

On-the-fly dose reconstruction from in-beam PET activation

jueves, 22 de febrero de 2024 10:30 (15)

Background and aims: In-beam PET offers rapid treatment feedback, yet faces challenges with high event rates. Clinical implementation requires on-the-fly integration of a fast dose reconstruction algorithm. In this work, we present on-the-fly dose reconstruction from clinical in-beam PET data, using a novel In-beam Dose Estimation tool (IDE-PET), capable of obtaining on-line dose and of detecting range deviations.

Methods: The specific PET setup consisted of 6 phoswich detector blocks with 338 pixels each, with 1.55 x 1.55 x LYSO (7mm)+GSO (8mm) detectors. The system was coupled to a fast data acquisition system able to sustain rates up to 10 Msingles/sec.

Several cylindrical (50-mm diameter and 50-mm height) homogeneous PMMA phantoms were irradiated with a monoenergetic proton beam of 70 MeV oriented along the longitudinal axis of the scanner. Additionally, 5 PMMA range shifter foils of varying thickness (from 1 to 5 mm) were also placed at the proximal surface to investigate range shift prediction accuracy.

For real-time dose estimation, we have developed the IDE-PET tool, which combines a GPU-based 3D reconstruction algorithm [2] with a dictionary-based software capable of estimating deposited doses from the 3D PET activity images [3].

Results: The dose estimation algorithm requires from 0.25 to 1.0 seconds to calculate and display the deposited dose. For a 2 Gy dose fraction, the method was able to spot range variations as small as 1 mm. The average range estimation has a statistical error of 0.1 mm (1σ). Assessment of system sensitivity to proton number changes showed satisfactory results for doses as low as 0.2 Gy.

Conclusions: We can reconstruct dose maps from PET activation on-line, at clinically relevant dose levels and during the beam-on period, with an accuracy better than one millimeter, in the BP fall-off region. This validates the feasibility of the proposed experimental setup to be used for in-beam on-the-fly reconstruction of the 3D dose in a clinical scenario.

[1]Parodi, K., et al (2007). Patient study of in vivo verification of beam delivery and range, using positron emission tomography and computed tomography imaging after proton therapy. International Journal of Radiation OncologyBiology Physics, 68(3), 920-934.

[2] Galve, P. et al (2020). GPU based fast and flexible iterative reconstructions of arbitrary and complex PET scanners: application to next generation dedicated brain scanners. In 2020 IEEE (NSS/MIC).

[3] Onecha, V. V., et al, (2022). Dictionary-based software for proton dose reconstruction and submillimetric range verification. Phys. Med. Biol., 67(4), 045002.

Primary author(s) : ESPINOSA, Andrea (Universidad Complutense de Madrid); VALLADOLID ONECHA, Víctor; ARIAS VALCAYO, Fernando (Universidad Complutense de Madrid); ESPAÑA, Samuel (Ghent University); Sra. GAITÁN-DOMÍNGUEZ, Sara (Universidad Complutense de Madrid); GARCÍA DÍEZ, Miguel (Grupo de Física Nuclear (GFN) Universidad Complutense de Madrid); IBÁÑEZ GARCÍA, Paula (Universidad Complutense de Madrid); SÁNCHEZ PARCERISA, Daniel (Universidad Complutense de Madrid); Sr. SONEIRA-LANDÍN, Cayetano (Universidad Complutense de Madrid); Sr. FERNANZO, Cerrón-Campoó (Centro de Protonterapia Quirónsalud); Dr. VERA-SANCHEZ, Juan Antonio (Centro de Protonterapia Quirónsalud); Dr. MAZAL, Alejandro (Centro de Protonterapia Quirónsalud); FRAILE, Luis Mario (Universidad Complutense de Madrid); UDIAS, Jose (Universidad Complutense de Madrid)

Presenter(s) : ESPINOSA, Andrea (Universidad Complutense de Madrid)