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Overview



Importance of the ma

nergy (B)

The nuclear binding energy reflects all forces
acting in a nucleus
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Importance of the mass

rgies (S,, S,, Sy, Syp)

Nuclear Structure & astrophysics
S, =B(N,Z)-B(N-2,7)
S,, =B(N,Z)—B(N,Z-2)

S =B(N,Z)-B(N-1,2)
S =B(N,Z)-B(N-1,7)

Other quantities are also important for nuclear structure,
all of them obtained from nuclear binding energies
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Importance of the mass
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Importance of the m

nergies (Sny Sp! SZn! SZp)

One-proton separation energy for odd-A (even-N)
isotopes of Ho (Z=67) and Tm (Z=69):
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Importance of the mass

* Nucleosynthesis e.g. on accreting neutron stars
« Explosive hydrogen burning (X-ray bursts)
« Steady-state burning

S process

Evolution of the process depends on p-density and
temperature in stellar environment

B Mass known
Pb (82 [] Half-life known

[[] nothing known

r process I

Astrophysical observations:
elemental abundance, light curves

Required nuclear data:
« Masses (sep. energies, Q-values
* [ decay half-lives
* Reaction rates

Picture from H. Schatz
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Nucleon separation energies (S, S, S,,, S,,)

Qi(p,y)j: Sj B Si Icture & astrophysics

Sr74

V,Z)—B(N—2,7)
BN V2 -Bwv.z-2)
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B’ 3/2
72Kr lleT Ql( > )
waitingpoint | 2,0, = F (mzj eXp(_ kl}yjj<gu>i(p’7)j

“Curso FNEXP” Valencia ° January 2013 D. Rodriguez



Nucleon separation energies (S, S, S,,, S,,)
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Importance of the mass

Fundamental symmetries &
Neutrino-related physics

O,.=ME(Z,N)—ME(Z-1,N +1)

0,. = ME(Z,N)~ME(Z~1,N+1)-2m,

O =ME(Z,N)—ME(Z+1,N-1)




Q-values from B-decay
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Importance of

EC-decay

Is the neutrino a Majorana or Dirac particle?

2v2EC (T,,>1024y) 0v2EC (T,,>10%y)

1 2 2 2
—=C><m2><\M\ x\\P \ x\\P \ %
T 1% le Qe
1/2

r
(Q—Bzh—Ef)z+%F2

0v2EC might be resonantly enhanced (T,,~10%y)

x (Z,A) e CPtUre of  excited electron shell
two orpjty ele Ct‘ro-nt iT
BZh|
Q.. (Z-2,A) ==
-E,
S (Z-2,A) s

Search for nuclides with D=(Q,¢-By,-E,) < 1 keV
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Importance of

EC-decay

Is the neutrino a Majorana or Dirac particle?
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Q-values from f3-decay

» Direct measurement of the mass by analyzing the end of the B-decay spectrum
independent whether the neutrino is a Majorana or a Dirac particle

Z_]l\; =kxF(E,Z)xpxE, ><(E0 —Ee)2 x[(EO —Ee)2 —mf]m
3
F(OF) = }N(Eﬁ)dEzZ oF
-0E EO

« The best candidates will be decaying
nuclei with low end-point energies

+ Tritium: T, —(*HeT) +¢™ +7,

0=186keV T,=123y

Counting rate

. 1¥7Re: '"Re—'""Os+e +V,

Q0=25keV T,=432x10"y

Ee_EO (eV)

Q has to be unambiguously determined (with 8m/m of at least 10-') from
the mass difference using a Penning trap
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History of antineutrino
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 There are two International collaborations aiming at measuring with a sensitivity of

about 0.2 eV/c?: KATRIN (KArlsruhe TRItium Neutrino experiment) and MARE (Micro
calorimeter Array for a Rhenium Experiment)




Physics goals

ed

10°+ Masses & Identification
(D

Mass models cnmsssssss—

Nuclear Structure ¢

Halo Nuclei emmmmms

Heavy elements «=»

Nuclear Astrophysics ao—————
Fundamental Interactions esssssssmm———
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Neutrino physics
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Time scale for direct mass measurements using Penning traps
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Mass uncertainty
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Experimental result

en the models
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Experimental results

ass evaluation
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Very low production
cross section
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Experimental results

ss evaluation

Before direct After direct o | 257
mass measurements \()Q/ 257Rf mass measurements O / Rf
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M. Dworschak et al. Phys. Rev. C 81 (2010) 064312




Mass measurements
ss Evaluation
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G. Audi, M. Wang

80 O . . ; ' : <
70 T ; gy
o :

180

Version: July 03rd, 2012
Mass uncertainty (keV)

u<1
O 1su=< 2
B 2su< 4
O 4<u<12
[] 12=u <60

. ] 60= u <200
3350 nuclides O 200 < u

o ol Data from AME2012 . Extrapolated Mass
G. Audi, M. Wang, private communication [] Unknown Mass




MASS SPECTROMETRY
TECHNIQUES FOR EXOTIC NUCLEI



Large Spectrometers (an example)

SPEG (Spectromeétre a Perte d”Energie du GANIL) Bp
Time-of-flight combined with rigidity analysis f
m a 'Fi::ii-.#
Bp=y—v e
q
End position [
Start position A
S = Bp
Flight path ~ 82 m * lon beam energy: 50-100 MeV/u
« Mass Resolving Power: 2-4 x10-

High sensitivity and very short-lived
nuclei
Masses up to A ~70
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Time-of-flight measure

Internal 104 mbar
lon Source Separated
lons
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W.R. PlaR et al., NIMB 266 (2008) 4560
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\x/

Full Mass Range,
m/Am ~ 4000

Mass Uncertainty 10-6-10-7
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Time-of-flight measu

Internal 104 mbar
lon Source Separated
' lons
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Trap System
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Time-of-Flight Energy
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([ERREREEME

Kinetic Energy

Gate Detectors
1.5 keV
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SEM

108 mbar

Mass Measurement

Post-Analyzer
Reflector

W.R. PlaB et al., NIMB 266 (2008) 4560
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-TOF-MS)

lon beam energy: 1-2 keV

Mass Resolving Power: 600,000
Mass Measurement Uncertainty:~10-7
Sensitivity: ~10 ions
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Y
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\ / \ ,/ \\ /
\ o / \\ /// \\4//
m/Am > 10° Full Mass Range,

Mass Uncertainty 10-6-10-7
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FRS at GSI

_ _ Cryogenic Diagnostics Time-of-flight
On-line test of the with unit mass spectrometer
238 projectile fragments o N
produced at 1 GeV/u at -

the FRS in October 2011 [
and July/August 201 '

i

Beam fro FR

B —
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Experimental storage ring (ESR)

GSIl in Darmstadt
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Revolution freque
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Revolutio
tal storage ring (ESR)
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Revolution freque

Schottky MS Isochronous MS

SMS

amplification

Oscilloscope
channel B

Schottky summation
Pick-ups
FFT
Stored ion beam

* lon beam energy: ~ 10 MeV/u
« Mass Resolving Power: 2x10°
« Measurement Uncertainty: 1.5x10-/ * lon beam energy: ~ 10 MeV/u
« Sensitivity: ~1 ion « Mass Resolving Power: 3x10°
« Half-life: above 10 s * Measurement Uncertainty:

A n/ , <| 105-10®
g — 1 ( q) n AV 1- |- Sensitivity: ~1 ion
foon n/ 2\ - Half-life: above 100 ps
q A
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Revolution frequency measure

Intensity (a. u.)
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Decay of two hydrogen-like promethium ions of 142Pm®0*

' B+ { Lo
' t=67.84s €«— .

t
1

f

&
Y. Litvinov et al., Phys. Lett. B 664 (2008) 168 .
' ], !

Revolution frequency —
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<— Time after injection into the ESR




Revolution frequency me

Amplitude (V)

Y. Litvinov et al.

13.5 14.0 14.5
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THE PENNING TRAP:
CYCLOTRON FREQUENCY
MEASUREMENTS



Penning traps

Magnetic + Electrostatic field

p_
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D St ___ ~
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motion @, = E[a)c - \/(a)c 2602)} . W, =0, +0_
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motion "y c c z a)f n a)ZQ + a)_2 _ wcz
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Penning traps

bes 10 Number of
accumulated
MCP counts
Chevron = 22.0
E .
e 16.5
. o
Delay line i
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G. Eitel et al., NIM A 606 (2009) 475 R <R
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Penning traps

End cap

Correction electrode
Correction electrode

Ring :
Vo Ring electrode
electrode 0 9
Correction electrode
Correction electrode
End cap End cap

L.S. Browm and G. Gabrielse, Rev. Mod. Phys. 58 (1986) 233




Penning traps

The Pioneering ISOLTRAP at ISOLDE
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Penning traps

7 T Superconducting magnet
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Finally under construction
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External Fields

o o
V(t)=V cos gt

)

e o
V(t)=V cos(@,t + )
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Penning-trap techniques

# i

\

C

* Increase of the cyclotron radius  Centering of the ions after
when no excitation is applied. excitation at oge= ..

G. Savard et al., Phys. Lett. A, 158 (1991) 247




Penning-trap techniques
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Penning-trap techni
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Time-of-Flight lon Cyclotron Resonance (TOF-ICR)

3401
— 320
H
= 300
LDL 280
= 260
250 - 3
| = 240
200 220
20
-3 -2 -1 0 1 2 3
g B0 Ve - 107121066 [ Hz ]
= _
3 1004 * lon beam energy: ~ 1eV
| « Mass Resolving Power: 1x10°
* Measurement Uncertainty:
20+ 10-8-10-
1 » Sensitivity: ~ 40 ions
0 . N . | | | . .. e
0 200 400 500 200 Minimum half-life: 8 ms
Time of flight [ us] M. Konig et al., Int. J. Mass Spectrom. 142 (1995) 95
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Induced image current detection

|

o —
-
-~

lon beam energy: ~ 1 eV
Measurement Uncertainty:

101"

Sensitivity: ~ 1 ions

Minimum half-life: (to be

determined)
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Induced image current detection

|

determined >
Wie  Frequency (w)
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Mass spectrometry of atomic nuclei

JYFL TRAP & /’@@H
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Coupling Penning traps tc

In-Flight ISOL
method method
| | Penning
E...= 20 keV/u - 400 MeV/u Eions= 30-60 keV traps
Gas-filled :
stopping | . _ .| RFQ | o _oy__
chamber buncher
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Physics survey

measurements at RIB

I

Practicable with higher production rates > FAIR
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Recent highlights (TIT

astrophysics at TRIUMF (June 2012)

rp-process (highly-charged ions)
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V. Simon et al., Phys. Rev. C 85, 064308 (2012)
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rp-process (highly-charged ions)
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ng-trap) experiment at GSI (September 2012)

62n(N,2) = $on(N,2) = SN + 2, 2)

Nuclear Structure (minute production) = DM (NZ)+ Mo (N~ 2.7)
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MASS MEASUREMENTS ON EXOTIC
NUCLEI IN THE FUTURE



Higher Production yields
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Higher Production yields
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