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Top quark mass interpretation
• Test the relation between the top quark MC mass parameter,  and the MSR mass scheme 

used in calculations, , given by:  




• Can establish whether, and to which precision, the numerical value of the MC mass 
parameter can be identified with the renormalised mass.


‣ If the result is incompatible, then the mass relation can be used to convert the top 
quark mass parameter in the MC that is measured in direct measurements to a 
field-theoretical mass scheme. 


‣ In any case, this study can shed light on subtle effects in Monte Carlo generators.
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Goal of analysis
• The interpretation of the top mass in an MC generator, in terms of a 

renormalised mass in the MSR scheme: 

        


• Previously, theory uncertainties at NLL were a large source of uncertainty. arXiv:1608.01318, 
arXiv:1708.02586, ATL-PHYS-PUB-2021-034.


• Calibration performed with new NNLL calculation compared against 
Pythia MC predictions with NNPDF3.0 NLO PDF set and A14 set of 
tuned parameters.


 is set to 172.5 GeV.

mMC
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https://arxiv.org/abs/1608.01318
https://arxiv.org/abs/1708.02586
https://inspirehep.net/literature/1920597


Large-R Jet Mass
• Top mass determined by measuring large-R 

jet mass containing hadronic top.


‣ Mass reconstructed using information from 
decay products of top quark within large-R 
jet.


• Light grooming applied to large-R jet mass


‣ Reduces undesirable effects of soft 
radiation on the jet mass spectrum.


‣ Considerably reduces UE impact. Shift of 
~5 GeV down to ~1 GeV.

arXiv:1708.02586 
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Jet building
• Focus on particle-level hadronic top quark decay in   

processes. 


•  Boosted jet: Inclusive treatment of decay products.


‣  Four orthogonal jet  bins:


GeV.


• Jets built with:


‣ XCone jet algorithm with R = 1.


‣ Parton matching .


‣ Soft-drop light grooming applied to remove soft-wide 
radiation ( , ).

pp → tt̄
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Theoretical Calculation
• Continuation of the top mass interpretation with 

NLL accuracy found at ATL-PHYS-PUB-2021-034.


• Model uses three parameters, , , and 
 associated with first- and second-moment 

non-perturbative corrections.


• Using SCET-based theory with NNLL accuracy


‣ Improved perturbative stability


‣ Renormalon subtraction - Renders the first-
moment non-perturbative correction renormalon 
free.

mMSR
t Ωhad

1
x2

Mantry, Michel, Pathak, Stewart 
Preliminary
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https://inspirehep.net/literature/1920597


Fitting Details
• Idea is to obtain value of parameters in NNLL theory 

calculation that best describe MC prediction.


• , , and  varied:


‣  minimisation fit applied to the three parameters to find 
the global minimum.


• Fit range set to 172.5-180 GeV.


‣ In grooming procedure, theory does not accurately 
describe the low-mass tail present in the generator 
prediction due to decay product FSR effects that are not 
included.


‣ Restrict fit range to avoid the low jet-mass tail, that 
would bias the extracted top mass to lower values.

mt Ωhad
1 x2

χ2
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We take a fit range study, checking the top 
quark mass value at 172-180 GeV and 
173-180 GeV as an uncertainty:  MeV.±215



Theoretical Uncertainties
• Theoretical uncertainty determined by scale variations that provide a 

prescription for estimating perturbative uncertainties.

Measured to be 
+110 MeV and 

-200 MeV.
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UE Uncertainties
•The Underlying Event (UE) encompasses all additional 
activity that occurs in conjunction with hard scattered 
processes at low energy.


•Underlying event  

‣  Comparing nominal MPI-on Pythia against A14 Var1 
and CR eigentune variations (coverage of UE variations 
modelling uncertainties).


‣  Extend to inclusion of MPI-on Pythia against different 
tunes based on other detectors to evaluate the effect.


Uncertainty of  -122 MeV and +137 MeV.
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Result

Mass relation of: 

 GeV) =  MeV

Uncertainty corresponding to the total uncertainty.

ΔMSR = mMC
t − mMSR

t (3 720+285
−330

Mass relation of: 

 GeV) =  MeV

Uncertainty corresponding to the total uncertainty.

ΔMSR = mMC
t − mMSR

t (1 430+285
−330
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Conclusion

• New SCET-based theoretical model yields NNLL predictions for  
with a decrease of theoretical uncertainties. 

• Pythia MC top mass with MSR top mass at 1 GeV computed: 

 GeV) +  MeV


• Consistent results with previous result at NLL ( ).

pp → tt̄

mMC
t = mMSR

t (1 430+285
−330

Δt,MSR = 80+350
−400
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 and MSR schemeMS
arXiv:20004.12915

• MSR scheme:  is defined at evolving 
scale where typically  << 


‣ Better separates long and short distance 
effects.


MSR mass can be converted to any other mass 
(i.e. ) with negligible loss in precision.

mMSR
t (R)

R mt

MS

arXiv:1704.01580
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• Want different renormalisation 
schemes to obtain short-distance 
mass that numerically not too far 
from the pole mass.

•  scheme:  is defined at fixed scale 
where  

- More stable than pole but mostly 
applicable to energy scale greater than the 
top mass.

MS m̄t(μ)
μ ≈ mt

https://arxiv.org/pdf/2004.12915.pdf
https://arxiv.org/abs/1704.01580

