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Overview



Importance of the mass

The nuclear binding energy (B)
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Importance of the mass

Nucleon separation energies (Sn, Sp, S2n, S2p)

)2,(),(2 −−= ZNBZNBS p
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Nuclear Structure & astrophysics 

Other quantities are also important  for nuclear structure, 

all of them obtained from nuclear binding energies
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Importance of the mass

Nucleon separation energies (Sn, Sp, S2n, S2p)

)2,(),(2 −−= ZNBZNBS p

Nuclear Structure & astrophysics 
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N = 126

Z ~ 82

S. Schwarz et al., Nucl. Phys. A 693 (2001) 533
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Importance of the mass

Nucleon separation energies (Sn, Sp, S2n, S2p)

One-proton separation energy for odd-A (even-N) 

isotopes of Ho (Z=67) and Tm (Z=69):

C. Rauth et al., PRL 100 (2008) 012501

Location of the proton-drip 

line



Astrophysics

• Nucleosynthesis e.g. on accreting neutron stars

• Explosive hydrogen burning (X-ray bursts)

• Steady-state burning

Evolution of the process depends on p-density and 

temperature in stellar environment

Astrophysical observations:

elemental abundance, light curves 

Required nuclear data:

• Masses (sep. energies, Q-values) 

• β decay half-lives

• Reaction rates

Importance of the mass

Astrophysics
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Picture from H. Schatz
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Nucleon separation energies (Sn, Sp, S2n, S2p)
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Nuclear Structure & astrophysics 
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Importance of the mass

Q-values from β-decay

Fundamental symmetries &

Neutrino-related physics

emNZMENZMEQ 2)1,1(),( −+−−=+β

)1,1(),( +−−= NZMENZMEQEC

)1,1(),( −+−=− NZMENZMEQ
β



“Curso FNEXP” Valencia  • January  2013                                                                             D. Rodríguez

Importance of the mass

Q-values from β-decay

CVC hypothesis 

Superallowed 

β emitters
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Importance of the mass

Q-values from EC-decay

Is the neutrino a Majorana or Dirac particle?

2νννν2EC (T1/2>1024 y) 0νννν2EC (T1/2>1030 y)

0ν2EC might be resonantly enhanced  (T1/2~1025y) 

Search for nuclides with D=(Qee-B2h-Eg) < 1 keV
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Importance of the mass

Q-values from EC-decay

Is the neutrino a Majorana or Dirac particle?

2νννν2EC (T1/2>1024 y) 0νννν2EC (T1/2>1030 y)

0ν2EC might be resonantly enhanced  (T1/2~1025y) 
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152Gd: S. Eliseev et al., PRL 106 (2011) 052504



Importance of the mass

Q-values from β-decay

• Direct measurement of the mass by analyzing the end of the β-decay spectrum 

independent whether the neutrino is a Majorana or a Dirac particle

mν = 0eV

mν = 1eV

-3              -2              -1               0                                           
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• The best candidates will be decaying 

nuclei with low end-point energies

Q has to be unambiguously determined (with δm/m of at least 10-11) from 

the mass difference using a Penning trap
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• There are two International collaborations aiming at measuring with a sensitivity of

about 0.2 eV/c2: KATRIN (KArlsruhe TRItium Neutrino experiment) and MARE (Micro

calorimeter Array for a Rhenium Experiment)
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History of antineutrino mass measurements 

Tritium and 187Re



10
-8

10
-7

10
-6

 

1990 2000 2010 2020

 

Masses & Identification

Mass models

Nuclear Structure

Halo Nuclei

Heavy elements

Nuclear Astrophysics

Fundamental Interactions

Neutrino physics

Physics goals

Mass uncertainty required
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Mass uncertainty

Evolution in history

“Curso FNEXP” Valencia  • January  2013                                                                             D. Rodríguez

Picture from H.-J. Kluge



Experimental results and models

Discrepancies between the models
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Particularly relevant in the region of Superheavy Elements



Experimental results

Influence in the atomic mass evaluation
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M. Block et al, Nature 463 (2010) 785

Cold fusion

Hot fusion

Very low production 

cross section



Experimental results

Influence in the atomic mass evaluation
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M. Block et al, Nature 463 (2010) 785-788

Cold fusion

Hot fusion

M. Dworschak et al. Phys. Rev. C 81 (2010) 064312

Before  direct 

mass measurements
After direct 

mass measurements
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Mass measurements in the last decade

The 2012 Atomic Mass Evaluation

3350 nuclides

Data from AME2012

G. Audi, M. Wang, private communication



MASS SPECTROMETRY 

TECHNIQUES FOR EXOTIC NUCLEI



Time-of-flight measurements 

Large Spectrometers (an example)
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SPEG (Spectromètre à Perte d´Energie du GANIL)

Time-of-flight combined with rigidity  analysis

υγρ
q

m
B =

• Ion beam energy: 50-100 MeV/u

• Mass Resolving Power: 2-4 ×10-4

• High sensitivity and very short-lived 

nuclei

• Masses up to A ~70



Time-of-flight measurements

Compact devices (MR-TOF-MS)
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Time-of-flight measurements

Compact devices (MR-TOF-MS)
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• Ion beam energy: 1-2 keV

• Mass Resolving Power: 600,000

• Mass Measurement Uncertainty:~10-7

• Sensitivity: ~10 ions

W.R. Plaß et al., NIMB 266 (2008) 4560



MR-TOF-MS at accelerators

FRS at GSI

Beam from FRS

Cryogenic 

stopping cell

Diagnostics

unit

Time-of-flight

mass spectrometerOn-line test of the with
238U projectile fragments

produced at 1 GeV/u at

the FRS in October 2011

and July/August 2012

Courtesy by W.R. Plaß
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Revolution frequency measurements

Experimental storage ring (ESR)
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UNILAC

SIS

ESR

GSI in Darmstadt



Revolution frequency measurements

Experimental storage ring (ESR)
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Revolution frequency measurements

Experimental storage ring (ESR)
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Perimeter:106 m
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Revolution frequency measurements

Detectors and performance
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Schottky MS Isochronous MS
Oscilloscope 

channel A

Oscilloscope 

channel B

MCP
• Ion beam energy: ~ 10 MeV/u

• Mass Resolving Power: 2×106

• Measurement Uncertainty: 1.5×10-7

• Sensitivity: ~1 ion

• Half-life: above 10 s

• Ion beam energy: ~ 10 MeV/u
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• Measurement Uncertainty:            
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Revolution frequency measurements at ESR

SMS spectrum
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Y. Litvinov et al.
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A prominent result of SMS at ESR

Decay of two hydrogen-like promethium ions of 142Pm60+
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Y. Litvinov et al., Phys. Lett. B 664 (2008) 168



Revolution frequency measurements at ESR

IMS spectrum
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Y. Litvinov et al.
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THE PENNING TRAP:

CYCLOTRON FREQUENCY 

MEASUREMENTS



Reduced cyclotron 
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Penning traps

Fundamentals

B
m

q
=cω

Magnetic + Electrostatic field
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Penning traps

Fundamentals

−+ < RR
−+ > RRG. Eitel et al., NIM A 606 (2009) 475
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Penning traps

Different geometries
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L.S. Browm and G. Gabrielse, Rev. Mod. Phys. 58 (1986) 233
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Penning traps

Different geometries



Penning traps 

Different geometries

7 T Superconducting magnet

Preparation 

Penning trap

Finally under construction 

10 ppm 0.143 ± 0.1 ppm

(measured in 1 cm3)

Still to come
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The Penning-trap facility in Spain



External Fields

tVtV RFωcos)( =

)cos()( πω += tVtV RF

+
+

tVtV RFωcos)( =

)cos()( πω += tVtV RF
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Penning-trap techniques

External Fields



External Fields
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Penning-trap techniques 

Isobaric separation

• Increase of the cyclotron radius

when no excitation is applied.

• Centering of the ions after

excitation at ωRF= ωc.

G. Savard et al., Phys. Lett. A, 158 (1991) 247



External Fields
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Penning-trap techniques 

Isobaric separation

• Increase of the cyclotron radius

when no excitation is applied.

• Centering of the ions after

excitation at ωRF= ωc.

G. Savard et al., Phys. Lett. A, 158 (1991) 247Movie Courtesy of Georg Bollen
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External FieldsPenning-trap techniques 

Time-of-Flight Ion Cyclotron Resonance (TOF-ICR)



M. König et al., Int. J. Mass Spectrom. 142 (1995) 95

External FieldsPenning-trap techniques 

Time-of-Flight Ion Cyclotron Resonance (TOF-ICR)
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• Ion beam energy: ~ 1 eV

• Mass Resolving Power: 1×106

• Measurement Uncertainty:         

10-8-10-9

• Sensitivity: ~ 40 ions

• Minimum half-life: 8 ms



External FieldsPenning-trap techniques 

Induced image current detection

“Curso FNEXP” Valencia  • January  2013                                                                             D. Rodríguez

I induced ∝q⋅
νz

z0

⋅ z

L C

RLC

ωLC Frequency (ω)

RLC

Im
p

e
d

a
n
c
e

Z
(ω

)

S

N
∝q⋅

z

z0

⋅
νz

∆ν
⋅

Q

TC

Alternative: 

use a DC SQUID at 4 K

U

Iinduced

z

B

Z =
Q

2πνC
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• Measurement Uncertainty:         

10-11

• Sensitivity: ~ 1 ions

• Minimum half-life: (to be 

determined)



External FieldsPenning-trap techniques 

Induced image current detection
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up to 10-11

• Sensitivity: ~ 1 ion

• Minimum half-life: (to be 

determined)



Penning Traps at Radioactive Ion Beam Facilities
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Coupling Penning traps to RIB facilities
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S. Nagy (EMIS2012)



High-lights 2011-2012: S. Eliseev et al., PRL 106 (2011) 052504, E. Haettner et al., PRL 106 (2011) 122501, S. Eliseev et al., PRL 107 (2011) 152501, S.

Ettenauer et al., PRL 107 (2011) 272501, M. Brodeur et al., PRL 108 (2012) 052504, D. Fink et al., PRL 108 (2012) 062502, M. Brodeur et al., PRL108

(2012) 212501, J. Hakala et al., PRL 109 (2012) 032501, A. T. Gallant et al., PRL 109 (2012) 032506, E. Minaya Ramirez et al., Science 337 (2012) 1207.
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Physics survey

Penning-trap mass measurements at RIB



Recent highlights (TITAN) 

Nuclear (Penning-trap) astrophysics at TRIUMF (June 2012)

rp-process (highly-charged ions)

V. Simon et al., Phys. Rev. C 85, 064308 (2012) 
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Recent highlights (TITAN) 

Nuclear (Penning-trap) astrophysics at TRIUMF (June 2012)

rp-process (highly-charged ions)

V. Simon et al., Phys. Rev. C 85, 064308 (2012) 
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Recent highlights (SHIPTRAP) 

NUSTAR (Penning-trap) experiment at GSI (September 2012)

• The isotope with lowest production rate ever 

measured in a Penning trap (256Lr, 60(18) nb)           

�48 ions detected in 93 hours !!!

E. Minaya Ramirez et al., Science 337 (2012) 1207 

Nuclear Structure (minute production)

“Curso FNEXP” Valencia  • January  2013                                                                             D. Rodríguez



MASS MEASUREMENTS ON EXOTIC 

NUCLEI IN THE FUTURE



Future Facility for Antiprotons and Ions Research (FAIR)

Higher Production yields
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