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Z, number of protons
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Mativacion e implicaciones de los NR

» Aplicaciones tecnologicas: produccion de energia en reactores

* Aplicaciones en astrofisica: nucleosintesis de elementos pesados



Produccion de energia por fisidon nuclear

O

En un reactor nuclear, el objetivo es producir prompt ° ()
calor (energia) por medio de una reaccion en fission v
cadena auto-sostenida (k = 1, sistema critico). neutrons U &
: . ] > 0
[k := factor efectivo de multiplicacion neutrénical

En este sentido el equilibrio o balance de
neutrones es muy importante. Un calculo preciso
del balance de neutrones debe incluir, no solo
los neutrones “prompt” emitidos en cada fision (2-3) sino
también los neutrones provenientes de la desintegracion
beta de los productos de fision (NR) (0.6% del total).

Son necesarias librerias “precisas” de:

- Secciones eficaces de reacciones: fision, captura
neutronica, dispersion elastica, etc

- Productos residuales producidos en las reacciones
de fision, “minor actinides”.

- Particulas secundarias producidas en las reacciones:
numero de neutrones “prompt” por fision, radiacion gamma,
emision retardada de neutrones y rayos gamma.




Produccion de energia por fisidon nuclear

En un reactor, los NR tienen el efecto de prolongar la vida media efectiva de los
neutrones libres (t) de 1 ms (prompt fission n) a unos 100 ms (fission+{n).

Ejemplo para ilustrar la relevancia de los NR en el control de un reactor nuclear:
N:= Numero de neutrones libres en un reactor

T := vida media efectiva promedio de un neutron libre

La evolucion del balance de neutrones en un reactor viene descrita por la siguiente ecuacion
diferencial:

dN/dt = o N/T

a..= constante de proporcionalidad:
o > 0 - Supercritico: tasa de aumento de n aumenta exponencialmente
o. = 0 - Critico: equilibrio, numero de neutrones libres permanece constante.
o < 0 = Subcritico: nimero de neutrones decae exponencialmente

Imaginemos un sistema (reactor nuclear) en el que =0 - o = 0.01.

1) Asumiendo que no existen los NR: T := 1 ms (neutrones de fision)

En 1 s la variacion de potencia en el reactor seria:
AP =1+ o) =(1+0.01)1000 =2.09x104, cuatro o.d.m.!!!

2) Incluyendo los NR: T := 100 ms (dominada por los NR)
En 1 s la variacion de potencia en el reactor seria:
AP =(1+a)=(1+0.01)"°=1.1046, es decir, solo un 10%.



Produccion de energia por fisidon nuclear

La mayoria de reactores nucleares se operan en modo prompt subcritical, delayed
critical, es decir, los neutrones prompt de la fision no son suficientes para sostener una
reaccion en cadena. Mediante los neutrones retardados se llega a la condicion de
criticalidad.

Cuando una pequena porcion de “barra de control” se inserta en el nucleo del reactor, al
principio la potencia cambia muy rapido (por los neutrones de fision), y posteriormente
mas gradualmente (exponencialmente) debido a los neutrones retardados.

Conclusion:
Sin los neutrones retardados, las centrales nucleares tal y como estan
concebidas actualmente, serian inoperables.




Nucleosintesis de elementos pesados en
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Supernova con explosion en chorro (jet-like explosion) SN + v-driven wind
v,+n->
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*Simulaciones magneto-HD en 3D:
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Nucleosintesis de elementos pesados en
entornos estelares exploswos
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Nucleosintesis de elementos pesados en
entornos estelares explosivos
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Los Elementos de las Tierras Raras

son tan abundantes gracias a los NR

Tierras Raras: Sc, Y, La, Ce, Pr,
Nd, Pm, Sa, Eu, Gd, Tb, etc.
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Dynamical r-process studies within the neutrino-driven wind scenario and its sensitivity

to the nuclear physics input
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Técnicas experimentales de medida de NR

Produccion de los nucleos ricos en neutrones (por fision y/o fragmentacion)
Implantacion en un blanco (activo)

Medida de la desintegracion beta

Medida de los neutrones

Evaluacion del “neutron branching”



Fragmentacion

Projectile Projectile spectator

. . Participants

Target Target spectator
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Removal of nucleons in quasi-free nucleon-nucleon collisions.
Basic characteristics:

-Large fluctuations in N/Z.

Large fluctuations in excitation energy.

Highly excited fragments loose additional nucleons by evaporation.
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Polarisation

Fission induced by low-energy neutrons

Fission products



Produccion de iones exoticos

Ni isotopes from Snisotopes from
projectile fragmentation and projectile fission projectile fragmentation and projectile fission
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|dentificacion y separacion
de los nucleos exoéticos de interés

Heavy lon Z
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Implantacion en un blanco

Experiment




Implantacion y decay en un blanco activo

SIMBA
Constructed and developed at

TUTI

Technische Universitdt Minchen

Degradador
(Freno)

Pictures: K. Steiger

N.Z Z+1,N-1 Z+1,N-2
Precursor Emitter Final Nucleus



Implantacion y decay en un blanco activo

12xDSSDs, 8x8cm, 1mm Si, 625um,
>5000 channels Mezzar ndl

4x 16 channel ASICs
Cu cover
EMI/RFI/light screen
cooling
PJ Woods: PI of AIDA collaboration
] - (Edinburgh — Liverpool — STFC DL &
e RAL)




Implantacion y decay en un blanco activo

Implantes e.g. 2°°Bi a 40 MeV/u: f-decays:
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Deteccion de los neutrones retardados-beta

n+3He — 3H+'H + 0.764 MeV
(abund.=0.00014%)
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Moderar para detectar. -

After many collisions:

Nucleus 1-a E (1MTV—>
25 meV)
H 1 1 18
2H 0.889 0.725 24
‘He 0.640 0.425 41
12C 0.284 0.158 111
S6Fe 0.069 0.035 500
208pp 0.019 0.010 1823

Slowing-down time:

Slowing-down parameter:
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n
2A A+1

Number of collisions to
reach an energy:

InE, /E,
4
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Contadores 4n: NERO @ NSCL-MSU

Polyethylene block (60x60x80cm?3)

16 *He and 44 BF, proportional counters
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Contadores 4. 3Hen @ ORNL
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Neutron detection (%)
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Determinacion del P,
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Ejemplos de experimentos TERD @ NS

PHYSICAL REVIEW C 73, 035801 (2006)

B-decay half-lives and f-delayed neutron emission probabilities for
neutron rich nuclei close to the N = 82 r-process path
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Ejemplos de experimentos: BELEN-30 @ﬁ;

Estudio de la formacion del tercer pico de abundancias en el proceso r

[-delayed neutron emission measurements
around the third r-process abundance peak
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Ejemplos de experimentos: BELEN-30 @ GSI

Estudio de la formacion del tercer pico de abundancias en el proceso r
[-delayed neutron emission measurements
around the third r-process abundance peak
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Ejemplos de experimentos:

Estudio de la formacion del tercer pico de abundancias en el proceso r
* Explosive nucleosynthesis and the r-process around the third abundance peak
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Ejemplos de experimentos:

Estudio de la formacion del tercer pico de abundancias en el proceso r

» Difficult to calculate/predict half-live of the nuclei in this region:
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Estudio de la formacion del tercer pico de abundancias en el proceso r
* Difficult to calculate/predict Pn-values of the nuclei in this region:
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Estudio de la formacion del tercer pico de abundancias en el proceso r
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Ejemplos de experimentos:

Estudio de la formacion del tercer pico de abundancias en el proceso r
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Ejemplos de experimentos:

Estudio de la formacion del tercer pico de abundancias en el proceso r
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Resumen

* El proceso de emision de neutrones retardados, es un efecto que puede tener lugar siempre que
esteé energeticamente permitido, es decir, cuando Q; — S, > 0.

* En los casos en los que es energéticamente factible, la probabilidad emision retardada de
neutrones depende de la distribucion energeética del -decay, y por lo tanto representa una
herramienta muy util para obtener informacion sobre la estructura y la desintegracion nuclear, en
los casos mas exoticos donde las tasas de produccion son generalmente débiles.

 La emision retardada de neutrones juega un papel fundamental tanto en aplicaciones técnicas
(funcionamiento de los reactores nucleares), como en estudios astrofisicos de nucleo-sintesis
estelar en entornos estelares explosivos (SN, Mergers, etc), donde se producen de modo natural
estos emisores exoticos ricos en neutrones.

« Experimentalmente se pueden producir nucleos emisores de neutrones utilizando reacciones
nucleares de fragmentacion o de fision.

» Para poder determinar la probabilidad de emisién retardada de neutrones, es necesario detectar
tanto los electrones (las particulas - de la desintegracion) como los neutrones.

« El método mas comun para la medida de NR consiste en el uso de contadores gaseosos (3He y/o
0B) integrados en una “matriz” de polietileno, que actia como moderador para los NR, reduciendo
su energia y aumentando asi la probabilidad de deteccion. Una matriz con un gran numero de
contadores, permite alcanzar eficiencias de deteccion muy altas (entorno al 70-80%), lo cual es
una ventaja fundamental para la medida de los nucleos mas exoticos.



Perspectiva:

» La mayoria de los nucleos que quedan por descubrir son emisores de neutrones

retardados !

» Hemos desarrollado detectores con eficiencias proximas al 70-80% (por desgracia no podremos

pasar del 100% de eficiencia;-)).

* El siguiente paso es desarrollar nuevas instalaciones de RIB que permitan alejarnos mas del valle

de estabilidad t\)/eta: FAIR, SPIRALZ2, FRIB, RIKEN, etc.
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Produccion de energia por fision nuclear

La produccion de energia en un reactor se ajusta controlando el numero de
neutrones disponibles para producir fision.

Para ello se utilizan “barras de control”, que estan hechas de un material que
absorbe neutrones (alta CS de captura). Cuanto mas se introduce la barra de
control en el reactor, mas se suprimen los neutrones y por lo tanto la fision y la
produccion de energia.
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Nucleosintesis de elementos pesados en
entornos estelares explosnvos

Phys. Rev. C, 83, A.Arcones 2011 r e
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Gas detector modes:
lon-chamber, proportional counter, Geiger

Practical Gaseous lonisation Detector Regions

Variation of ion pair charge with applied voltage in a wire cylinder system with constant incident
radiation.
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