Signatures of sterile ν mixing in high energy cosmic ν flux

Osamu Yasuda
Tokyo Metropolitan University

Work in collaboration with
Andrea Donini
IFT, Madrid (UAM/CSIC)

01-07-2008 @ nufact08
1. Four flavor ν oscillation

1.1 Schemes with LSND

(1) (2+2)-scheme

excluded (~4.9 σ) because it contradicts with ν_{atm} or ν_{solar}

(2) (3+1)-scheme

Strongly disfavored (~3.2 σ L) because of the tension between LSND and Bugey+CDHSW (+other negative results)
1.2 (3+1)-scheme without LSND

Constraints by all the negative results give the allowed region

θ_{34} : could be relatively large
2. Effects of ν oscillation on high energy cosmic ν

2.1 Flux of high energy cosmic ν

- Active Galactic Nuclei (AGN) & Gamma Ray Burst (GRB) are speculated to produce high energy ν.

- $E > 1$ TeV: small BG from ν_{atm}.

![Graph showing the flux of high energy cosmic neutrinos](image)
2.2 Flavor ratio of ν flux for $N_\nu = 3$

In standard $N_\nu = 3$, when $L \to \infty$

Oscillation for $L \to \infty$:

$$P(\nu_\alpha \to \nu_\beta) \cong \sum_j |U_{\alpha j}|^2 |U_{\beta j}|^2$$

Initial flux:

Just like in ν_{atm}, the source of ν is π decay

$$F^0(\nu_e): F^0(\nu_\mu): F^0(\nu_\tau) \cong 1:2:0$$

Observed flux:

$$F(\nu_e): F(\nu_\mu): F(\nu_\tau) \cong 1:1:1$$

Learned, Pakvasa ‘95
2.3 Triangle representation of flux

Precise normalization is not known

The ratio of different flavors is important quantity to observe

The case for sterile ν

The normalized ratio of active flavors is useful:

$$\tilde{F}(\nu_\alpha) \equiv \frac{F(\nu_\alpha)}{F(\nu_e) + F(\nu_\mu) + F(\nu_\tau)}$$
2.4 Flavor ratio of ν flux for (3+1)-scheme

(3+1)-scheme w/o LSND gives the prediction which could be distinguished from $N_\nu=3$ case

In principle, (3+1)-scheme could be distinguished from the three flavor case
2.5 Theoretical uncertainties of original ν flux

For illustrations, they discussed ν flux from GRB using Waxman-Bahcall

- Proton energy spectrum
 \[N_p(E_p) \propto E_p^{-\alpha} \]

- Photon number density
 \[n_\gamma(\epsilon) \propto \begin{cases}
 (\epsilon/\epsilon_b)^{-\beta_1} & \text{for } \epsilon \leq \epsilon_b, \\
 (\epsilon/\epsilon_b)^{-\beta_2} & \text{for } \epsilon_b < \epsilon < \epsilon_{\text{max}}, \\
 0 & \text{for } \epsilon \geq \epsilon_{\text{max}},
\end{cases} \]

- Muon energy loss due to synchrotron radiation
 \[\epsilon_\mu = \frac{E_\mu}{E^*} = 8.4 \times 10^4 \left(\frac{\text{Gauss}}{B} \right) \left(\frac{\epsilon_b}{\text{KeV}} \right) \]
 \[E^* \approx 6.9 \times 10^{13} \left(\frac{\epsilon_b}{\text{KeV}} \right)^{-1} \text{eV} \]

: Proton threshold energy for inelastic interactions with γ

- e:μ=1:2 not necessarily correct
- Energy dependence expected
2.6 e/μ ratio vs μ/τ ratio & energy spectrum for (3+1)-scheme Donini-OY '07

4 curves (energy dependence of p, γ) corresponding to uncertainties by Lipari et al.

μ/τ ratio is less energy dependent (to 1st order in small parameters)

\[R_{\tau \mu}^{(4-fam)} = c_{34}^2 = c_{34}^2 R_{\tau \mu}^{(3-fam)} \]
Donini-OY ‘07

Energy dependence gives us hint on the uncertainties

μ/τ ratio is less energy dependent

\[R_{\tau\mu}^{(4-fam)} = C_{34}^2 = C_{34}^2 R_{\tau\mu}^{(3-fam)} \]

(to 1st order in small parameters)
2.7 Statistics of expected events

For a typical galactic source, ten years of running at a km3 water equivalent detector:

e, μ events $\sim O(100)$

τ events $\sim O(30)$

μ/τ ratio ($N_\nu=3$) = 0.30 \pm 0.06 (theo) \mp 0.03 (stat)

μ/τ ratio ($N_\nu=4$) \sim 0.2

Statistics is not sufficient at all!

A possible way out:

● to integrate over all the galactic and extragalactic sources, or
● to sum over many GRB's events of similar intensities
3. Conclusions

- The (3+1)-scheme without LSND constraint predicts flavor ratio of HE cosmic ν which could be in principle distinguished from standard case.

- The μ/τ ratio suffers relatively less from theoretical uncertainties, and plays an important role to look for signatures of sterile ν.

- Information from energy spectrum could be also important to check theoretical uncertainties.

- Statistics from one source is not sufficient to get signatures of sterile ν, but if we sum over data from many sources then we may be able to say something about sterile ν.