Z pole

- Sample size: 5×10^{12}
⇒ LEP statistics
 $\times 10^5$
- $1.7 \times 10^{11} Z \rightarrow \tau\tau$
decays
⇒ precision
measurements

τ polarisation measurements

Introduction

Analysis
overview

Results

Process: $e^+e^- \rightarrow Z \rightarrow \tau^+\tau^-$

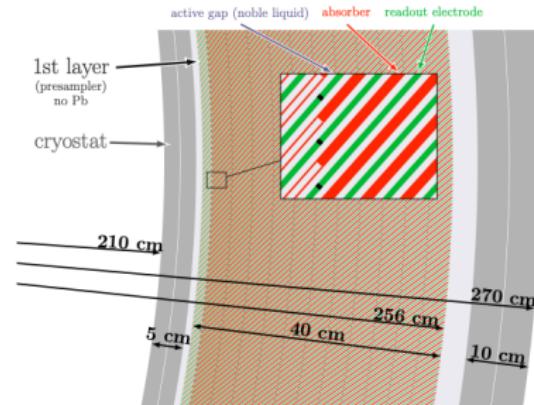
Requirements:

- Precision measurements
 - ⇒ Need a clean and precise separation of τ final states
- Largest sensitivity to polarisation in $\pi n\pi^0$ modes, with $n \geq 0$. In particular the $\pi^-\nu$ and $\rho^-\nu \rightarrow \pi^-\pi^0\nu$ have the largest sensitivities to P_τ
 - ⇒ Need a precise π^0 counting scheme

Decay modes	Branching fraction [%]
$e^-\bar{\nu}_e \nu_\tau$	17.82 ± 0.04
$\mu^-\bar{\nu}_\mu \nu_\tau$	17.39 ± 0.04
$h^-\nu_\tau$	11.51 ± 0.05
$h^-\pi^0\nu_\tau$	25.93 ± 0.09
$h^-2\pi^0\nu_\tau$	9.48 ± 0.10
$h^-3\pi^0\nu_\tau$	1.18 ± 0.07
$h^-4\pi^0\nu_\tau$	0.16 ± 0.04
3 prongs	15.20 ± 0.06

Table: The dominant decay modes and their branching fractions of the τ lepton. h^- represents a K^- or a π^-

Project goal


Introduction

Analysis
overview

Results

Investigate the performance of the LAr/Pb ECAL proposed for the FCC-ee wrt. τ polarisation measurements by trying to achieve the best possible τ decay mode identification. This demands:

- A precise π^0 reconstruction scheme
- A separation of single γ and merged π^0 's since $\alpha(\gamma, \gamma) \propto \frac{1}{E_\pi^0}$

Figure: The proposed LAr/Pb ECAL barrel design [arXiv:2109.00391]

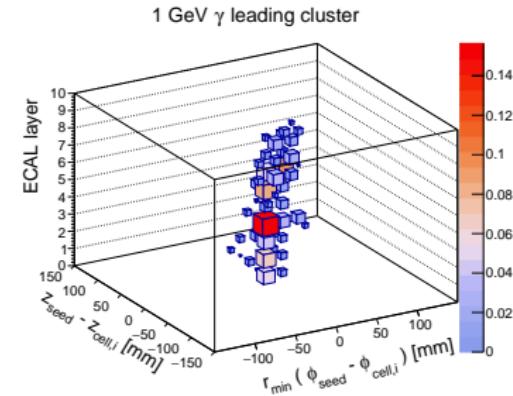
Steps in analysis

Introduction

Analysis
overview

Results

- 1 Set up full detector geometry in FCCSW

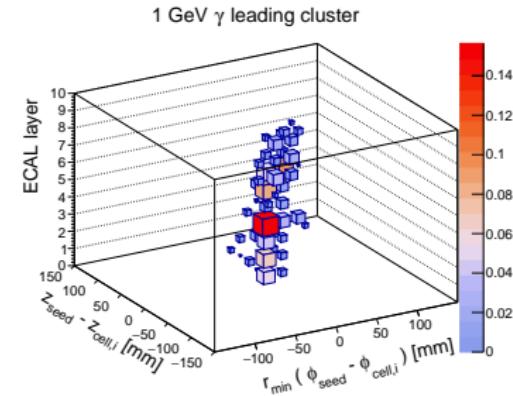

Steps in analysis

Introduction

Analysis
overview

Results

- 1 Set up full detector geometry in FCCSW
- 2 Develop and optimize a clustering algorithm

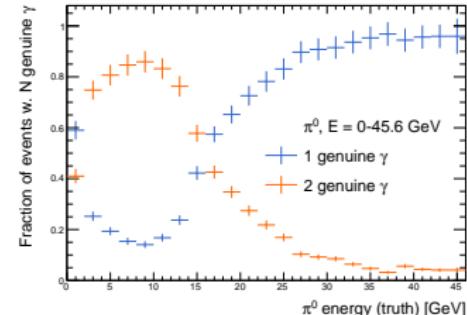
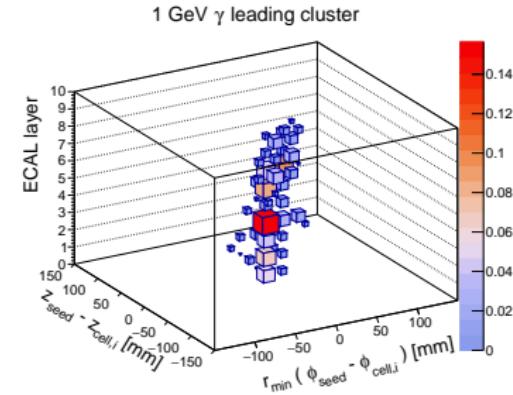

Steps in analysis

Introduction

Analysis
overview

Results

- 1 Set up full detector geometry in FCCSW
- 2 Develop and optimize a clustering algorithm
- 3 Build an algorithm for photon reconstruction

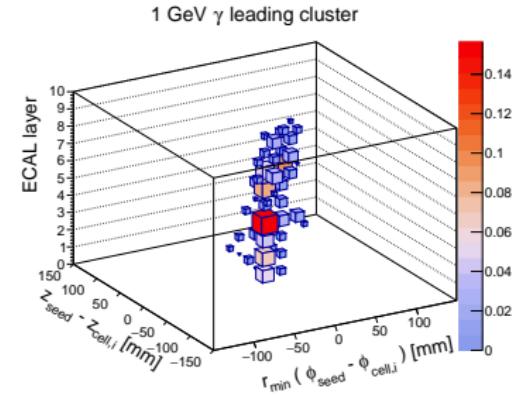


Steps in analysis

Introduction

Analysis
overview

Results

- 1 Set up full detector geometry in FCCSW
- 2 Develop and optimize a clustering algorithm
- 3 Build an algorithm for photon reconstruction
- 4 Develop a method for separating photons from (merged) π^0 's

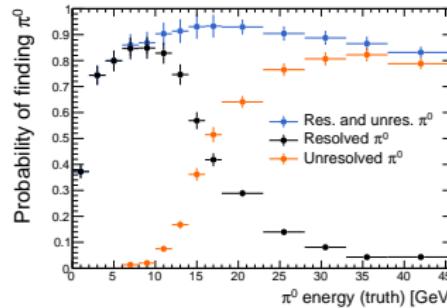


Steps in analysis

Introduction

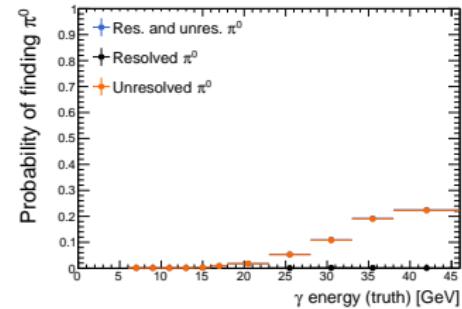
Analysis
overview

Results

- 1 Set up full detector geometry in FCCSW
- 2 Develop and optimize a clustering algorithm
- 3 Build an algorithm for photon reconstruction
- 4 Develop a method for separating photons from (merged) π^0 's
- 5 Minimizing the off-diagonal terms of the migration matrix by forming a separation mechanism for different τ decay channels


π^0 reconstruction

Introduction


Analysis overview

Results

Signal:

Background:

⇒ Probability of reconstructing π^0 : $\epsilon = 84\%$ which is competitive with ALEPH results of $\epsilon_{ALEPH} \sim 84\%$

⇒ Probability of accepting a true γ as π^0 : $\epsilon_{bg} = 4.5\%$ heavily dominated by photons with $E > 25$ GeV

τ decay mode identification

Introduction

Analysis
overview

Results

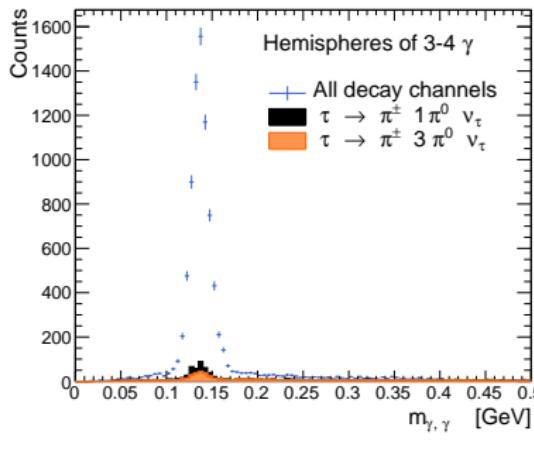
This thesis:

Recon \rightarrow Gen \downarrow	$\pi^\pm \nu$	$\pi^\pm \pi^0 \nu$	$\pi^\pm 2\pi^0 \nu$	$\pi^\pm 3\pi^0 \nu$	$\pi^\pm 4\pi^0 \nu$
$\pi^\pm \nu$	0.9560	0.0425	0.0010	0.0003	0.0002
$\pi^\pm \pi^0 \nu$	0.0374	0.9020	0.0586	0.0016	0.0002
$\pi^\pm 2\pi^0 \nu$	0.0090	0.1277	0.7802	0.0808	0.0022
$\pi^\pm 3\pi^0 \nu$	0.0036	0.0372	0.2679	0.5972	0.0910

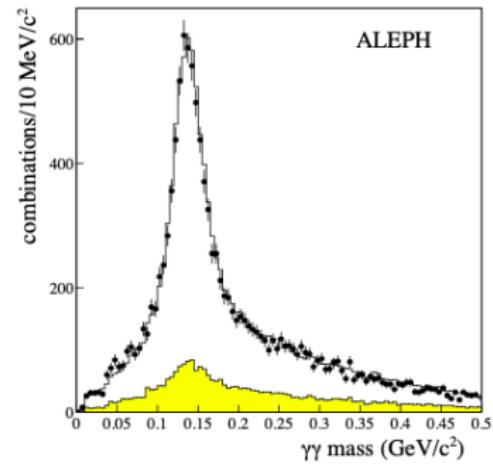
Table: Each row shows the fraction of e.g. $\tau \rightarrow \pi^\pm \nu$ decays classified as each of the considered channels

ALEPH results (normalized to 1. for easy comparison):

Recon \rightarrow Gen \downarrow	$h \nu$	$h \pi^0 \nu$	$h 2\pi^0 \nu$	$h 3\pi^0 \nu$	$h 4\pi^0 \nu$
$h \nu$	0.9270	0.0670	0.0047	0.0010	0.0003
$h \pi^0 \nu$	0.0457	0.8756	0.0728	0.0053	0.0006
$h 2\pi^0 \nu$	0.0044	0.1470	0.7499	0.0900	0.0087
$h 3\pi^0 \nu$	0.0008	0.0288	0.3098	0.5768	0.0837


τ decay mode identification

Introduction


Analysis
overview

Results

This thesis:

ALEPH results:

Figures show the invariant mass of two photons in three-four photon events, where one π^0 has already been identified.

Introduction

Analysis
overview

Results

Thank you for listening!

Introduction

Analysis
overview

Results

Back-up

τ polarisation measurements

Introduction

Analysis
overview

Results

The polarisation

$$P_\tau(\cos \theta) = -\frac{\mathcal{A}_\tau (1 + \cos^2 \theta) + 2 \cos \theta \mathcal{A}_e}{(1 + \cos^2 \theta) + 2 \mathcal{A}_\tau \mathcal{A}_e \cos \theta} \quad (1)$$

with the fermion asymmetry
parameter

$$\mathcal{A}_f = \frac{\left(c_L^f\right)^2 - \left(c_R^f\right)^2}{\left(c_L^f\right)^2 + \left(c_R^f\right)^2} \quad (2)$$

$$\equiv \frac{2c_V^f c_A^f}{\left(c_V^f\right)^2 + \left(c_A^f\right)^2} \quad (3)$$

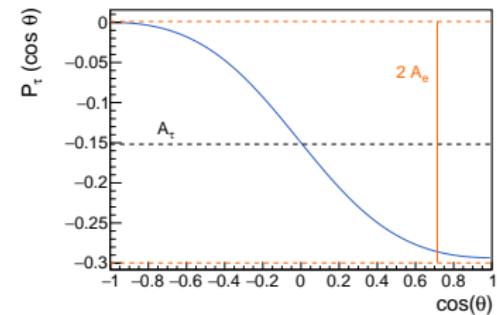


Figure:

$P_\tau(\cos \theta)$ for $\mathcal{A}_e = \mathcal{A}_\tau = 0.15$

Clustering algorithm

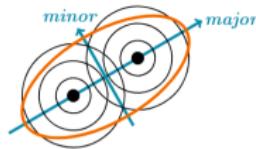
Introduction

Analysis
overview

Results

Methods uses two (adjustable) thresholds: $\text{thrs}_{low} = 10 \text{ MeV}$, $\text{thrs}_{high} = 20 \text{ MeV}$

- ① For each cell, point to highest energy (of 26) neighbours exceeding thrs_{low}
 - If the cell is local maximum and exceeds thrs_{high} it will be a seed
 - For each cell, define list of followers (cells that point to it)
- ② Start by seed cells (local energy maximum) and collect followers iteratively → proto-clusters
- ③ Merging of proto-clusters


⇒ A reconstruction threshold of $E_{clus} > 200 \text{ MeV}$ is used

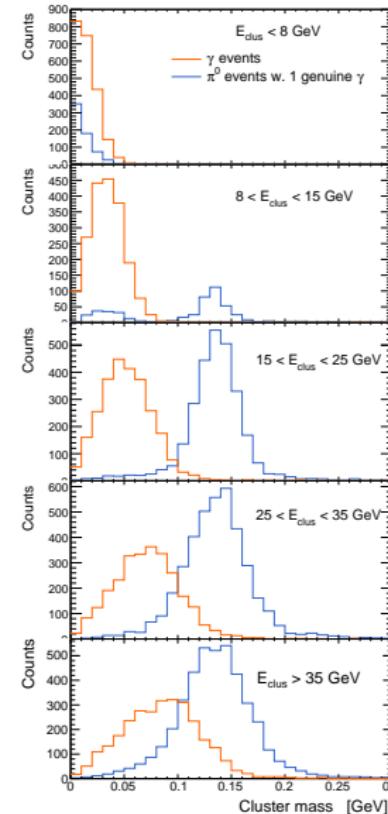
Single photon/unresolved π^0 separation

Introduction

Analysis
overview

Results

⇒ Major axis
correlated with
opening angle of
photons


The major/minor axis lengths can
be re-formulated to calculate a
cluster mass:

$$m_{\text{clus}} = c_1 E_{\text{clus}} x \quad (4)$$

with

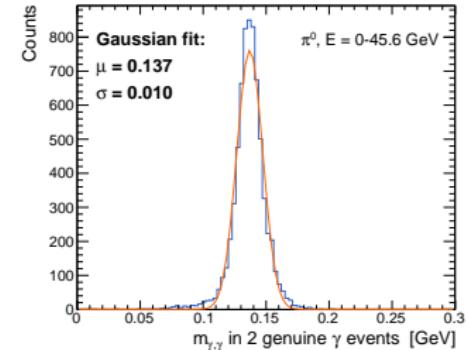
$$x^2 = \text{major}^2 - \text{minor}^2. \quad (5)$$

Calibration factor: $c_1 \sim 1$.

π^0 reconstruction

Introduction

Analysis
overview


Results

1 Combine all genuine photons to find resolved π^0 's

- Photon pair accepted if $m_{\gamma,\gamma}$ is consistent with m_{π^0} within $4\sigma_{m_{\gamma,\gamma}}$
 $\Rightarrow \epsilon_{E<16\text{GeV}} > 98\%$

2 Identify all unresolved π^0 's

- Cluster accepted as unresolved π^0 if $m_{clus} > 0.1 \text{ GeV}$
 $\Rightarrow \epsilon_{E>16\text{GeV}} = 82 - 90\%$, with efficiency decreasing at higher energies

3 Accept remaining genuine photons as residual single photons if $\alpha(\pi^\pm, \gamma) < 0.3 \text{ rad}$